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The paper is concerned with counterparty credit risk for credit default swaps in the

presence of default contagion. In particular, we study the impact of default contagion
on credit value adjustments such as the BCCVA (Bilateral Collateralized Credit Value

Adjustment) of Brigo et al. (2014) and on the performance of various collateralization
strategies. We use the incomplete-information model of Frey and Schmidt (2012) for our

analysis. We find that contagion effects have a substantial impact on the effectiveness

of popular collateralization strategies. We go on and derive improved collateralization
strategies that account for contagion. Theoretical results are complemented by a simu-

lation study.
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1. Introduction

The distress of many financial firms in recent years has made counterparty risk

management for over-the-counter (OTC) derivatives such as credit default swaps

(CDS) an issue of high concern. Crucial tasks in this context are the computation of

credit value adjustments, which account for the possibility that one of the contract-

ing parties defaults before the maturity of the OTC contract, and the mitigation

of counterparty risk by collateralization. Collateralization refers to the practice of

posting securities (the so-called collateral) that serve as a pledge for the collateral

taker. These securities are liquidated if one of the contracting parties defaults before

maturity, and the proceeds are used to cover the replacement cost of the contract.

In order to ensure that the funds generated in this way are sufficient, the collateral

position needs to be adjusted dynamically in reaction to changes in the value of

the underlying derivative security. The price dynamics of the collateral thus play a

crucial role for the performance of a given collateralization strategy.
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In the present paper we study the impact of different price dynamics on the

size of value adjustments and on the performance of collateralization strategies for

CDSs. We are particularly interested in the influence of contagion. Contagion effects

- the fact that the default of a firm leads to a sudden increase in the credit spread

of surviving firms - are frequently observed in financial markets; a prime example

are the events that surrounded the default of Lehman Brothers in 2008. To see

that contagion might be relevant for the performance of collateralization strategies

consider the scenario where the protection seller defaults during the runtime of the

CDS. In such a case contagion might lead to a substantial increase in the credit

spread of the reference entity (the firm on which the CDS is written) and hence in

turn to a much higher replacement value for the CDS. In standard collateralization

strategies this is taken into account at most in a very crude way, and the amount

of collateral posted before the default might be insufficient for replacing the CDS.

In our view this issue merits a detailed analysis in the context of dynamic portfolio

credit risk models.

We use the reduced-form credit risk model proposed by Frey and Schmidt (2012)

as vehicle for our analysis. In that model the default times of the reference entity, the

protection seller and the protection buyer are conditionally independent given some

finite state Markov chain X that models the economic environment. We consider

two versions of the model which differ with respect to the amount of information

that is available for investors. In the full-information model it is assumed that X

is observable so that there are no contagion effects. In the incomplete-information

version of the model on the other hand investors observe X in additive Gaussian

noise as well as the default history. In that case there is default contagion that is

caused by the updating of the conditional distribution of X at the time of default

events. An advantage of the setup of Frey and Schmidt (2012) for our purposes is

the fact that the the joint distribution of the default times is the same in the two

versions of the model. Hence differences in the size of value adjustments or in the

performance of collateralization strategies can be attributed purely to the different

dynamics of credit spreads (contagion or no contagion) in the two model variants.

In order to compute value adjustments and to measure the performance of col-

lateralization strategies we use the bilateral collateralized credit value adjustment

(BCCVA) proposed by Brigo et al. (2014). This credit value adjustment accounts

for the form of collateralization strategies and for the credit quality of the contract-

ing parties. Our analysis reveals that the impact of contagion on the size of the

BCCVA depends strongly on the relative credit quality of the three parties involved

and is hard to predict up front. Results on the performance of different collater-

alization strategies are more clear-cut: we show that while standard market-value

based collateralization strategies provide a good protection against losses due to

counterparty risk in the full-information setup, they have problems to deal with the

contagious jump in credit spreads at a default of the protection seller. Motivated

by these findings, we go on and develop improved collateralization strategies that

perform well in the presence of contagion. For our analysis we need to compute the
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BCCVA in both model variants. Using Markov chain theory we derive explicit for-

mulas for the BCCVA under full information; in the incomplete-information setup

we rely on simulation arguments.

There is by now a large literature on counterparty risk for CDSs. Existing con-

tributions focus mostly on the computation of value adjustments (with and without

collateralization) in various credit risk models. Counterparty credit risk and valu-

ation adjustments for uncollateralized CDS are studied by Hull and White (2001),

Brigo and Chourdakis (2009), Blanchet-Scalliet and Patras (2008), Lipton and Sepp

(2009) and Bao et al. (2012), among others. Counterparty credit risk for collateral-

ized CDS is discussed among others in Bielecki et al. (2011), and Brigo et al. (2014).

However, none of these contributions covers the issues discussed in this paper in full.

Bielecki et al. (2011) analyze the impact of collateralization on counterparty risk

in CDS contracts using the Markov copula model which does not exhibit conta-

gion effects. Brigo et al. (2014) is closest to our contribution: these authors study

the impact of contagion on credit value adjustments and on the effectiveness of

market-value based collateralization strategies in a Gaussian copula model with

stochastic credit spreads. In that model default or event correlation and contagion

effects are both driven by the choice of the correlation parameter of the copula.

Consequently, it is not possible to disentangle the impact of event correlation and

of default contagion on credit value adjustments and on the performance of collat-

eralization strategies. This might be an advantage of our setup. Moreover, Brigo et

al. (2014) do not address the issue of designing collateralization strategies that take

default contagion into account.

The remainder of the paper is organized in the following way. In Section 2 we

discuss the BCCVA of Brigo et al. (2014). In Section 3 we introduce the credit risk

model of Frey and Schmidt (2012) that provides the framework for the analysis of

the present paper. Section 4 is devoted to the computation of the BCCVA in both

model variants. In Section 5 we discuss different collateralization strategies, and in

Section 6 we present results from numerical experiments.

2. Bilateral Collateralized Credit Value Adjustment (BCCVA)

In this section we discuss the bilateral collateralized credit value adjustment

(BCCVA) proposed in Brigo et al. (2014).

We begin with some notation. Throughout the entire paper we work on a prob-

ability space (Ω,F ,Q) equipped with a filtration F := (Ft)t∈[0,T ] that fulfills the

usual hypotheses. Q denotes the risk-neutral measure used for pricing, and all ex-

pectations are taken with respect to Q. F is a generic filtration that models the

information available to the market participants; we will specify F when we intro-

duce the credit risk model for our analysis in Section 3. We assume throughout

that the short rate r(u) is deterministic and we denote the discount factor from

time t to time s by D(t, s) = e−
∫ s
t
r(u)du. The following parties are involved in the

CDS contract: the protection buyer, labeled B; the reference identity, labeled R;
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the protection seller, labeled S. The default times of these entities are denoted by

τB , τR and τS . We introduce the survival indicators HB
t := 1{τB>t}, H

R
t := 1{τR>t}

and HS
t := 1{τS>t} and we put H := (HB , HR, HS). Defaults are observable by

assumption so that H is F adapted and τB , τR and τS are F stopping times. The

first default time is denoted by τ , that is τ := τB ∧ τR ∧ τS . The random variable ξ

with values in the set {B,R, S} represents the identity of the firm defaulting at τ .

Furthermore RecB , RecR, RecS denote the recovery rate and LGDB , LGDR, LGDS

the loss given default of of B, R and S, respectively. We assume that recovery rates

are constants.

All valuations and cash flows are defined from the perspective of the protec-

tion buyer. Therefore positive numbers indicate that a cash flow is received by the

protection buyer and negative numbers indicate that a cash flow is received by the

protection seller.

Payments of a risk-free CDS. In our context a CDS without counterparty risk,

which we call (counterparty-) risk-free CDS, is a CDS where neither the protec-

tion seller nor the protection buyer are subject to default risk. For simplicity, we

assume that the premium payments are paid continuously. Therefore the sum of all

payments in a risk-free CDS from time t to time s discounted to t, is given by:

Π(t, s) := 1{t<τR≤s} LGDRD(t, τR)−
∫ s

t

SRD(t, u)1{τR>u}du, (2.1)

where SR represents the spread of the CDS. In addition we define the time t price of

a risk-free CDS with maturity date T > t as the risk-neutral expectation of Π(t, T ),

that is

Pt := E (Π(t, T )|Ft) .

