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Abstract

This paper considers the pricing of corporate securities of a given firm, in particular equity,
when investors do not have full information on the firm’s asset value. We show that under
noisy asset information, the pricing of corporate securities leads to a nonlinear filtering
problem. This problem is solved by a Markov chain approximation, leading to an efficient
finite-dimensional approximative filter for the asset value. We discuss several applications
and illustrate our results with a simulation study.

1 Introduction

Starting with the seminal works of Black and Scholes (1973) and Merton (1974), structural or
firm value models play an important role in the pricing of corporate securities such as equity or
risky debt. The crucial quantity in these models is a random process V , usually modelled by
a diffusion, describing the evolution of the firm’s asset value. Default occurs if the asset value
process hits some barrier, typically interpreted as liabilities. Various types of models exist. In
this paper we are particularly interested in first-passage time models initiated by Black and Cox
(1976). A survey of structural models may be found in Chapters 2 and 3 of Lando (2004).

The structural approach offers an intuitive way for modelling the default of a firm and for
pricing its debt and equity. However, as noted for instance in Duffie and Lando (2001) or Jarrow
and Protter (2004), it is difficult for investors in secondary markets to assess precisely the value
of the firm’s assets. This might be due to noisy accounting reports or the difficulty in valuing
intangible assets such as client relationships or R&D results. For these reasons, Duffie and Lando
(2001) have proposed a model where investors have only noisy information on the current value
of V . This modelling approach has a number of benefits. In particular, it was shown that the
model yields a realistic behaviour for short-term credit spreads; this is in stark contrast to the
behaviour of structural models with observable asset value process.

In the present paper we extend Duffie and Lando (2001) in three important directions. First,
we show how to value equity in the context of incomplete information on the asset value of the
firm. To this, we assume that the firm pays dividends and postulate a noisy relation between
asset value and dividend size. Equity value is then modelled as expected discounted value of
future dividends until default, both under full information (observable asset value process) and
under incomplete information. For the full information case, we propose a useful approximation
which gives rise to an explicit solution for the equity value. Second, it is shown that for investors
with incomplete information on V , the valuation of corporate securities such as equity leads to a
nonlinear filtering problem: we have to determine the conditional distribution of the current asset
value Vt given the investor’s information up to time t. Third, we propose to solve this problem
by a systematic application of techniques from nonlinear filtering. Our filtering results are based
on a Markov chain approximation leading to an efficient finite-dimensional approximation of the
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conditional distribution of V . This permits us to consider a relatively rich structure of the
information set available to investors: available information consists of noisy signals of V with
arbitrary distribution (to be interpreted as ratings, news or noisy accounting information) and
the information contained in the dividends.

In practice, asset values and related quantities such as default probabilities are frequently
implied from observed equity values (equity-based estimators); a prime case in point is the pop-
ular KMV-Model; see e.g. Crosbie and Bohn (2001). This procedure is based on the assumption
of a deterministic relationship between equity and asset value. However, with incomplete infor-
mation such a deterministic relationship no longer exists. It is therefore of interest to study the
performance of equity-based estimators in a model with incomplete information. Our model,
where equity value and default probability are endogenously derived, is ideally suited for such
an analysis. These issues are tackled in a small simulation study. We analyse the errors which
result if investors neglect incomplete information effects and estimate V from the equity value.
Moreover, we extend the Duffie and Lando (2001) - result on the form of the default intensity
to the richer setting considered in this paper and analyse the relationship between equity and
default intensity. In particular, we show that equity based intensity estimates should be handled
with care.

Related literature includes Kusuoka (1999), Çetin, Jarrow, Protter, and Yildirim (2004),
Guo, Jarrow, and Zeng (2005) and Coculescu, Geman, and Jeanblanc (2006). Building on
Duffie and Lando (2001) these papers study the valuation of defaultable securities in firm value
models with incomplete information on the asset value. Kusuoka (1999) assumes that the asset
value can be observed in additive Gaussian noise; Çetin, Jarrow, Protter, and Yildirim (2004) use
a slightly different model for default; Guo, Jarrow, and Zeng (2005) study models with delayed
information about the asset value; Coculescu, Geman, and Jeanblanc (2006) study models where
some index process with non-vanishing instantaneous correlation to the asset value process is
observed.

The paper is organised as follows: in Section 2 we examine the case of full information where
V is known and in Section 3 we consider the situation under incomplete information. Section 4
contains numerical illustrations and applications of the filter methodology.

2 Full information

2.1 The model

Consider a filtered probability space (Ω,F , (Ft)t≥0,P), P the objective probability measure. All
processes introduced below are (Ft)t≥0-adapted. Denote by r ≥ 0 the risk-free rate of interest.
We assume that the market is free of arbitrage. It is well-known, that this implies the existence
of a probability measure Q, equivalent to P, such that for any traded security the corresponding
discounted gains from trade are martingales under Q. For pricing purposes, we may and will
therefore restrict ourselves to specifying dynamics of asset prices and all other state variables
directly under Q.

The considered company is subject to default risk. We denote its asset value by V = (Vt)t≥0

and assume throughout the paper that the default time is given by

τ = inf{t > 0 : Vt ≤ Kt},

where the random process K = (Kt)t≥0 models the evolution of the firm’s liabilities.

We summarize the structure of our model in the following assumptions.
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Assumption 2.1 (Dividends). Dividends are paid at pre-specified dividend dates 0 < TD
1 <

TD
2 < . . . , provided TD

n ≤ τ ; the dividend payment at TD
n is denoted by dn. The conditional

distribution of the random variables dn, n ∈ N depends on the last dividend payment dn−1 and
on the asset value VT D

n −. Formally, the conditional distribution of dn given FT D
n − is of the form

νdn|FTD
n −

(dx) = νd(x|dn−1, VT D
n −)dx,

νd(x|d, v) the conditional density of dn given (dn−1, VT D
n −) = (d, v).

