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Abstract

This paper studies Galerkin approximations applied to the Zakai equation of stochastic fil-

tering. The basic idea of this approach is to project the infinite-dimensional Zakai equation

onto some finite-dimensional subspace; this leads to a finite-dimensional system of stochastic

differential equations that can be solved numerically. The contribution of the paper is twofold.

On the theoretical side, existing convergence results are extended to filtering models with ob-

servations of point-process or mixed type. On the applied side, various issues related to the

numerical implementation of the method are considered. The paper closes with a numerical

case study.

Keywords Stochastic filtering, Zakai equation, point processes, Galerkin approximation

AMS classification 60G35, 60H15, 65C30, 92E11

1 Introduction

Stochastic filtering deals with the recursive estimation of the conditional distribution of signal

process X given some form of noisy observation of X. In the standard continuous time filtering

models this noisy observation is generated by a process Z with dynamics of the form

Zt = Z0 +

∫ t

0

h(Xs)ds+Wt (1)

for some Brownian motion W that is independent of X. In that case πt(dx), the conditional

distribution of Xt given σ(Zs : s ≤ t), can be characterized by a measure-valued stochastic

partial differential equation (SPDE) known as Zakai equation. This SPDE is in general an

infinite-dimensional equation that cannot be solved directly. In view of the practical relevance

of filtering, a wide range of methods for the approximation of this equation by finite-dimensional

systems and for the numerical solution of filtering problems in general has therefore been de-

veloped; a good survey is given in Budhiraja, Chen, and Lee (2007) or in Bain and Crisan

(2009). Popular numerical methods for filtering problems include the extended Kalman filter

(Jazwinski (1970)); quantization (Gobet, Pagès, Pham, and Printems (2006)); Markov-chain

approximation (Dupuis and Kushner (2001), Di Masi and Runggaldier (1982)); spectral meth-

ods (Lototsky (2006)) and simulation methods such as particle filtering (Crisan, Moral, and

Lyons (1999)).
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If the signal X is a diffusion process with uniformly parabolic generator the conditional

distribution πt(dx) admits a Lebesgue density that solves a SPDE in a suitable function space,

the so-called Zakai equation for the unnormalized conditional density; see for instance Pardoux

(1979b). Galerkin approximations are an important numerical technique for dealing with this

SPDE. The basic idea of this approach is to project the Zakai equation for the conditional

density onto some finite-dimensional subspace Hn generated by basis functions e1, . . . , en. This

leads to an n-dimensional SDE system for the Fourier coefficients of the solution of the projected

equation; this SDE system can then be solved by numerical methods for “ordinary” SDEs.

Theoretical and numerical aspects of Galerkin approximations are well understood for the

case of pure diffusion observation as in (1); see for instance Germani and Piccioni (1984) and

Germani and Piccioni (1987) for convergence results for Galerkin approximations and Ahmed

and Radaideh (1997) for a case study and a discussion of numerical aspects. Much less is

known for the case of mixed observations of diffusion and point-process type. In this paper

we therefore consider a model where a doubly stochastic point process N with intensity λ(Xt)

is observable in addition to the process Z. Models of this type arise naturally in credit risk

modelling (see Example 2.1 below) or in the modelling of high frequency data in finance (Frey

and Runggaldier (2001), Cvitanic, Liptser, and Rozovski (2006)). Outside the field of financial

mathematics point-process information plays among others a crucial role in the analysis of

queueing systems (Brémaud (1981)).

Our contribution is twofold. On the theoretical side we generalize the convergence results

of Germani and Piccioni (1987) to the case of mixed observations. On the applied side we

extend the numerical analysis of Ahmed and Radaideh (1997) in various ways: to begin with,

we propose to use Hermite polynomials as basis functions (instead of Gaussian basis functions);

we explain how to change the basis adaptively in order to deal with sudden shifts in location

and scale of the conditional density caused for instance by jumps in the observation, and we

compare several methods for the numerical implementation of the SDE-system that results

from the Galerkin approximation. An extensive simulation study shows that the Galerkin

approximation works well for systems with mixed observation provided that the necessary care

is taken in the implementation of the method.

The paper is organized as follows. The model and the various versions of the Zakai equa-

tion are described in Section 2. In that section we moreover introduce the basic form of the

Galerkin approximation. Convergence results for the Galerkin approximation are given in Sec-

tion 3. Section 4 deals with the numerical implementation of the model; results from numerical

experiments are finally reported in Section 5.

2 Zakai equation and Galerkin approximation

In this section we introduce the nonlinear filtering problem studied in this paper. Moreover, we

present different versions of the Zakai equation that describe the solution of the filtering problem.

Finally we introduce the Galerkin approximation for the Zakai equation for the unnormalized

conditional density and we derive an SDE system for the Fourier coefficients.