Risky CDS and collateralization. In a CDS with counterparty risk, called risky

CDS below, the protection buyer or the protection seller might default before the

maturity of the CDS. Collateralization is a way to limit the potential loss for the

surviving party. To keep things simple we assume that the collateral is posted in

form of cash and that the collateral earns the risk-free rate of interest r(s). Many

collateralization arrangements are in fact of this form, and the additional valuation

adjustments that need to be made if the interest rate paid on the collateral differs

from the risk-free rate (see for instance Hull and White (2013)) are not central to the

issues studied in this paper. Details of the collateralization procedure are stipulated

in the credit support annex (CSA) of the contract. Roughly speaking the procedure

works as follows. At t0 = 0 a collateral account is opened. Let Ct denote the cash

balance in the account at time t. Here Ct > 0 means that S has posted the collateral

and that B is the collateral taker, whereas Ct < 0 means that B has posted the

collateral and that S is the collateral taker. The collateral position is updated at

discrete time points t1, . . . , tN ≤ T , for instance daily. At t1 the collateral taker

pays interest on the collateral and the cash balance Ct1 is adjusted in reaction to
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changes in the price of the underlying CDS over (t0, t1]. This procedure continues

up to the maturity of the CDS or until the first default occurs. If τ > T or if τ < T

and ξ1 = R, the collateral account is closed at the “natural end” of the contract so

that Ct ≡ 0 for t ≥ τ ∧ T . If there is an early default of B or S, that is τ ≤ T and

ξ1 ∈ {B,S}, the collateral is used to reduce the loss of the collateral taker and any

remaining collateral is returned; details are specified below.

An issue arising in this context is re-hypothecation. The collateral taker has

unrestricted access to the posted collateral and he may in particular pledge the funds

as collateral in other OTC derivative transaction. Hence a part of the collateral is

lost at a default of the collateral taker. We denote by Rec′B and Rec′S the recovery

rate for the return of collateral and by LGD′B and LGD′S the corresponding loss

given default (assumed constant). Usually the return of collateral is favored to the

settlement of other claims in bankruptcy procedures, so that RecB ≤ Rec′B and

RecS ≤ Rec′S . Contracts without re-hypothecation are characterized by Rec′B =

Rec′S = 1.

We describe the cash balance in the collateral account by some F-adapted semi-

martingale C = (Ct)0≤t≤T with RCLL paths, the so-called collateralization strategy.

For simplicity we assume that interest on the collateral is paid continuously. Since

we have assumed that the collateral earns the risk-free rate r(s), from the perspec-

tive of the protection buyer collateralization leads to a cumulative cash flow stream

given by Ct −
∫ t

0
r(s)Csds, t ≤ T . The discounted value of that cash-flow stream at

t = 0 equals

C0 +

∫ T

0

D(0, s)dCs −
∫ T

0

D(0, s)r(s)Csds = D(0, T )CT , (2.2)

where the second equality follows by applying partial integration to D(0, t)Ct. Now

CT = 0 on {τ > T} and on {τ ≤ T}∩{ξ = R}. Hence scenarios where neither S nor

B default before the end of the underlying CDS can be ignored in the computation

of value adjustments for counterparty risk, and it suffices to consider the collateral

payments for the case where there is an early default of R or S, that is for τ ≤ T

and ξ ∈ {B,S}.

Payments at an early default. In order to complete the description of the cash

flow stream of a risky CDS we need to specify the payments at an early default of

B or S. In that case the surviving party is allowed to charge a close-out amount

from the defaulting one. According to the ISDA Master Agreement the close-out

amount is defined as reasonable estimate of the funds needed to close the position.

In this paper we assume that the close-out amount is given by Pτ , the value of the

risk-free CDS at the first default time. Note that this choice means that the credit

quality of the surviving party is completely neglected in the computation of the

close-out amount, which is in line with current market practice. However, there are

alternative suggestions in the literature; see for instance Brigo et al. (2012a).

We continue with the description of the payments at an early default. To shorten
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the exposition we concentrate on the payments in the case where the protection

seller defaults first. Note that no additional collateral is posted after the first default.

Hence we assume that the amount of collateral available during the bankruptcy

process is given by Cτ−, the amount of collateral that has been posted immediately

prior to τ . This distinction matters if the close-out amount Pt jumps at t = τ , for

instance due to contagion effects.

In describing the payments at τ we have to consider four scenarios that differ

with respect to the sign of Pτ and of Cτ−.

(1) Suppose that Pτ > 0 and that the protection buyer is the collateral taker, that

is Cτ− > 0. The collateral is used to reduce the loss of the protection buyer. If

Cτ− is smaller than Pτ , the protection buyer claims the difference Pτ−Cτ− from

S. However, B will receive only a recovery payment of size RecS(Pτ − Cτ−) in

that case. If Cτ− exceeds Pτ , the excess collateral is returned to the protection

seller. With the notation X+ := max(X, 0) and X− := −min(X, 0),a in this

scenario the overall payment at τ is given by RecS(Pτ −Cτ−)+− (Pτ −Cτ−)− .

(2) Suppose next that Pτ > 0 and Cτ− < 0, so that the protection seller is the

collateral taker. In this situation B is entitled to the repayment of the collateral

and to the close-out amount Pτ . However, only a fraction of Pτ and, due to re-

hypothecation, of Cτ− will be paid to B. Hence in this scenario the overall

payment at τ is given by RecS Pτ − Rec′S Cτ−.

(3) Suppose now that Pτ < 0 and that the protection buyer is the collateral taker,

that is Cτ− > 0. In that case B pays S the close-out amount Pτ and he re-

turns the collateral. Hence from the viewpoint of B, in this scenario the overall

payment at τ equals Pτ − Cτ−.

(4) Suppose that Pτ < 0 and that B posted some collateral so that Cτ− < 0. If

−Cτ− ≤ −Pτ S keeps the collateral and he moreover receives the difference

−(Pτ −Cτ ). Otherwise the excess collateral has to be returned to B, and there

might be losses due to re-hypothecation. Hence in this scenario the overall

payment at τ equals Rec′S(Pτ − Cτ−)+ − (Pτ − Cτ−)− .

The payments that arise if the protection buyer defaults first, that is if ξ = B, can

be described in an analogous manner.

The BCCVA. Given a collateralization strategy C, the bilateral collateralized

credit value adjustment (BCCVA) is defined as difference of the discounted cash-

flow stream of the risk-free and the risky CDS. Following Brigo et al. (2014), we

denote the latter cash-flow stream by ΠD(t, T, C), where D stands for “defaultable”.

We thus have

BCCVA(t, T, C) := E (Π(t, T )|Ft)− E
(
ΠD(t, T, C)

∣∣Ft) . (2.3)

aNote that the convention X− := min(X, 0) is used in Brigo et al. (2014).
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Using the above description of the payments at an early default it is straightfor-

ward to give an explicit formula for ΠD(t, T, C). However, in this paper we use an

expression for the BCCVA that does not involve ΠD explicitly (see Proposition 2.1

below) so that we omit the formula and refer to Brigo et al. (2014) instead.

By definition the BCCVA measures the difference in value of the cash-flows of

a risk-free CDS and a risky CDS. Note that the BCCVA takes the default risk of

of S and of B into account. The BCCVA thus leads to symmetrical prices in the

sense that the adjustment computed from the point of view of the protection buyer

equals (with the opposite sign) the adjustment computed from the point of view of

the protection seller.

In the sequel we work with the following representation of the BCCVA that is

established in Brigo et al. (2014).