For notational convenience, define dt :=
∑

n≥1 dn−11{t∈[T D
n−1,T D

n )} (the value of the last dividend

payment) and Dt :=
∑

T D
n ≤t dn (the cumulative dividend process). Here, as always, d0 = TD

0 =
0. Note that under Assumption 2.1 the distribution of the dividend payment at TD

n depends
on the cum-dividend asset value VT D

n −, such that the dividend realisations contain information
about the asset value.

Example 2.2. A realistic dividend structure, contained in the framework above is as follows.
Consider the following autoregressive model:

dn = λdn−1 + (1− λ)δnVT D
n −, λ ∈ (0, 1). (1)

Here δn, n ≥ 1 is a sequence of i.i.d. noise variables independent of V , taking values in (0, 1) and
with mean δ̄ := EQ(δ1).

In this model, dn is a convex combination of the last dividend and a noisy proportion of
the current firm value. This structure reflects two typical properties of actual dividend streams:
first, firms tend to maintain a dividend level which is relatively constant over time (dividend
smoothing) so that dn depends on dn−1. Second, there is a positive, but noisy relation between
asset value and dividend size. The beta distribution is a natural candidate for modelling the
law of δn.

Assumption 2.3 (Asset and liability dynamics). The asset value process solves the SDE

dVt = µV Vt− dt + σV Vt− dWt − κdDt, (2)

for parameters µV ∈ R, κ ∈ [0, 1], σV > 0 and a Brownian motion W . The dynamics of the
liabilities is given by the SDE dKt = (1− κ)dDt, with given initial value K0.

Comments. 1. Under the model (2), the asset value follows a geometric Brownian motion
between dividend dates and liabilities remain constant. The behaviour of V and K at a dividend
date is determined by the parameter κ governing the fraction of the dividends which is financed
by selling the company’s assets. In particular, we have the following extreme cases: on the one
hand, the company could finance the dividend payments entirely by selling its assets; in this
case κ = 1 and the asset value is decreased at dividend dates, whereas K remains constant. On
the other hand, dividends could be financed entirely by issuing new debt; in that case κ = 0
and the asset value remains unchanged at dividend dates, whereas K is increased.

2. The parameters in Equation (2) are specified under the risk-neutral measure Q. In particular,
µV need not correspond to the actual growth rate of the firm, but reflects investor’s expectations
and risk-aversion. In applications this parameter would be calibrated to observed security prices.

3. While geometric Brownian motion is known to be an unrealistic model for the dynamics
of equity prices, the assumption that the asset value follows a geometric Brownian motion is
defendable on empirical grounds. For this reason the assumption that V is a geometric Brownian
motion is routinely made in the literature on structural credit risk models such as Leland and
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Toft (1996) or Duffie and Lando (2001). Moreover, under incomplete information, equity prices
are driven by the release of new information. In our model, equity prices will jump at news and
dividend dates and thus follow a process with realistic discontinuous trajectories, despite the
fact that the asset value follows a geometric Brownian motion.

It is an immediate implication of Assumptions 2.1 and 2.3 that the triple (V, K, d) is Markov;
this fact will be used extensively below.

2.2 Pricing corporate securities

In this section we discuss the pricing of corporate securities under full information. In particular,
we show that by the Markovianity of the pair (V, K, d), prices of typical corporate securities can
be expressed as functions of time and the current values of V,K and d. This observation is
important, as it implies that the pricing of corporate securities under incomplete information
leads to a nonlinear filtering problem; see Section 3.2 below.

Pricing the firm’s equity. The pre-default value of the firm’s equity under full information
is defined as expected value of the discounted dividend stream under Q. By the Markov property
of (V,K, d) its value can thus be represented as a function S(·) of time, the current value of
assets and liabilities, and of the last dividend payment. Formally,

St := 1{τ>t} EQ
( τ∫

t

e−r(s−t)dDs

∣∣∣Ft

)
= 1{τ>t} EQ

( τ∫

t

e−r(s−t)dDs | Vt,Kt, dt

)

= 1{τ>t}S(t, Vt,Kt, dt) .

(3)

A special case with analytic solution. Next we discuss a simple example, where the func-
tion S can be obtained in closed form. We take κ = 1 in Assumption 2.3; hence Kt ≡ K0.
Furthermore, we take λ = 0 in (1), so that dn = δnVT D

n −. We modify Assumption 2.1 slightly
and assume that the dividend dates are the jump times of a Poisson process with intensity λD

corresponding to the average number of dividend dates per year. With frequent dividend pay-
ments, such as quarterly or semi-annually, the equity value obtained under the assumption of
Poissonian dividend dates is a good approximation of its counterpart for fixed dividend dates.
In this setup, the pre-default equity value becomes independent of calender time t.

Proposition 2.4. Suppose that µV < λD δ̄ + r. Under the above assumptions the value of the
firm’s equity equals St = 1{τ>t}S(Vt,K0); the function S is given by

S(v, k) =
λD δ̄

r + λD δ̄ − µV

[
v −

(v

k

)α∗
k
]
. (4)

Here α∗ < 0 is the unique negative root of the equation h(α) = 0; the function h is given in
Equation (24) in the appendix.

The proof is provided in Section A.1 in the appendix.

Note that S is concave in v and approaches the line v 7→ v · λD δ̄/(r+λD δ̄−µV ) as v tends to
infinity. In the proof of Proposition 2.4 it is shown that this line corresponds to the value of
the firm’s equity for K = 0 and therefore τ = ∞. The qualitative behaviour of S is illustrated
in Figure 1. The condition µV < λD δ̄ + r ensures that the equity value for K = 0 is finite, or,
equivalently, that the discounted asset-value process is a strict Q-supermartingale.
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Figure 1: Value of the firm’s equity as function of the asset value according to (4) for different
σ and with K = 60. The distribution of δ is a Beta(p, q) distribution and the parameters are as
in Table 1 on page 11 below. The straight line is the equity value for K = 0.