Proposition 2.1. The BCCVA can be decomposed as follows

BCCVA(t, T, C) = CCVA(t, T, C)− CDVA(t, T, C), (2.4)

where the collateralized credit value adjustment (CCVA) and the collateralized debt

value adjustment (CDVA) are given by:

CCVA(t, T, C) := E
(
1{τ<T}1{ξ=S}D(t, τ) (LGDS(P+

τ − C+
τ−)+

+ LGD′S(C−τ− − P−τ )+)|Ft
)

CDVA(t, T, C) := E
(
1{τ<T}1{ξ=B}D(t, τ) (LGDB(C−τ− − P−τ )−

+ LGD′B(P+
τ − C+

τ−)−)|Ft
)
.

Comments. 1. The CCVA reflects the possible loss for B due to an early default of

S, whereas the CDVA reflects the loss of S due to an early default of B. Consider for

instance the case where ξ = S. If Pτ > 0, there are two reasons why B might incur

a loss: first, the collateral posted by S might be insufficient to cover the close-out

amount of the CDS, which leads to a loss of size LGDS(Pτ − C+
τ−)+; if Cτ− < 0

there is moreover a loss due to re-hypothecation given by LGD′S C
−
τ−. If Pτ < 0, B

incurs a loss of size LGD′S(C−τ− − P−τ ) (the loss of the excess collateral caused by

re-hypothecation). The overall discounted loss incurred by B is thus given by

1{τ<T}1{ξ=S}D(t, τ)
{

1{Pτ>0}
(

LGDS(Pτ − C+
τ−)+ + LGD′S C

−
τ−
)

+ 1{Pτ<0} LGD′S(C−τ− − P−τ )
}

= 1{τ<T}1{ξ=S}D(t, τ)
{

LGDS(P+
τ − C+

τ−)+ + LGD′S(C−τ− − P−τ )+
}
,

which corresponds to the argument of the CCVA-formula above. In a similar way

the CDVA can be interpreted as loss of S on {ξ = B}.
2. Without collateralization, that is if Ct ≡ 0, the value adjustments take the

form of options on the risk-free CDS price P with strike price K = 0 and random

maturity date τ . In that case the terms in (2.4) are labelled BCVA (bilateral credit

value adjustment), CVA and DVA.
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3. Markets often use a simplified value adjustment formula which implicitly

assumes that the survival indicators HB , HS and the counterparty-risk free CDS

price P are independent stochastic processes, an assumption that is known in the

counterparty risk literature as no wrong-way risk. For Ct ≡ 0 the simplified bilateral

credit value adjustment at t = 0 is given by

BCVAindep = LGDS

∫ T

0

F̄B(s)D(0, s)E(P+
s )fS(s) ds

− LGDB

∫ T

0

F̄S(s)D(0, s)E(P−s )fB(s) ds .

(2.5)

Here F̄S(s) = Q(τS > s) and fS(s) = −F̄ ′(s) represent the survival function and

the density of τS and F̄B and fB represent the survival function and the density of

τB . A derivation of (2.5) is given in Gregory (2010). The independence assumptions

underlying the derivation of (2.5) are clearly unrealistic - just think of the case where

B, S and R are financial institutions. In Section 6 we therefore study the relation

between the “correct” value adjustment (2.4) and the simplified adjustment (2.5).

It will turn out that formula (2.5) underestimates the correct value adjustment by

a sizeable amount.

3. The Model

Next we give the mathematical description of the model framework that is used in

the remainder of this paper. We consider a reduced-form model where τR, τB and

τS are conditionally independent, doubly-stochastic random times whose default

intensity is driven by a finite-state Markov chain X = (Xt)t≥0 with state space

SX = {1, 2, . . . ,K}, generator matrix W = (wij)1≤i,j≤K and initial distribution

described by the probability vector π0 with πk0 = Q(X0 = k). Denote by FXt :=

σ(Xs : s ≤ t) the filtration generated by X. We assume that for all time points

tB , tR, tS > 0 one has

Q(τR > tR, τB > tB , τS > tS | FX∞) =
∏

i∈{B,R,S}

exp
(
−
∫ ti

0

λi(Xs)ds
)
, (3.1)

where λi : SX → R+, i ∈ {B,R, S}, are deterministic functions. This definition im-

plies that the default times are independent given the realization of the background

process X. In our simulation study we consider the case where λB(·), λR(·) and

λS(·) are increasing in x. In that case X can be viewed as an abstract representa-

tion of the state of the economy, 1 being the best state (low default probability of

all firms) and K the worst state (high default probability of all firms).

For technical reasons we moreover assume that the underlying probability space

(Ω,F ,Q) supports a d-dimensional standard Brownian motion W which is inde-

pendent of X and of the survival indicator process H; W is used to model investor

information under imperfect observation of X (see below). In the sequel we will

consider two variants of the model that differ with respect to the assumptions made

on investor information.
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The full-information case. Here it is assumed that X is observable for investors

and we take F = FO with

FO = FH ∨ FX ∨ FW , (3.2)

where FH is the filtration generated by the survival indicators. (The inclusion of

FW is purely technical and has no impact on the prices of credit derivatives under

full information.) It is well-known that for time points tR, tS , tB > t the conditional

survival function of (τR, τS , τB) given FOt satisfies

Q(τR > tR, τS > tS , τB > tB | FOt ) =
∏

i∈{R,S,B}

Hi
t E
(

exp
(
−
∫ ti

t

λi(Xs)ds
)
| Xt

)
.

(3.3)

Moreover, the process λi(Xt), i ∈ {R.S,B}, is the FO default intensity of τi, and

the pair process (X,H) is Markov. A derivation of these results can be found in

Chapter 9 of McNeil, Frey and Embrechts (2005), among others. Formula (3.3)

implies in particular that prior to the default of R the price of the risk-free CDS is

a function of t and Xt,

POt = E
(
Π(t, T )

∣∣FOt ) = HR
t p

O(t,Xt). (3.4)

An explicit formula for the function pO(t, k) is given in Corollary 4.1 below.

The incomplete-information case. This variant of the model has been stud-

ied in detail in Frey and Schmidt (2012). In that paper it is assumed that X is

unobservable and that investors are confined to a noisy signal of X of the form

Zt :=

∫ t

0

a(Xs)ds+Wt ,

where a : SX → Rd is a deterministic function. Hence in this model variant we put

F = FU (“unobservable”) with

FU = FH ∨ FZ . (3.5)

Note that FU ⊆ FO by definition.

Under incomplete information the risk-free CDS-price is given by PUt :=

E
(
Π(t, T )

∣∣FUt ). PUt can be computed by projecting the full-information price

HB
t p

O(t,Xt) (see (3.4)) on FO. We get, as FU ⊆ FO,

PUt = E
(
Π(t, T )

∣∣FUt ) = E
(
E
(
Π(t, T )

∣∣FOt )∣∣FUt ) = HR
t E
(
pO(t,Xt)

∣∣FUt ) . (3.6)

Define the conditional probabilities

πkt := Q(Xt = k | FUt ), 1 ≤ k ≤ K, and let πt := (π1
t , . . . , π

K
t )>. (3.7)

With this notation (3.6) can be written more succinctly as

PUt = HR
t

∑
k∈SX

πkt p
O(t, k) . (3.8)
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Comments. Note that relation (3.8) involves conditional probabilities with respect

to the pricing measure Q.

In Proposition 4.2 below we will show that the Q-dynamics of πt can be described

by a K-dimensional SDE system. From this system we may in particular derive an

explicit representation for the contagion effects under incomplete information.

In the practical application of the model the process Z is considered as abstract

source of information and the current value of π is calibrated from observed prices

of traded credit derivatives; see Section 6.1 below.

In both model variants the unconditional joint survival function of τR, τB and

τS is given by

Q(τR > tR, τB > tB , τS > tS) = E
( ∏
i∈{B,R,S}

exp
(
−
∫ ti

0

λi(Xs)ds
))

,

so that the distributions of (τB , τR, τS) coincides in both versions of the model.

Therefore any differences in the BCCVA or in the performance of collateralization

strategies can be attributed to the different dynamics of CDS spreads. For illustra-

tive purposes we plot typical trajectories of CDS spreads in both model variants in

Figure 1.

4. Computation of the BCCVA

4.1. The case of the full-information model

In order to evaluate the BCCVA-formula (2.4) we need to determine the joint dis-

tribution of τ , ξ and Xτ . This is done in Proposition 4.1 below. The proof of this

result relies on the observation that the distribution of the triple (τ, ξ,Xτ ) can be

expressed as first entry time of the processes (X,HR) and (X,H) into specific sets.

Since in our setting these processes form a finite-state Markov chain one can use

Markov-chain theory to derive their distribution. In order to give precise results,

we need to specify the generator matrix of these Markov chains.

For this we assume that the states are ordered in the inverse lexicographic order.

According to this order a vector (x1, . . . , xn) is smaller than (y1, . . . , yn) if xn < yn
or if there is some k < n with xl+1 = yl+1 for l ∈ {k, . . . , n− 1} and with xk < yk.

For example, in the case K = 2 the states of the process (X,HR) are ordered in

the following way:

(1, 0) < (2, 0) < (1, 1) < (2, 1).

The transition rate qy,z of (X,HR) from a state y = (y1, y2) to the state z = (z1, z2)

is given by:

qy,z =


wy1 z1 if y1 6= z1 and y2 = z2

λR(y1) if y1 = z1, y2 = 0 and z2 = 1

0 otherwise.
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Hence the generator of the process (X,HR) can be represented by the matrix

Q :=

(
W − ΛR ΛR

0 W

)
.

Here ΛR = diag(λR(1), . . . , λR(K)) denotes a diagonal matrix with entries on the

main diagonal given by the elements of the vector λR. The transition rates and the

generator of (X,H) can be determined by analogous considerations.

Proposition 4.1. Let t < s and k ∈ SX . Then the following statements hold:

(a) The distribution of τi with i ∈ {B,R, S} satisfies

Q
(
τi ≤ s

∣∣Xt = k,Hi
t = 0

)
= 1− e>k eQi(s−t)1K .

Here Qi := W − Λi where Λi = diag(λi(1), . . . , λi(K)), 1K = (1, . . . , 1)> is a

column vector of dimension K and ek denotes the kth unit vector in RK .

(b) The distribution of the first-to-default time τ can be computed as:

Q (τ ≤ s|Xt = k,Ht = 0) = 1− e>k eQ(1)(s−t)1K ,

where we defined Q(1) := W −
∑
j∈{B,R,S} Λj.

(c) The probability that obliger i ∈ {B,R, S} defaults first and before time s is:

Q (τi ≤ s, ξ = i|Xt = k,Ht = 0) = e>k Q
−1
(1)

(
eQ(1)(s−t) − I

)
Λi1

K .

Here Q−1
(1) is the inverse of Q(1).

(d) The probability that obliger i ∈ {B,R, S} defaults first and that at default the

Markov chain is in the state l equals

Q (Xτ = l, τi ≤ s, ξ = i|Xt = k,Ht = 0) = e>k Q
−1
(1)

(
eQ(1)(s−t) − I

)
Λiel.

The proof of this result can be found in Appendix A. The first two claims are

well-known and have been derived among others by Graziano and Rogers (2009), see

also Herbertsson (2011). However we include their proof for the convenience of the

reader. Statements c) and d) on the other hand have to the best of our knowledge

not appeared previously in the literature.

Using Proposition 4.1 the following well-known formula for the price of a risk-free

CDS can be deduced.

Corollary 4.1 (Risk-free CDS price under full-information). The price POt
of a risk-free CDS with generic swap spread S on R given that Xt = k and τR > t

is equal to 1{τR>t}p
O(t, k), where the function pO : [0, T ]× SX → R is given by

pO(t, k) =
(
−LGDR e

>
k QR − Se>k

) ∫ T

t

D(t, s)e(QR(s−t)ds1K .

Here QR = W − diag(λR(1), . . . , λR(K)), see Proposition 4.1 (a). Moreover, the

price of a CDS at t = 0 is

PO0 =
(
−LGDR π

>
0 QR − Sπ>0

) ∫ T

t

D(t, s)e(QR(s−t)ds1K .

11
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Below we will see that for a suitable function g : [0, T ]×SX → R, collateralization

strategies of the form Ct = g(t,Xt) are optimal in the full-information model. For a

generic strategy of this form, Theorem 4.1(d) gives the following semi-closed formula

for the BCCVA.

Corollary 4.2 (BCCVA formula under full information). Assume that for

t < τ the collateralization strategy is of the form Ct = g(t,Xt). Then, given Xt = j,

the CCVA and CDVA are given by:

CCVAt =
∑

k∈{1,...,K}

∫ T

t

D(t, s)
(

LGDS

(
pO(s, k)+ − g(s, k)+

)+
+ LGD′S

(
g(s, k)− − pO(s, k)−

)+)
fSj,k(s) ds

CDVAt =
∑

k∈{1,...,K}

∫ T

t

D(t, s)
(

LGDB

(
g(s, k)− − p(s, k)−

)−
,

+ LGD′B
(
p(s, k)+ − g(s, k)+

)−)
fBj,k(s) ds .

Here the functions f ij,k, i ∈ {B,S}, are given by

f ij,k(s) :=
d

ds
Q(τ ≤ s, ξ = i,Xτ = k | Xt = j,Ht = 0) = 1{τi>t}e

>
j e

Q(1)(s−t)Λiek.

4.2. The BCCVA in the incomplete-information model

In this section we discuss the computation of the BCCVA under incomplete infor-

mation. We begin with a formula for the risk-free CDS price. By combining (3.8)

and Corollary 4.1 we obtain

Corollary 4.3 (risk-free CDS prices under incomplete information). Given

that {τR > t} the value PUt of a risk-free CDS at time t equals

PUt = pU (t, πt) :=
(
−LGDR π

>
t QR − Sπ>t

)
(QR − rI)−1

(
e(QR−rI)(T−t) − I

)
1K .

Note that for t = 0 one has PO0 = PU0 ; this equality reflects of course the fact

that the unconditional distributions of the default times coincide in the two model

variants.

Under incomplete information the BCCVA is essentially the value of a portfolio

of options on the price PU of the risk-free CDS. Since PUt is a function of πt, in order

to compute the BCCVA one thus needs the form of the dynamics of the process π,

and we now recall the relevant results from Frey and Schmidt (2012). We begin with

some notation. We denote the Q-optional projection of a process G = (Gt)t∈[0,T ]

12
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with respect to FU by Ĝ, that is Ĝt = E
(
Gt
∣∣FUt ). In particular,

(λ̂i)t = E
(
λi(Xt)

∣∣FUt ) =

K∑
k=1

λi(k)πkt , i ∈ {B,R, S},

ât = E
(
a(Xt)

∣∣FUt ) =

K∑
k=1

a(k)πkt .

Using the Levy-characterization of Brownian motion it is easily seen that

µt = (µ1
t , . . . , µ

d
t ) with µit = Zit −

∫ t

0

(âi)s ds

is a FU -Brownian motion. In the literature on stochastic filtering such as Bain and

Crisan (2009), (µt)0≤t≤T is known as innovations process. Moreover, it is well-known

that λ̂i is the FU default intensity of firm i, that is for i ∈ {B,R, S},

M i
t := 1{τi≤t} −

∫ t

0

Hi
s (λ̂i)s ds

is an FU martingale, see for instance Chapter 2 of Bremaud (1981).

Proposition 4.2 (Kushner-Stratonovich-equation). The process π is the

unique solution of the K-dimensional SDE system

dπkt =

K∑
i=1

wikπ
i
tdt+

∑
j∈{R,B,S}

(
γkj (πt−)

)>
dM j

t +
(
αk(πt)

)>
dµt , k = 1, . . . ,K ,

where

γkj (πt) = πkt

(
λj(k)∑K

i=1 λj(i)π
i
t

− 1

)
for 1 ≤ j ≤ K and

αk(πt) = πkt

a(k)−
K∑
j=1

πjta(j)

 .