Default probabilities and risky debt. The Markov property of (V, K, d) ensures that

Q(τ > T |Ft) = 1{τ>t}Q
(

inf
s∈(t,T ]

(Vs −Ks) > 0
∣∣Ft

)

= 1{τ>t}Q
(

inf
s∈(t,T ]

(Vs −Ks) > 0
∣∣Vt,Kt, dt

)

=: 1{τ>t}
(
1− Fτ (t, T, Vt,Kt, dt)

)
, (5)

where Fτ is the conditional distribution of τ given τ > t.

The computation of Fτ is quite involved due to the time dependency of the problem. In
this paper we therefore use efficient Monte-Carlo procedures as proposed by Atiya and Metwally
(2005).

With deterministic interest rates, pricing of corporate debt is immediate once the default
probability Fτ is at hand. For instance, the price of a defaultable bond with maturity T under
zero recovery equals e−r(T−t)(1−Fτ (t, T, Vt,Kt, dt)). Another example is the plain-vanilla credit
default swap (CDS). Consider a CDS with premium payment dates t1, . . . , tk such that tk−tk−1 =
∆, deterministic loss given default l ∈ [0, 1], and, for simplicity, no accrued interest. Following
McNeil, Frey, and Embrechts (2005, Section 9.4.4), the fair spread x∗ of this CDS equals

x∗ =
∆

∑N
k=1 EQ

(
e−r(tk−t)1{τ>tk}|Ft

)

EQ
(
e−r(τ−t)lτ1{τ≤tN}|Ft

) =
∆

∑N
k=1 e−r(tk−t)[1− Fτ (t, tk, Vt,K, dt)]∫ tN

t e−r(s−t)l(s)Fτ (t, ds, Vt,Kt, dt)
. (6)

3 Incomplete information

3.1 Investor information

We assume that at time t the investors have access to the following pieces of information:

• Default information. The investors observe the default state of the firm. Note, in particu-
lar, that observing {τ > t} is equivalent to the information that {infs∈[0,t](Vs −Ks) > 0}.
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• Dividend information. The investors observe dividends, i.e. the process d. Recall that by
Assumption 2.1 dividends are noisy signals of the asset value.

• Liabilities. Since we assume the initial value of the liabilities K0 to be known, it follows
from Assumption 2.3 that (Ks)s≤t is observable as well.

• News. The investors receive pieces of economic information (news) related to the state
of the company such as information given by analysts, articles in newspapers, etc. We
assume that this information is discrete2, corresponding for instance to buy/hold/sell
recommendations or rating information. Formally, news on the company are issued at
time points T I

n , n ≥ 1 (possibly random); the news obtained at T I
n is denoted by In. We

assume that In takes values in the discrete state space {ι1, . . . , ιMI}. The conditional
distribution of In given FT I

n
is denoted by

νI(ιj |x) := Q(In = ιj |VT I
n

= x).

Furthermore, we assume that the sequence T I
1 , T I

2 , . . . of news-revelation dates is indepen-
dent of V .

Summarizing, the investor’s information at time t is given by the σ-field

Ht := σ
(
1{Vs>Ks} : s ≤ t ; dn : Tn ≤ t; (T I

n , In) : T I
n ≤ t

)
. (7)

Note that Ht ⊂ Ft and that V is not adapted to (Ht).

Remark 3.1. We have not included any traded security prices in the investor’s information.
This makes sense if we consider a firm whose corporate securities are not or at most infrequently
traded. Alternatively, we could assume that traded securities are adapted to (Ht), such that
they do not contain additional information. In that case (Ht) represents the entire information
available to the market.

3.2 Incomplete information and nonlinear filtering

Next, we show that under incomplete information, many relevant economic questions lead to
nonlinear-filtering problems.

Default probabilities and risky debt. As a first step we consider the issue of estimating
the default probability from the investor’s information, i.e. we aim at computing Fτ |Ht

(T ) :=
Q(τ ≤ T |Ht). We obtain

Fτ |Ht
(T ) = EQ

(
Q

(
τ ≤ T |Ft

)∣∣Ht

)
= 1{τ≤t} + 1{τ>t}EQ

(
Fτ (t, T, Vt,Kt, dt)

∣∣Ht

)
(8)

with Fτ as in (5). Since Kt and dt are known at time t, in order to evaluate (8) it therefore
remains to determine the conditional distribution of Vt given Ht denoted qVt|Ht

. This is a typical
nonlinear-filtering problem and we discuss its solution in the next section. In Section 2.2 we
showed how to express prices of debt-related securities in terms of the conditional distribution
of τ . The same reasoning applies under incomplete information, so that knowledge of Fτ |Ht

(·)
is sufficient for pricing these securities under incomplete information.

2The extension to continuous information is straightforward.
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Pricing equity. In analogy with the full-information case, the equity value is defined as
expected value of the discounted future dividends given the available information, i.e. St =
1{τ>t} EQ

( ∫ τ
t e−r(s−t)dDs

∣∣Ht

)
. Using the tower property of expectations and relation (3), this

can be written as

St = 1{τ>t} EQ
(
EQ

( τ∫

t

e−r(s−t)dDs

∣∣Ft

) ∣∣∣Ht

)
= 1{τ>t} EQ

(
S(t, Vt,Kt, dt)

∣∣Ht

)
. (9)

For the evaluation of (9) it again suffices to determine qVt|Ht
.

3.3 The filtering problem

As explained above, the analysis of the model under partial information leads to a nonlinear-
filtering problem: we need to determine qVt|Ht

, the conditional distribution of Vt given Ht. In
order to solve this problem with a minimal amount of technical difficulties, we approximate the
asset value process V by a finite-state discrete-time Markov chain V ∆. In Proposition 3.5 we
establish convergence of the corresponding filters.

Markov-chain approximation. Define for a given time discretization ∆ > 0 the grid {t∆k =
k∆, k ≥ 0}. For ease of notation we assume that the dividend dates TD

n belong to the grid. Let
(V ∆

k )k∈N be a discrete-time finite-state Markov chain with time-dependent state space M∆
k =

{m∆
1 (k), . . . , m∆

|M∆|(k)} and transition probabilities p∆
ij(k), 1 ≤ i, j,≤ |M∆| governing transitions

from Vk to Vk+1. Then we define V ∆
t = V ∆

k for t ∈ [tk, tk+1). We assume that the law of V ∆ is
close to the law of the original asset-value process V in the following sense.

Assumption 3.2. There is a sequence (∆i)i∈N, tending to zero and the corresponding processes
(V ∆i

t )T D
n−1≤t<T D

n
converge weakly to a geometric Brownian motion with drift µV and volatility

σV for all n ≥ 1 as i →∞.

For an explicit example satisfying Assumption 3.2 see Example 3.3 below. Time dependence
in the state space and in the transition probabilities is introduced in order to deal with the jump
in the asset value due to dividend payouts. More precisely, we put

M∆
k := M∆

0 − κDtk , (10)

M∆
0 a given initial grid. In this way the state space is shifted downward by κdn at dividend date

TD
n . Shifting the state space might require adjusting the transition probabilities, for instance

if the latter are defined by moment conditions as in Example 3.3 below. Note that for κ = 0
the dividends have no impact on the firm value and therefore neither state space nor transition
probabilities need to be changed at dividend dates.

The default barrier is given by Kt = K0 +(1−κ)Dt. The default time in the approximating
model is modelled in the obvious way by τ = inf{t : V ∆

t − Kt ≤ 0}. Set K∆
k := Ktk . Note

that then τ = ∆ inf{k ∈ N : V ∆
k ≤ K∆

k }. In the approximating model the conditional densities
of news and dividend size in t are given by νI(x|V ∆

t−) and νd(x|dn−1, V
∆
t−), dn−1 being the last

dividend before t. Note that for t ∈ (tk−1, tk] these quantities depend on Vk−1; this will be
important for our filtering results.

Example 3.3. The approximating Markov chain can be chosen to be trinomial. The transition
probabilities are determined by matching the first and second moment with the continuous time
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firm value. More precisely, consider the timepoint t = tk and fix ∆ > 0. The transition proba-
bility pij(k), from state mi(k) to state mj(k + 1) is zero for j 6∈ {i− 1, i, i + 1}; pi,i−1(k), pi,i(k)
and pi,i+1(k) solve the following equations

pi,i−1 + pi,i + pi,i+1 = 1
mi−1pi,i−1 + mipi,i + mi+1pi,i+1 = exp(µV ∆)

(mi−1)2pi,i−1 + (mi)2pi,i + (mi+1)2pi,i+1 = exp(2µV ∆ + σ2
V ∆)

with pij ≥ 0. Using Ethier and Kurtz (1986), Corollary 7.4.2, it can be shown that for the

above choice of (V ∆
k ), the convergence V ∆ L→ V for ∆ → 0 holds, if the grid is rescaled in an

appropriate way. ♦

Filtering. In this paragraph we fix ∆ > 0 and omit it in the notation. Denote by Hk the
information available to the investor at time tk, i.e.

Hk = σ
(
Vi > Ki : i ≤ k; dn : TD

n ≤ tk; (T I
n , In) : T I

n ≤ tk

)
.

The conditional distribution qV ∆
tk
|Htk

can be described in terms of the vector

q(k) = (q1(k), . . . , q|M |(k)) with qj(k) := Q
(
Vk = mj(k) | Hk

)
; (11)

the initial or prior distribution q(0) is assumed to be given. The following proposition gives
a recursive updating rule for q(k). For mathematical reasons it is convenient to formulate the
updating rule in terms of so-called “unnormalized probabilities” π(k) ∝ q(k) (∝ standing for
proportional to). The vector q(k) can then be obtained by the normalization

qj(k) =
πj(k)

∑|M |
i=1 πi(k)

, j = 1, . . . , |M |.

Proposition 3.4. The vector π(k) = (π1(k), . . . , π|M |(k)) of unnormalized probabilities satisfies
the following recursion formula: for k = 0, we have that πj(0) = qj(0) = P (V ∆

0 = mj(0)). For
k ≥ 1 and tk < τ , denote by N I

k := {n ∈ N : tk−1 < T I
n ≤ tk} the set of indices of news arrivals

in the period (tk−1, tk]. Define

π̃i(k − 1) := πi(k − 1) ·
∏

{n : T D
n =tk}

νd

(
dn|dn−1,mi(k − 1)

) ·
∏

n∈NI
k

νI

(
In|mi(k − 1)

)
, (12)

i = 1, . . . , |M | with Π∅ := 1. Then

πj(k) = 1{mj(k)>Kk}
|M |∑

i=1

pij(k − 1)π̃i(k − 1). (13)

Proof. Note that given the new information arriving in (tk−1, tk] the updating rule (13) forms a
linear and in particular positively homogeneous mapping Ψ(k), such that π(k) = Ψ(k)π(k− 1).
Hence the proposition is proven if we can show that q(k) ∝ Ψ(k)q(k− 1). In order to compute
q(k) from q(k − 1) and the new information in (tk−1, tk] we proceed in two steps. In Step 1 we
compute (up to proportionality) an auxiliary vector of probabilities q̃(k − 1) with

q̃i(k − 1) = q
(
Vk−1 = mi(k − 1) | H−k

)
, 1 ≤ i ≤ |M |, (14)

where H−k := Hk−1 ∨ σ
(
dn : TD

n = tk, (T I
n , In) : n ∈ N I

k

)
. This is a smoothing step, where the

conditional distribution of Vk−1 is updated using the new information arriving in (tk−1, tk]. In
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Step 2 we determine - again up to proportionality - q(k) from the auxiliary probability vector
q̃(k − 1) using the dynamics of (Vk) and the additional information that τ > tk.