The proposition shows that the process π exhibits jump-diffusion dynamics. In

particular, π jumps at default times and the jump height of πkt at the default of firm

j is equal to γkj (πτj−). Furthermore using the proposition we can compute the size

of the information-induced contagion effects: the jump in the FU -default intensity

of firm i at the default of firm j, j 6= i equals

(λ̂i)τj − (λ̂i)τj− =

K∑
k=1

λi(k)πkτj−

(
λj(k)∑K

l=1 λj(l)π
l
τj−
− 1

)
=

covπτj−(λi, λj)

Eπτj−(λj)
. (4.1)

An inspection of the formula (4.1) shows the following.

• Contagion effects are inversely proportional to the instantaneous default risk of

the defaulting entity (firm j): a default of an entity with a better credit quality

comes as a bigger surprise and the market impact is larger.

13
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• Contagion effects are proportional to the covariance of the default intensities

λi(·) and λj(·) under the ‘a-priori distribution’ πτj−. In particular, contagion

effects are relatively high if the firms have similar characteristics in the sense

that the functions λi(·) and λj(·) are (almost) linearly dependent.

Proposition 4.2 indicates a method to simulate a trajectory of π. The following

general approach is suggested in Frey and Schmidt (2012).

(1) Generate a trajectory of the Markov chain X.

(2) Generate for the trajectory of X constructed in (i) a trajectory of the default

indicator H and the noisy information Z.

(3) Solve the system of SDEs numerically, for instance via a Euler-Maruyama type

method.

We close this section with a theoretical result on the relationship between the

un-collateralized value adjustments in the two versions of the model.

Proposition 4.3. Assume that the CDS contract is un-collateralized, i.e. Ct ≡ 0.

Then the following relationships hold:

CVAO
0 ≥ CVAU

0 and DVAO
0 ≥ DVAU

0 .

Proof. We begin with the CVA. Using the definition of the CVA, Jensen’s inequal-

ity and the relation PUτ = E(POτ | FUτ ), we get

CVAO
0 = LGDS E

(
1{t<τ≤T}1{ξ=S}

(
POτ
)+)

= LGDS E
(

1{t<τ≤T}1{ξ=S}E
((
POτ
)+∣∣∣FUτ ))

≥ LGDS E
(

1{t<τ≤T}1{ξ=S}
(
E
(
POτ
∣∣FUτ ))+)

= LGDS E
(
1{t<τ≤T}1{ξ=S}(P

U
τ )+

)
,

and the last line is obviously equal to CVAU
0 . A similar reasoning applies to the

DVA.

The overall relation of the BCVA in the two model variants is in general unclear,

since the BCVA is the difference of the CVA and DVA. If B is of a much higher credit

quality than S, the DVA is almost zero and we have the relation BCVAO ≥ BCVAU .

Similarly, if S is of a much higher credit quality than B, one has BCVAO ≤ BCVAU .

The intuition underlying (the proof of) the result is as follows: First, the CVA

is the price of an option on the risk-free CDS price with exercise price K = 0.

Moreover, since PUτ = E(POτ | FUτ ) the variance of PUτ is smaller than the variance of

POτ . Since the price of an option increases with increasing variance of the distribution

of the underlying asset value, we get that CVAO ≥ CVAU .
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5. Collateralization strategies

Standard collateralization strategies. We consider among others the following

collateralization strategies. No collateralization corresponds to the strategy Ct ≡ 0.

The threshold-collateralization strategy with initial margin γ and thresholds M1,

M2 ≥ 0, labeled Cγ,M1,M2 , is given by

Cγ,M1,M2

t := γ + (Pt −M1)1{Pt>M1} + (Pt +M2)1{Pt<−M2} ∀t ∈ [0, T ∧ τ).

This strategy is used if B and S want to protect themselves against severe losses,

while accepting the possibility of small losses in order to simplify the collateraliza-

tion process. At the beginning of the contract an initial payment of collateral of size

γ takes place, which is a crude device to account for contagion effects. Additional

collateral is only posted if the exposure of one entity exceeds some threshold (M1

in case of B and M2 in case of S). Threshold collateralization is quite popular in

practice, see Gregory (2010). However, the choice of γ in practice is often based on

rules of thumb (compare ICMAs European Repo Council (2012) for Repos), possi-

bly reducing the effectiveness of this strategy. For γ = M1 = M2 = 0 we obtain the

special case of market-value collateralization Cmarket with Cmarket
t = Pt.

Improved collateralization strategies. In the following we study collateraliza-

tion strategies that attempt to reduce the overall counterparty-risk exposure of the

contracting parties. We use the CCVA to measure the exposure to counterparty risk

of B and the CDVA to measure the exposure of S. B and S have obviously conflict-

ing interests: B prefers a collateralization strategy where S posts a large amount

of collateral and B posts no collateral and vice versa for B. In order to balance

these conflicting interests we consider an F adapted collateralization strategy C to

be optimal if it minimizes the following functional

m(C) := CCVA0 + CDVA0 (5.1)

= E
(
1{τ<T}1{ξ=S}D(0, τ)(LGDS(P+

τ − C+
τ−)+ + LGD′S(C−τ− − P−τ )+)

)
(5.2)

+ E
(
1{τ<T}1{ξ=B}D(0, τ)(LGDB(C−τ− − P−τ )− + LGD′B(P+

τ − C+
τ−)−)

)
(5.3)

In the full-information case we let F = FO and Pτ = POτ ; in the incomplete-

information case we let F = FU and Pτ = PUτ .

The analysis of the full-information model is straightforward. In that case the

market value (POt )t≥0 is continuous at τB respectively at τS . Therefore counterparty

risk can be eliminated completely by choosing the market-value strategy Cmarket
t =

POt = pO(t,Xt), t < τ , that is m(Cmarket) = 0. Note that this result holds in all

credit risk models where the risk-free CDS price does not jump at τS or τR, that

is for ∆PτS = ∆PτR = 0, and thus in particular in all models with conditionally

independent defaults.

Optimal strategies under incomplete information. The situation is more

involved in the incomplete-information model. In that case the jump of π at τ
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leads to a jump in the market value PUt of the CDS at t = τ and the collateral

position cannot be adjusted at that point. Hence for the market value strategy

Cmarket
t = PUt = pU (t, πt), t < τ holds that m(Cmarket) > 0.

We therefore need to work a bit more in order to find an optimal strategy under

incomplete information. As a first step we simplify the functional m by conditioning

on Fτ−. It is well-known that τ is Fτ− measurable and that for any predictable

process L the random variable Lτ is Fτ− measurable; see Protter (2005), Sec III.2.

Moreover, for j ∈ {R,B, S} it holds that

Q (ξ = j|Fτ−) =
(λ̂j)τ−∑

i∈{B,R,S}(λ̂i)τ−
=: dj(πτ−). (5.4)

We begin with the CCVA component of m. By conditioning on Fτ− we get that

(5.2) equals

E
(
1{τ≤T}D(t, τ)E

(
1{ξ=S}

(
LGDS(P+

τ − C+
τ−)+ + LGD ′S(C−τ− − P−τ )+

)∣∣Fτ−))
(5.5)

In the sequel we use the notation

xS := xS(τ, πτ−) = pU
(
τ, πτ− + diag

(
γ1
S(πτ−), . . . , γKS (πτ−)

))
(5.6)

to denote the price of the CDS immediately after the default of S; similarly, xB :=

xB(τ, πτ−) denotes the price of the CDS immediately after the default of B. Now

note that 1{ξ=S}P
+
τ = x+

S . Hence, using (5.4), the inner conditional expectation in

(5.5) is given by dS
(

LGDS(x+
S − C

+
τ−)+ + LGD′S(C−τ− − x−S )+

)
, and (5.5) equals

E
(
1{τ≤T}D(t, τ)dS

(
LGDS(x+

S − C
+
τ−)+ + LGD′S(C−τ− − x−S )+

))
.