We begin with Step 2. Since {τ > tk} = {τ > tk−1} ∩ {Vk > Kk} and since Kk is Hk-
measurable we get

Q (Vk = mj(k) | Hk) ∝ Q
(
Vk = mj(k), Vk > Kk | H−k

)

=
|M |∑

i=1

Q
(
Vk = mj(k), Vk > Kk, Vk−1 = mi(k − 1) | H−k

)

= 1{mj(k)>Kk}
|M |∑

i=1

pij(k − 1)q̃i(k − 1) . (15)

Note that the jump of Vk at a dividend date is taken care of by the adjustment of the state
space in (10).

Next we turn to the smoothing step. Due to conditional independence of dn and {In : n ∈
N I

k}, the conditional density of the new observation given Vk−1 = mj(k − 1) equals
∏

{n : T D
n =tk}

νd

(
dn|dn−1,mj(k − 1)

) ·
∏

n∈NI
k

νI

(
In|mj(k − 1)

)
,

and we obtain

q̃j(k − 1) ∝ qj(k − 1) ·
∏

{n : T D
n =tk}

νd

(
dn|dn−1,mj(k − 1)

) ·
∏

n∈NI
k

νI

(
In|mj(k − 1)

)
.

Combining this with equation (15) gives the result. ¥

Finally, we consider weak convergence of the filters.

Proposition 3.5 (Filter convergence). Fix t > 0. Then, under Assumption 3.2 we have that
for all bounded and continuous f : R+ → R:

lim
i→∞

|M∆i |∑

j=1

qj

(⌊ t

∆i

⌋)
f
(
mj

(⌊ t

∆i

⌋))
= E

(
f(Vt)|Ht

)
.

Here bxc = sup{n ≥ 1 : n ≤ t}. The proof is given in Appendix A.2.

3.4 Default intensity

Recall that an (Ht)-predictable, increasing process (Λt)t≥0 is the (Ht) compensator of the default
time τ , if 1{τ>t}−Λt∧τ is an (Ht)-martingale. If Λ is of the form

∫ t
0 λsds, the process (λt)t≥0 is

called default intensity. Default intensities play a prominent role in credit risk literature: from
a theoretical point of view, default intensities determine the stochastic properties of default
indicators; on the applied side, they are closely related to the credit spread of short-maturity
bonds and credit default swaps.

In firm value models with observable asset value following a diffusion and with an observable
default barrier, a default intensity does not exist, as τ is a predictable stopping time. Kusuoka
(1999) and Duffie and Lando (2001) noted that the picture changes under incomplete infor-
mation. In the following proposition we extend the results of Duffie and Lando (2001) to our
setting.
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Condition A. Following Duffie and Lando (2001), we say that a conditional density process
(f(t, ·, ω))t≥0 satisfies Condition A, if for each (ω, t) we have f(t, v, ω) = 0 for 0 ≤ v ≤ Kt and
f(t, ·, ω) is continuously differentiable on (Kt,∞) and differentiable from the right at v = Kt.
Furthermore, for almost every ω, ∂/∂vf(s, v, ω) is bounded on sets of the form {(s, v) : 0 ≤ s ≤
t, 0 ≤ v < ∞}.
Proposition 3.6. Assume that the densities νd(x|d, v) and νI(x|v) are smooth in v and bounded
and the initial distribution fV0|H0

satisfies Condition A. Then the conditional distribution qVt|Ht

admits a Lebesgue density fVt|Ht
, satisfying Condition A for all t > 0 and the compensator of τ

is given on {τ ≥ t} by

Λt =

t∫

0

1
2
σ2

V K
∂

∂v
fVs|Hs

(K)ds +
∑

T D
n ≤t

∞∫

K
TD

n −

F̄d(v −KT D
n −|dn−1, v) fV

TD
n −|HTD

n −
(v) dv. (16)

Here F̄d

(
u|d, v) =

∫∞
u νd(x|d, v)dx is the conditional survival function of d1.

Proof. The regularity of the conditional density follows from Appendix B of Duffie and Lando
(2001). Note that there are two sources of default in our model. First, the asset value might dif-
fuse through the default barrier; second, at a dividend date the asset might drop below the barrier
due to the dividend payment. Formally, 1{τ≤t} = Y 1

t + Y 2
t , with Y 1

t = 1{τ≤t}1{t 6=T D
n , for all n∈N}

and Y 2
t = 1{τ≤t}1{t=T D

n , for some n∈N}. The results of Duffie and Lando (2001) apply directly to
Y 1; by their Proposition 2.2 Y 1 has intensity

λ1
t =

1
2
σ2

V K
∂

∂v
fVt|Ht

(K).

Note that in our paper f denotes the density of V , while in their paper f denotes the density
of lnV .

Next we turn to Y 2. By definition, Y 2 jumps only at dividend dates. Hence, for τ > TD
n −,

the increase in the compensator at dividend date TD
n is given by the conditional probability

Q(VT D
n
≤ KT D

n
|HT D

n −). Since Q(VT D
n
≤ KT D

n
|FT D

n −) = F̄d(VT D
n − − KT D

n −|dn−1, VT D
n −), the

results follows from the tower property of conditional expectation. ¥

Remark. Note that with deterministic dividend dates the compensator of τ is not absolutely
continuous, if default can happen at dividend dates, i.e. if F̄d(VT D

n −−KT D
n −|dn−1, VT D

n −) > 0. On
the other hand, for Poissonian dividend dates, as considered in Proposition 2.4, the compensator
is absolutely continuous and the default intensity is, on {τ > t},

λt =
1
2
σ2

V K
∂

∂v
fVt|Ht

(K) + λD

∞∫

Kt−

F̄d(v −Kt−|dn−1, v)fVt|Ht
(v) dv. (17)

The second expression is the intensity of Y 2 as is easily seen by analogous arguments to the
above ones.

4 Numerical illustrations

4.1 Filter performance

Filtered asset value. In our context the natural estimator for the unobservable asset value is
the conditional mean EP

(
Vt|Ht

)
.3 In the sequel this quantity will be referred to as filter estimate

3For estimating purposes it is natural to work under the historical probability measure P.
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µV K V0 σV δ δ̄ λD

0 60 100 0.5 ∼ Beta(1, 20) 0.0476 4

Table 1: Parameters in the simulation study. To improve comparability we fix the dividend dates
to 0.25, 0.5, . . . , 1.75 throughout. All simulations are done with full information-equity value
computed with Proposition 2.4.
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Figure 2: This plot shows the filter estimate (FE) of the asset value for a fixed realization of V
without any news. The distribution of V0 used for the filtering is log-normal with σ = 0.2, on
the left with mean 100, on the right with mean 70. The vertical lines on the bottom show the
paid dividends. The simulation parameters are as in Table 1.

(FE).

In Figure 2 we illustrate the typical behaviour of the filter estimate: for a given dividend
realization we plot trajectories of E(Vt|Ht) for different initial distributions of V0. In the left
plot we have E(V0) = 100, while on the right plot E(V0) = 70. Note that the latter is quite close
to the default boundary K = 60. The plot demonstrates the following properties of the filter
estimate:

• First, while µV = 0, so that between dividend dates V is a martingale, we see that for
t ∈ (TD

n , TD
n+1), the filter estimate is strictly increasing. This is due to the fact that ”no

default is good news”, i.e.

E(Vt|HT D
n
∨ {τ > t}) > E(Vt|HT D

n
), t ∈ (TD

n , TD
n+1).

Note that with increasing conditional mean E(Vt|Ht) this effect becomes less pronounced.

• Figure 2 also shows the hybrid nature of the dividend-impact on the filter estimate. On
the one hand, at a dividend date the asset value is reduced by the dividend payment. On
the other hand, dividends also carry information on the asset value; in particular, a higher-
than-expected (lower-than-expected) dividend leads to an upward (downward) shift in the
conditional distribution of Vt and hence to an increase (decrease) in the conditional mean.
In the figure, this is nicely illustrate by the dividend impact at t = 1: the information
impact of the high dividend overcompensates the reduction in the asset value due to the
payout of the dividend.

Distribution of estimation error. From now on, we include news in the information set
used in the simulations. As an example we consider news in form of ratings based on noisy
accounting information. To this, set ηn := ln(VTn/V0)+ ξn, where ξ1, ξ2, . . . are i.i.d. N (0, σ2

news),
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Figure 3: The distribution of the estimation error E(V2|H2)− V2 for σnews ∈ {0.2, 1}.

independent of V , and choose c1 < · · · < cMI−1 with c1 > K. The related news In will take
the values 1, . . . , M I , where higher numbers represent better news. More precisely, In is 1 if
ηn < c1, 2 if c1 ≤ ηn < c2, . . . , and MI if ηn > cMI−1. For our simulations we used MI = 4 with
ci = ln(c̃i/100) and c̃i ∈ {90, 150, 200}. Intuitively, this means that the news give information
about the noisily observed asset value being below 90, in [90, 150), in [150, 200) and above 200,
respectively. The conditional distribution νI is easily computed.

In Figure 3 we plot the density of the estimation error FE−Vt at t = 2 for varying noise
parameter σnews. In both cases, the error distribution is skewed to the left. This is due to the
skewness of the log-normal distribution and the fact that for τ > t the default point K = 60
gives a lower boundary for the asset value. As expected, the variance and skewness of the error
distribution increase with increasing σnews.

4.2 Estimating asset values from equity prices

The equity-based estimator. The filter estimate of the previous section corresponds to a
fundamental valuation approach: one tries to assess the value of the firm’s assets from economic
information such as news or dividend payments. When the stock of the firm is liquidly traded,
one could alternatively compute a market implied estimator of the asset value by inverting
relation (3) instead. The KMV-methodology is a typical example where this approach is used,
see Crosbie and Bohn (2001). Formally, given the current equity value S∗ observed in the
market and a valuation formula under full information of the form St = S(t, Vt,Kt, dt), S strictly
increasing in v, the equity-implied estimator (EE) is given by the solution of the equation

S(t, EEt,Kt, dt) = S∗ .

The procedure is illustrated in Figure 4. The straight line gives the fundamental valuation (4)
under full information. Given an equity observation on the y-axis, S∗ = 60, say, one inverts this
relation to end up with the corresponding asset value estimator EE.

Of course, under incomplete information this relation between Vt and St is not exact, as
is illustrated by the scatter plot. Each point (x, y) represents a simulation of (Vt)t∈[0,2] and
the corresponding news and dividend realization: x is equal to the terminal asset value V2,
and y equals the corresponding equity value S2 = EQ(S(2, V2)|H2). The dotted line has been
computed by cubic regression, of asset value (y) onto equity value (x). In the left plot σnews is
small, modelling a very informative information set Ht while on the right σnews is large. We see
that for better information the scatter plot is summarized well by the fundamental valuation
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Figure 4: Scatter plots for the equity value versus the asset value (AV) for σnews = 0.2 (left)
and σnews = 1 right. (both: 1000 data points) The dashed line has been computed by cubic
regressions, while the straight line shows the relation under full information (see (4)). Both plots
are cut at 300.

under full information so that the equity estimator performs well for most scenarios. On the
other hand, in a less informative environment the equity value under incomplete information,
(9), varies less with the asset value; in the extreme case where Ht = σ({τ > t}), St is even
independent of Vt. Therefore the shape of the scatter plot in the right figure is much flatter and
we expect the error of the equity estimator to be larger.