Similarly we get that (5.3), the CDVA component of m, is equal to

E
(
1{τ≤T}D(t, τ)dB

(
LGDB(C−τ− − x−B)− + LGD′B(x+

B − C
+
τ−)−

))
.

Define now the ‘infinitesimal loss function’ by

l(t, π, c) = dS(π)
(
(LGDS(xS(t, π)+ − c+)+) + LGD′S(c− − xS(t, π)−)+

)
+ dB(π)

(
(LGDB(c− − xB(t, π)−)− + LGD′B(xB(t, π)+ − c+)−

)
.

The above computations show that m(C) can be written in the form m(C) =

E (D(t, τ)l(τ, πτ−, Cτ−)) . Now suppose that we find an FU -adapted RCLL-process

C∗ such that a.s.

C∗t (ω) ∈ argmin{l(t, πt(ω), c) : c ∈ R} .

Then C∗ is an optimal collateralization strategy - a minimizer of m(·) - in the

incomplete-information model. This leads to the following proposition.

Proposition 5.1. Denote by xS = xS(t, πt) and xB = xB(t, πt) the risk-free CDS

price at time t given τ = t, ξ = S respectively τ = t, ξ = B (see (5.6)) and let

dS = dS(πt) =
(λ̂S)t∑

i∈{B,R,S}(λ̂i)t
and dB = dB(πt) =

(λ̂B)t∑
i∈{B,R,S}(λ̂i)t

.
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Then an FU -adapted RCLL process C∗ is an optimal collateralization strategy under

incomplete information if and only if the following relations hold Q-a.s. for t < τ :

C∗t =



xS if 0 ≤ xB ≤ xS ,LGD′B dB < LGDS dS

xB if 0 ≤ xB ≤ xS ,LGD′B dB > LGDS dS

xS if xB ≤ xS ≤ 0,LGDB dB < LGD′S dS

xB if xB ≤ xS ≤ 0,LGDB dB > LGD′S dS

argmin{l(τ, πt, c) : c = xB , 0, xS} if xB < 0 < xS

C∗t ∈


[xB , xS ] if 0 ≤ xB ≤ xS ,LGD′B dB = LGDS dS

[xB , xS ] if xB ≤ xS ≤ 0,LGDB dB = LGD′S dS

[xS , xB ] if xS ≤ xB .

In particular for any such strategy it holds that C∗t ∈ [min{xS , xB},max{xS , xB}]
∀t and that l(t, π, C∗t ) = 0 for xS ≤ xB.

Proof. The proof relies on the preceding arguments. In order to find an optimal

strategy we have to find the minimizers of the function c 7→ l(τ, π, c). This is a

piecewise linear function, which converges to∞ for c→ ±∞ and fixed t, π. Therefore

a minimum exists; it can be found by a case-by-case analysis. Consider for instance

the case 0 < xB < xS . In that case l takes the form

l(t, π, c) = (LGDS(xS − c+)+ + LGD′S c
−)dS + (LGD′B(xB − c+)−)dB ,

and l is decreasing in the interval (−∞, xB ] and increasing in [xS ,∞). Therefore

the optimal c lies in [xB , xS ]. For c ∈ [xB , xS ], l is given by:

l(τ, πτ−, c) = c(LGD′B dB − LGDS dS) + LGDS xSdS − LGD′B xBdB .

Therefore the result follows. The other cases can be handled in a similar way.

We will see below that this optimal collateralization strategy reduces counter-

party risk by a large amount compared to standard market-value collateralization.

However, if Q
(
xB(t, πt) > xS(t, πt)

)
> 0 there remains some risk, that ism(C∗) > 0.

This remaining risk is due to the fact that in an inhomogeneous portfolio the size

of the contagion effects at τ depends on the identity of the defaulting firm which

cannot be predicted upfront given the information contained in Fτ−.

Model-independent strategies. The optimal strategy derived in Proposition 5.1

depends on dB , dS , and, most importantly, on the market value xS and xB of the

risk-free CDS after the default of S or B and hence on the size of contagion effects.

While these quantities can be computed within a specific reduced-form credit risk

model with contagion such as the model of Frey and Schmidt (2012) or the model

considered by Brigo et al. (2012a), they do depend on the structure of the model

and on the parameter values used. It is therefore of interest to develop a ‘model-

independent’ version of C∗.

17



June 26, 2014

For this one needs to estimate dB , dS , xB and xS in a ‘model-independent way’.

Given the well-known rule of thumb that the CDS spread of a firm is roughly equal

to the product of its default intensity and loss given default, in view of the definition

of dB and dS in (5.4) it is natural to estimate dB and dS by

d̂S =
SS

LGDS
SB

LGDB
+ SS

LGDS
+ SR

LGDR

and d̂B =
SS

LGDS
SB

LGDB
+ SB

LGDB
+ SR

LGDR

, (5.7)

where SB , SR and SS represent the fair CDS spread for B, R and S observed in the

market. Estimating xS and xB is less straightforward. Here one could use ad-hoc

assumptions, based on the analysis of historical contagious events. Alternatively we

propose to use our results on contagion effects in the Frey and Schmidt (2012)-

model. Fix some 0 ≤ t ≤ T . First we use the approximations

xB = pconst
(

(λ̂R) |t=τB
)

and xS ≈ pconst
(

(λ̂R) |t=τS
)

(5.8)

where P const(λ) denotes the price of the risk-free CDS on R in a model with constant

intensity λ. Now (λ̂R)t ≈ SR/LGDR. Hence we get from (4.1)

(λ̂R) |t=τB≈
SR

LGDR
+ (∆λ̂R) |t=τB=

SR
LGDR

+
covπt(λR, λB)

(λ̂R)t
.

Now we suggest to proxy covπt(λR, λB) by (LGDR LGDB)−1ĉovt(SR, SB) where

ĉovt(SR, SB) is an estimate of the time series covariance of the observed CDS

spreads at time t obtained for instance by some exponentially weighted historical

average. Plugging this into (5.8) gives the estimators

(x̂B)t = pconst

(
SR

LGDR
+

ĉovt(SR, SB)

LGDR LGDB

)
and similarly

(x̂S)t = pconst

(
SR

LGDR
+

ĉovt(SR, SS)

LGDR LGDS

)
.

(5.9)

Note that the proposed estimators for dB , dS , xB and xS can be computed directly

from a time series of observed CDS spreads without making reference to a particular

model. In the next section we compare the performance of the model-independent

refined strategy with the performance of market-value collateralization on the one

hand and with the optimal strategy on the other.

6. Numerical Experiments

In this section we discuss results from a number of numerical experiments.

6.1. Setup and Calibration

We considered a Markov chain X with K = 8 states. It was assumed that X exhibits

next-neighbor dynamics (Xt jumps only to Xt ± 1), so that only the values on the

main diagonal and on the first off-diagonal of the generator matrix W differ from
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zero. During the simulation analysis we set the entries on the off-diagonal equal to

0.25, meaning that the Markov chain jumps on average every second year. We have

put the short-rate equal to r = 0.015. Throughout the study it was assumed that

RecB = RecS = RecR = 0.5 and Rec′B = Rec′S = 0.75. b We calibrated the model

to the risk-free CDS spreads and default correlations for R, B and S given in Table

6.1. We considered five different scenarios, labeled Base; Base 2; Symmetric; Risky

protection buyer; Risky protection seller. These scenarios differ mainly with respect

to the relative riskiness of the firms involved in the CDS contract; their choice serves

to illustrate the impact of the relative riskiness of the different firms on credit value

adjustments. The fair CDS spreads (in basis points) and default correlations (in

percentage points) corresponding to these scenarios can be found in Table 6.1.

Table 1. Risk scenarios: CDS-spreads in base points, default correlations in percentage points.

Name of scenario B R S ρBR ρBS ρRS
Base 50 1000 500 2.0 1.5 5.0

Base2 500 1000 50 5.0 1.5 2.0
Symmetric 500 1000 500 5.0 3.0 5.0

Risky PB 1000 500 50 5.0 2.0 1.5

Risky PS 50 500 1000 1.5 2.0 5.0

In this context model model calibration amounts to finding the initial distribu-

tion of the Markov chain π0 and the parameters λB , λR, λS . For calibration purposes

we used a modification of the algorithm presented in Frey and Schmidt (2012); since

the focus of this paper is not on model calibration we omit the details. All in all

the calibration procedure performed well, with very small errors for CDS spreads

(absolute errors are less than 0.5 bp) and acceptable results for default correlations

(relative errors are around 3%). The calibrated values of π0 and of λB , λR and

λS can be found in the appendix, Table 2. Note in particular that the calibrated

functions λB(·), λS(·) and λR(·) are increasing in x. In the incomplete-information

model we moreover need to choose the parameters a(1), . . . , a(K). We took a = c∗b,
where b = [−1.75,−1.25,−0.75,−0.25, 0.25, 0.75, 1.25, 1.75] and where c ≥ 0 If not

mentioned otherwise, c was taken equal to one.

6.2. Results for the un-collateralized case

The main findings regarding the qualitative behavior of the CVA and the DVA in

the un-collateralized case can be summarized as follows.

a) The size of the credit value adjustments depends largely on the relative riski-

ness of the firms. In particular, the CVA is comparatively high if the first-to-default

bFollowing a suggestion of the referee who was rightly concerned with the robustness of our

findings we ran our simulations also with different forms of the generator matrix W . This led to
qualitatively similar results. We do not report these results here as we do not want to overload

the paper with numbers.
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probability Q(τ ≤ T, ξ = S) is relatively large; similarly, the DVA is comparatively

high if Q(τ ≤ T, ξ = B) is relatively large. This can be seen by comparing the size

of the value adjustments for the Base and Base2 scenarios or the RiskyPB and the

RiskyPS scenarios in Table 5: as shown in Table 4, Q(τ ≤ T, ξ = S) is relatively

large in the Base and the RiskyPS scenarios, leading to a high CVA; similarly,

Q(τ ≤ T, ξ = B) is relatively large in the Base2 and the RiskyPB scenarios, leading

to a high DVA. Note that the first-to-default probabilities are identical in both ver-

sions of the model. They are largely driven by the (relative) riskiness of the three

firms as given by the risk-free CDS spread in the three scenarios.

b) We have CVAU < CVAO and DVAU < CVAO, as predicted by Propo-

sition 4.3. The differences between the model variants decreases with decreasing

observation noise, that is for higher values of the parameter c in the definition of

the function a, as can be seen by inspection of Table 6.

c) The conditional default probability of the reference entity given an early

default of the protection seller is much higher than the unconditional default prob-

ability of R (so-called wrong-way risk). In the full-information case this can be seen

from Table 3 which gives the distribution of Xτ for the case ξ = B and ξ = S.

Clearly, Xt tends to be in a higher state (compare the high probabilities for x8)

at a default. Hence we expect that the simplified value adjustments given in (2.5)

underestimate the true value adjustments by a sizeable amount. This is indeed true,

see the numbers reported in the last row of Table 7.

6.3. Results for the case with collateralization

We go on with the analysis of various collateralization strategies. Since collateraliza-

tion is only relevant on paths where τ < T and where ξ ∈ {B,S}, we illustrate the

performance of collateralization strategies by plotting the conditional distribution

function of the random variables

LB(C) := 1{ξ=S}
(

LGDS(P+
τ − C+

τ−)+ + LGD′S(C−τ− − P−τ )+
)

LS(C) := D(t, τ)1{ξ=B}
(

LGDB(C−τ− − P−τ )− + LGD′B(P+
τ )− − C+

τ−
)
,

given that {τ ≤ T, ξ ∈ {B,S}}. Note that for a given collateralization strategy C,

LB(C) gives discounted loss to B that arises from an early default of S, whereas

LS(C) gives the discounted loss to S that arises from an early default of B. We

analyzed strategies of the following type:

• Threshold-collateralization with initial margin γ and thresholds M1 = M2 :=

M , denoted Cγ,M ;

• Market collateralization Cmarket = C0,0;

• The strategy C∗ derived in Proposition 5.1 and the “model-independent optimal

strategy” based on the estimators (5.7) and (5.9) for the incomplete-information

model.

Our findings can be summarized as follows:
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a) Threshold collateralization with γ = 0 is very effective in the complete-

information model. For a threshold M > 0 counterparty risk is largely reduced as

can be seen from Table 7. Counterparty credit risk even vanishes completely for

M = 0. Moreover, losses are bounded when threshold-collateralization is used. This

can be seen from Figure 2 which displays the empirical cdf of LB given τ ≤ T and

ξ ∈ {B,S} in the complete information model for different scenarios.

b) Under incomplete information the performance of threshold collateralization

with γ = 0 and threshold M is not fully satisfactory. The main reason is the

fact that because of the contagion effects threshold collateralization systematically

underestimates the market value of the CDS at τ which leads to losses for the

protection buyer in case that ξ = S. As a consequence we observe high values

for the CCVA in scenarios such as the Base scenario where Q(τ ≤ T, ξ = S) is

comparatively high, compare Table 7. The losses of the protection seller on the

other hand are always smaller than the threshold M . This behavior can be seen

from Figures 3 and 4 where the conditional cdf of LB and LS is plotted in various

scenarios.

A nonzero initial margin γ can improve the performance of threshold collater-

alization in scenarios where the credit quality of B is much better than the credit

quality of S as in the Base scenario. In that case Q(ξ = S | τ ≤ T, ξ ∈ {B,S})
is close to one and one essentially knows that ξ = S in case of an early default.

Consequently it is possible to hedge a large part of the contagion effects by choos-

ing a positive initial margin γ. This can be seen from Figure 5 where m(Cγ,M ) is

plotted in the Base scenario for various values of γ and M . In a symmetric scenario

where B and S have similar credit quality on the other hand, the identity of the

first defaulting firm cannot be predicted and choosing a nonzero initial margin does

not help much to improve the effectiveness of threshold collateralization, as can be

seen from Figure 6. This is clear intuitively: a large initial margin γ > 0 will lead

to a loss for S in case that ξ = B because of re-hypothecation; on the other hand

for γ ≤ 0 there will be a loss for B in case that ξ = S because of contagion effects,

and neither of the two cases can be ruled out a-priori because B and S have similar

credit quality.

c) The optimal strategy C∗ from Proposition 5.1 on the other hand performs

well under incomplete information and reduces counterparty risk substantially as

can be seen from Table 8 where various credit value adjustments and the value of

m(C) are given. The strategy is particularly effective in scenarios where the credit

quality of B is higher than the credit quality of S so that xS ≤ xB such as the Base

scenario and the Risky-PS scenario. On the other hand C∗ does not fully eliminate

counterparty risk in scenarios where the credit quality of S is worse than the credit

quality of B such as the Base2 and the Risky-PB scenario, as is evident from Table 8.

However, even in these scenarios the probability that some party suffers a large loss

is fairly small. Of course, the superior performance of the refined collateralization

strategy is related to the fact that within our model the quantities xB and xS can be
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computed exactly. We therefore compared the performance of C∗ to the performance

of the “model-independent optimal strategy” based on (5.7) and (5.9) on the one

hand and to the performance of market-value collateralization on the other (see

Table 8. Of course the model-independent version of our strategy performs worse

than C∗. However, in scenarios where there is a non-negligible probability that

the protection seller defaults first it performs significantly better than market-value

collateralization, This shows that refined collateralization strategies that account for

contagion effects have the potential to reduce counterparty credit risk significantly.
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Appendix A. Proof of Proposition 4.1

By symmetry, it suffices to consider the case i = B.

a) The default time τB is the time, at which the Markov chain (X,HB) first

enters the absorbing set A = {(1, 1), . . . , (K, 1)} and leaves the set Ac :=

{(1, 0), . . . , (K, 0)}. Hence we get:

Q
(
τB > s

∣∣Xt = k,HB
t = 0

)
= Q

(
(Xs, H

B
s ) ∈ Ac

∣∣Xt = k,HB
t = 0

)
= 1{τB>t}(e

>
k , 0)eQ(s−t)(1K

>
, 0)>

Here Q denotes the generator of (X,HB). Qn is of the form:

Qn =

(
W − ΛB ΛB

0 W

)n
=

(
(W − ΛB)n ∗

0 ∗

)
=

(
QnB ∗
0 ∗

)
.