Bias of the equity estimator. In the next proposition we analyze the bias of the equity
estimator.

Proposition 4.1. Fix t > 0 and suppose that S∗ is given by the fundamental valuation relation
S∗ = EQ

(
S(t, Vt,Kt, dt)|Ht

)
for S strictly increasing in v. If S is concave in v we have that

EEt ≤ EQ(Vt|Ht).

On the other hand, if S is convex we obtain EEt ≥ EQ(Vt|Ht).

Proof. Since t and (Kt, dt) are fixed we write simply S(·) for S(t, ·,Kt, dt). Then EEt =
S−1(S∗) = S−1

(
EQ(S(Vt)|Ht)

)
. Now suppose that S is concave. Then we get from Jensen’s

inequality

S(EEt) = S ◦ S−1 ◦ EQ(S(Vt)|Ht) = EQ(S(Vt)|Ht) ≤ S
(
EQ(Vt|Ht)

)
,

so that the claim follows as S is strictly increasing. For S convex one proceeds analogously. ¥

4.3 Default intensities and equity

In the recent literature on corporate bond pricing models where the default intensity is a decreas-
ing function of the pre-default value of the firm’s equity have become popular, see for instance
Linetsky (2006). In these models it is assumed that pre-default value of the firm’s equity under
the equivalent martingale measure follows an SDE of the form dS̃t = (r+h(S̃t))S̃tdt+σS̃tdWt for
some nonnegative and decreasing function h. The default time is modeled as doubly-stochastic
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random time (see McNeil, Frey, and Embrechts (2005), Section 9.2) with default intensity h(S̃t);
the equity price itself is given by St = S̃t1{τ>t}. Typically, the function h is of the form

h(S) =
α

Sρ
, S, α, ρ > 0. (18)

Note that in these models this relation is exogenously imposed by the modeler. It is of interest
to see if this relationship can be supported by a model where equity value and default intensity
are derived from more fundamental relationships. The model proposed in this paper is ideally
suited for such an analysis.

10 15 20 25 30 35 40
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0.4

0.45

 

 
1 year (fitted)
2 years (fitted)
1 year
2 years

Figure 5: Simulations with different time horizons (T = 1 and T = 2, 200 simulations each).
The parameters are as in Table 1 with σnews = 0.2. The plot is cut at 40 (x-axxis) and 0.45
(y-axxis). The two fitted functions, shown by the straight and the dashed line, almost overlap
and are given by f(x) = 184.6/x2.61 (1 year) and f(x) = 159.0/x2.55 (2 year). The intensity was
computed using (17).

In our model, equity is given by the expected value of discounted dividends, i.e. in the bench-
mark case by

∫∞
K S(v, Kt, dt)fVt|Ht

(v)dv, whereas the default intensity is essentially determined
by the derivative of the conditional density in K, ∂

∂vfVt|Ht
(K). Hence, it is obviously possible

to construct different conditional densities leading to the same equity value but different default
intensities, thus invalidating a specification of the form (18). However, for practical applications
it is more relevant to check if a relation of the form (18) can be maintained for a specific firm
with given characteristics µV and σV and varying economic conditions, i.e. different realizations
of the asset value process V . This is done in the scatter plots in Figures 5 and 6. Each point
(x, y) represents a simulation of V and the corresponding equity news and dividends: x is equal
to the equity value S2, y is the corresponding default intensity λ2 computed in Proposition 3.6.
The straight line shows a fitted curve of the type (18).

Figure 5 shows the relation between equity and default intensity for different time horizons
and constant parameters. It is clearly seen that the relationship is stable. Figure 6 shows the
outcome for different characteristics (µV , σV ) of the firm value. While in all cases the relation
between equity and default intensity can be described well by a hyperbola, the fitted parameters
change quite dramatically. This suggests, that stability of the firm’s characteristics is necessary
for a stable relationship between equity and default intensity.

In summary, the simulations provide support for the use of models of the form (18), provided
that the characteristics of the firm remain relatively stable over time. On the other hand, a
deterministic relation between equity value and default intensity can break down completely if
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Figure 6: Simulations with different asset value dynamics. We used µV = 0, σV = 0.5, µV =
0.3, σV = 0.8 and µV = 0.5, σV = 1 with σnews = 1. The fitted functions are f(x) = 92.0/x2.14,
f(x) = 338.5/x1.95 and f(x) = 4029/x1.91.

a firm changes its characteristics, for instance by investing into profitable, but comparatively
risky projects.

A Mathematical appendix

A.1 Proof of Proposition 2.4

Proof of Proposition 2.4. Let D̃t :=
∑

T D
n ≤t δn. Since κ = 1, dDt = Vt−dD̃t, and since moreover

D̃t − δ̄λDt is a martingale, by (3) the equity value equals

St = 1{τ>t} EQ
( τ∫

t

e−r(s−t)Vs− λD δ̄ ds
∣∣∣Ft

)
.

By the Markov property of V , we have that

1{τ>t} EQ
( τ∫

t

e−r(s−t)Vs− λD δ̄ ds
∣∣∣Ft

)
= EQVt

( τ∫

0

e−ruVu− λD δ̄ du
)

=: S(Vt,K0). (19)

In the sequel we study (19) for a generic default barrier k. Note that the generator of the Markov
process V under Q is given by the operator L Q with

L Qf(v) = µV v
∂

∂v
f +

1
2
σ2

V v2 ∂2

∂v2
f + λD

1∫

0

[
f
(
v(1− x)

)− f(v)
]
νδ(dx), (20)

where νδ is the distribution of the δi. It is well-known that the function S defined in (19) solves
the ODE

L QS(v, k) + λD δ̄v = rS(v, k) (21)

with lower boundary condition S(k, k) = 0 reflecting the impact of default. To obtain a solution
for (21) corresponding to (19) we need to study the behaviour of S for v →∞; this will also help
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to find a particular solution to the inhomogeneous equation (21). Note that (2) can be written
in the form

dVt = Vt−
(
µV − λD δ̄

)
dt + Vt−σV dWt − Vt−

(
dRt − λD δ̄dt

)
,

and that the last two terms form a martingale. Hence Vt = V0 exp((µV −λDδ̄)t)Mt, where M is
a nonnegative Martingale with M0 = 1, and in particular E(Vt) = V0 exp((µV −λD δ̄)t). Assume
for the moment that τ = ∞, or, equivalently, that the default barrier K = 0. In this case

E
( ∞∫

0

e−rsδ̄λDVs− ds
)

=

∞∫

0

δ̄λDe−rsE(Vs−) ds = δ̄λDV0

∞∫

0

e(µV −λD δ̄−r)s ds. (22)

Under the assumption µV < λD δ̄ + r the expression (22) equals

δ̄λDV0
1

µV − (r + λDδ̄)

[
e(µV −λD δ̄+r)s

]∞
0

= V0
λD δ̄

r + λD δ̄ − µV
.

Hence we get that a solution of the inhomogeneous equation (21) is given by

S(v, 0) = v
λD δ̄

r + λD δ̄ − µV
.

Next we study the case v →∞. S(v, k) can be decomposed as

S(v, k) = Ev

( ∞∫

0

e−rsδ̄λDVs− ds
)
− Ev

(
1{τ<∞}

∞∫

τ

e−rsδ̄λDVs− ds
)
.

The second term on the r.h.s. equals

Ev

(
1{τ<∞}E

( ∞∫

τ

e−rsδ̄λDVs− ds
∣∣∣Fτ

))
= λD δ̄ Ev

(
1{τ<∞}e−rτEVτ

( ∞∫

0

e−ruVs− ds
))

≤ k (λD δ̄)2

r + λDδ̄ − µV
Ev

(
1{τ<∞}e−rτ

)
.

Here we used the strong Markov property for the first equality and the fact that Vτ ≤ k and the
form of S(v, 0) for the second one. For v →∞, we have τ →∞ and so Ev(e−rτ ) → 0 as r > 0.
Therefore the appropriate boundary condition is

lim
v→∞

(
S(v, k)− S(v, 0)

)
= 0. (23)

To solve (21) with the appropriate boundary conditions we now compute a solution S1(·) of the
homogeneous system

L QS1 − rS1 = 0

with boundary conditions limv→∞ S1(v) = 0, S1(k) = S(k, 0). Then S(v, k) = S(v, 0) − S1(v)
solves the inhomogeneous equation with the appropriate boundary conditions. We conjec-
ture that S1(·) has the form S1(v) = cvα for some α < 0. Define the function gνδ

(α) :=∫ 1
0 (1 − x)ανδ(dx). Note that gνδ

is decreasing in α with limα→∞ gνδ
(α) = 0 and gνδ

(0) = 1.
Furthermore, let

h(α) := αµV +
1
2
σ2

V α(α− 1) + λD(gνδ
(α)− 1)− r. (24)
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Then

L Qvα − rvα =
(
αµV +

1
2
σ2

V α(α− 1) + λD
(
gνδ

(α)− 1
)− r

)
vα = h(α) vα,

so that L Qvα + rvα = 0 if h(α) is zero. Now note that for α → +∞ also h(α) tends to infinity,
as the α2-term dominates, while for α = 0 the term equals −r < 0. As gνδ

is decreasing in α
and convex, there is exact one value α∗ < 0 such that h(α) = 0, and hence uniqueness of α∗ is
shown.

Summarizing, the value of equity is given by S(Vt, k) with S(v, k) = S(v, 0)− cvα∗ , where c
is chosen such that S(k, k) = 0. ¥

A.2 Proof of Proposition 3.5

Proof of Proposition 3.5. The proof is in two steps. In the first step we establish a suitable
representation of the filter in the discrete and in the continuous case; in the second step we show
convergence using the continuous mapping theorem.

First, fix ∆ and let k = [t/∆]. Recall the recursion formula (12) for the unnormalized
probabilities. This leads to the following set of equations

|M∆|∑

i=1

qi(k)f(mi(k)) ∝
|M∆|∑

i=1

πi(k)f(mi(k))

= EQ
(

f(V ∆
t )

∏

T D
n ≤t

νd(dn|dn−1, V
∆
T D

n −)
∏

T I
n≤t

νI(In|VT I
n−)1{V ∆

s >K∆
s :0≤s≤t}

)
,

where the second formula follows from repeated application of the Chapman-Kolmogorov equa-
tions.

To obtain a similar representation for the continuous situation, consider a process V̂ which is
a geometric Brownian motion with drift µV and volatility σV on (TD

n−1, T
D
n ) and has determin-

istic4 jumps of size −κdn at the dividend dates: ∆V̂T D
n

= −κdn, n ≥ 1. Denote by nD (nI) the
number of dividends (news) before t. Then the conditional density of (d1, . . . , dnD , I1, . . . , InI )
given V equals

nD∏

i=1

νd(di|di−1, VT D
i −)

nI∏

j=1

νI(Ij |VT I
j −).

By Bayes’ rule, we obtain that

EQ(f(Vt)|Ht) ∝ EQ

f(V̂t)

nD∏

i=1

νd(di|di−1, V̂T D
i −)

nI∏

j=1

νI(Ij |V̂T I
j −)1{V̂s>Ks:0≤s≤t}


 .

By Assumption 3.2, V ∆i
L−→ V̂ as i → ∞. Since the indicator is a.s. continuous w.r.t. the

law of V̂ the continuous mapping theorem gives the desired result. ¥
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