Therefore the entries in the upper left part of the matrix exponential eQ(s−t) are

given by eQB(t−s) and we can conclude:

Q
(
τB > s

∣∣Xt = k,HB
t = 0

)
= 1{τB>t}e

>
k e

QB(s−t)1K .

b) The default times are conditionally independent doubly stochastic random times,

and hence the first-to-default time exhibits an intensity which is given by the sum

of the individual intensities (see McNeil, Frey and Embrechts (2005), Lemma 9.36),

and the result follows from a).

c) We consider the Markov chain Ψt = (X,HB , HR, HS)τ∧t (the chain stopped

at the first default time.) Ignoring the states where more than one company defaults

(and which can therefore never be reached by Ψ), the infinitesimal generator of Ψ

is given by:

Q̄ =

(
W −

∑
j∈{B,R,S} Λj ΛB ΛR ΛS

0 0 0 0

)
.

The protection buyer B defaults first and before time s if and only if the stopped

Markov chain Ψ is in the set Ã := {(1, 1, 0, 0), . . . , (K, 1, 0, 0)} at time s. Therefore:

Q (τ ≤ s, ξ = B|Xt = k,Ht = (0, 0, 0)) = Q
(

Ψs ∈ Ã
∣∣∣Ψt = (k, 0, 0, 0)

)
= 1{τ>t}(e

>
k , 0)eQ̄(s−t)(0,1K

>
, 0, 0)>.
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So we have to compute the entries of a submatrix of the matrix exponential eQ̄(s−t).

Since the n-th power of the matrix Q̄(s− t) is given by (n > 0):

(Q̄(s− t))n = (s− t)n
(
Qn(1) Q

n−1
(1) ΛB Qn−1

(1) ΛR Qn−1
(1) ΛS

0 0 0 0

)
the relevant submatrix is given by

∞∑
n=1

Qn−1
B

n!
(s− t)nΛB = Q−1

(1)

( ∞∑
n=0

Qn−1
(1)

n!
(s− t)n − I

)
ΛB

= Q−1
(1)

(
eQ(1)(s−t) − I

)
ΛB ,

and the claim follows.

d) The result follows from similar considerations as in c).
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Appendix B. Figures and Tables

Table 2. Results of model calibration for the base scenario

state x1 x2 x3 x4 x5 x6 x7 x8
π0 0.0810 0.0000 0.2831 0.0548 0.0000 0.0000 0.0000 0.5811

λB 0.0000 0.0010 0.0027 0.0040 0.0050 0.0059 0.0091 0.0195
λR 0.0031 0.0669 0.1187 0.1482 0.1687 0.1855 0.2393 0.3668

λS 0.0007 0.0245 0.0482 0.0627 0.0732 0.0818 0.1108 0.1840

Table 3. Distribution of X at τ in the base scenario for ξ = B and ξ = S.

state x1 x2 x3 x4 x5 x6 x7 x8
ξ = B 0.0001 0.0144 0.0740 0.0500 0.0208 0.0221 0.0982 0.7203

ξ = S 0.0011 0.0309 0.1188 0.0713 0.0277 0.0279 0.1074 0.6149

Table 4. The first-to-default probabilities for different scenarios

scenario B R S

Base 0.0293 0.4238 0.2463

Base2 0.2463 0.4238 0.0293
Symmetric 0.1851 0.3972 0.1851

RiskyPB 0.4238 0.2463 0.0293

RiskyPS 0.0293 0.2463 0.4263

Table 5. Value adjustments in different scenarios for the complete-information model (left) and

for the incomplete information model (right), both for the uncollateralized case.

full information incomplete information
scenario CVA DVA BCVA CVA DVA BCVA

Base 94 1 92 83 1 82
Base2 10 26 -16 9 15 -6

Symmetric 74 5 68 72 4 68

RiskyPB 6 45 -39 6 27 -21
RiskyPS 115 1 114 97 1 96

Table 6. Un-collateralized value adjustments under incomplete information for different values of

the parameter c (low values of c correspond to a high observation noise) in the base scenario

noise parameter CVA DVA BCVA

c = 0 68 0 68
c = 1 83 1 82
c = 2 89 1 88

c = 5 92 1 90
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Table 7. Value adjustments in the complete-information model (left) and in the incomplete-

information model (right) with threshold-collateralization and market value collateralization
(M1 = M2 = 0) for γ = 0 in the Base scenario. In the last row we report the value adjust-

ment corresponding to the simplified value adjustment formula (2.5).

full information incomplete information

threshold CCVA CDVA BCCVA CCVA CDVA BCCVA

M1 = M2 = 0 0 0 0 35 0 35
M1 = M2 = 0.02 16 0 15 45 0 45

M1 = M2 = 0.05 38 1 37 60 0 60

no collateralization with
(i) correct formula 93 1 92 83 1 82

(ii) simplified formula 68 6 62 54 4 49

Table 8. Performance of different collateralizion strategies in the incomplete-information model

as measured by m(C) = CCVA + CDVA. Note that m(C∗) is small in all scenarios and that

m(C∗) = 0 in the Base- and RiskyPS scenarios where xS ≤ xB . Moreover, the strategy based
on the model-independent estimators (5.7) and (5.9) performs much better than market-value

collateralization in all scenarios where there is a non-negligible probability that S defaults first.

scenario C∗ Cmarket C∗ based on (5.7) and (5.9)

Base 2 36 24

Base2 5 7 7
Symmetric 2 32 22

RiskyPB 8 8 8

RiskyPS 0 41 27

Fig. 1. Trajectories of the fair CDS spread in the complete and incomplete information model.
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Fig. 2. Empirical cdf of LB for different threshold-collateralization strategies with

γ = 0 in the Base scenario in the complete-information model given τ ≤ T
and ξ ∈ {B,S}. Note that without collateralization the probability that LB is

large is quite high since in the base scenario Q(ξ = S | τ ≤ T, ξ ∈ {B,S}) =

0.245/(0.245 + 0.029) ≈ 1 (see Table 4). We can see that threshold collateralization
reduces counterparty credit risk very effectively in that case.
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Fig. 3. Empirical cdf of LB for different threshold-collateralization strategies with

γ = 0 in the Base scenario in the incomplete-information model given τ ≤ T and

ξ ∈ {B,S}. In that case threshold collateralization with γ = 0 is not very effective:
even for M = 0 there is roughly a 20% probability that LB exceeds 300bp.
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Fig. 4. Empirical cdf of LS using threshold-collateralization for the Base2 scenario

in the incomplete-information model given τ ≤ T and ξ ∈ {B,S}. In this scenario
Q(ξ = B | τ ≤ T, ξ ∈ {B,S}) is close to one so that threshold collateralization is

quite effective even under incomplete information.
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Fig. 5. Graph of m(Cγ,M ) (sum of CCVA and CDVA) under incomplete information for
the threshold strategy Cγ,M for varying values of the initial margin γ and the threshold

M in the Base scenario. The function m(Cγ,M ) is minimal for M = 0 and a posi-

tive initial threshold γ∗ ≈ 0.12 leading to an optimal value m(Cγ
∗,0) = 3bp, so that

counterparty risk can in effect be mitigated by a proper choice of the initial margin.

Fig. 6. Graph of m(Cγ,M ) (sum of CCVA and CDVA) under incomplete information for the
threshold strategy Cγ,M for varying values of the initial margin γ and the threshold M in

the symmetric scenario. The function m(Cγ,M ) is minimal for M = 0 and a small initial

threshold γ∗ ≈ 0.01. Note that m(Cγ
∗,0) = 15bp whereas for the optimal strategy from

Proposition 5.1 one has m(C∗) = 0.
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