2.1 Model and notation

We consider a filtered probability space (Ω,F ,F,P) where the filtration F = (Ft)0≤t≤T satisfies

the usual conditions and where T is an arbitrary but fixed horizon date. The nonlinear filtering

problem we study consists of an unobserved state process X and observations Z and N . Z is a

nonlinear continuous transformation of X with additional Gaussian noise, while N is a doubly

stochastic Poisson process whose intensity is a nonlinear function of X.
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The state process. We consider an unobserved state process X on Rd which is the solution

of the SDE

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dVs, 0 ≤ t ≤ T, (2)

for a m-dimensional F-Brownian motion V . Moreover, we assume that X0 has finite second

moments and a density p0 ∈ L2(Rd). Set a(x) = σ(x)σ(x)>. The components of a(x) and b(x)

are denoted by aij(x) and bi(x), respectively. The restriction of the generator L of the Markov

process X to C2
b (Rd), the set of all bounded and twice continuously differentiable functions on

Rd, is given by the second order differential operator

L =

d∑
i=1

bi(x)
∂

∂xi
+

1

2

d∑
i,j=1

aij(x)
∂2

∂xi∂xj
. (3)

Note that the Itô-formula implies that for f ∈ C2
b (Rd), Mf

t := f(Xt) − f(X0) −
∫ t

0
L f(Xs)ds

is an F-martingale.

The observation processes. The observation is given by the two processes Z and N .

The process Z satisfies

Zt =

∫ t

0

h(Xs)ds+Wt, 0 ≤ t <∞ , (4)

where h : Rd → Rl is a measurable function and W is an l-dimensional standard Brownian

motion, independent of X. Moreover, the process N is a doubly stochastic Poisson process with

intensity λ(Xt) where λ is a positive, continuous and bounded function, so that the process

Nt −
∫ t

0
λ(Xs)ds is an F-martingale. We denote the jump times of N by τ1, τ2, . . . .

The objective of nonlinear filtering is to find suitable ways for computing πt(dx), the con-

ditional distribution of the state Xt given the observation history in a recursive way. More

formally, let FZ,Nt := σ(Zu, Nu : 0 ≤ u ≤ t), so that the associated filtration FZ,N repre-

sents the information given by the observation. The conditional distribution of Xt given the

observation until time t is determined by

πt(f) := E
(
f(Xt)|FZ,Nt

)
, f ∈ L∞(Rd).

The following regularity assumptions on the data of the problem will be used throughout

the paper

(A1) Assume that the following three conditions hold:

(i) b : Rd → Rd, σ : Rd → Rd×m, and h : Rd → Rl are bounded on Rd. Moreover, b is C1

with bounded derivatives and σ is C2 with bounded first and second order derivatives.

(ii) There exists α > 0, such that z>a(x)z ≥ αz>z, ∀x, z ∈ Rd.
(iii) λ : Rd → [$1, $2] is a continuous function for constants 0 < $1 < $2.

Example 2.1. Filtering problems with diffusive and point process observations arise naturally

in credit risk modeling. This connection was studied systematically in Frey and Runggaldier

(2010) and Frey and Schmidt (2010), among others. In these papers reduced-form portfolio

credit risk models are considered where default times are doubly stochastic random times with

intensity driven by some economic factor process X. In a large homogeneous portfolio the

number of default events is thus given by some doubly stochastic Poisson process N with

intensity λ(Xt). In line with reality, it is assumed that investors cannot observe the process
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X directly, but are confined to noisy observations of X, modelled by a process Z as in (4).

Moreover, they obviously observe the occurrence of default events and hence the process N .

In this context the pricing of credit derivatives naturally leads to a filtering problem, as we

now explain. In abstract terms a credit derivative with maturity T can be described in terms

of some FNT -measurable payoff H. Denote by Q the risk neutral measure used for pricing. The

price of the credit derivative at time t ≤ T is then given by Ht = EQ(H | FZ,Nt ) (assuming zero

interest rates for simplicity). Using iterated conditional expectations we get

Ht = EQ
(
EQ(H | Ft) | FZ,Nt

)
.

It is well-known that the pair (X,N) is an F-Markov process. Hence for typical claims H

one has the equality EQ(H|Ft) = h(t,Xt, Nt) for a suitable function h, and we get that Ht =

EQ(h(t,Xt, Nt)|FZ,Nt

)
. The computation of this conditional expectation is a nonlinear filtering

problem of the type considered in the present paper.

For further information on incomplete-information models in credit risk we refer to the to

the survey article Frey and Schmidt (2011).

2.2 The measure-valued Zakai equation

The evolution equation for the measure πt(dx) is usually deduced using a change of measure

method. Define

Λt :=
∏
τn≤t

λ(Xτn−) · exp

(∫ t

0

h(Xs)
>dWs +

1

2

∫ t

0

‖h(Xs)‖2ds−
∫ t

0

(λ(Xs)− 1)ds

)
for t ∈ [0, T ]. Then the regularity assumptions in (A1) imply that (Λ−1

t )t∈[0,T ] is a nonnegative

martingale. We define the measure P0 by its Radon-Nikodym derivative dP0 = Λ−1
T dP. The

Girsanov theorem yields that, under P0, Z is a standard Brownian motion, that N is a Poisson

process with intensity equal to one, and that X, Z and N are independent. Denote by Yt :=

Nt − t the compensated Poisson process, such that under P0, Y is a martingale. Then the

conditional distribution πt(dx) has a representation in terms of an associated unnormalized

version ρ: denoting by E0 the expectation w.r.t. P0, we obtain by the abstract Bayes rule for

any f ∈ L∞(Rd)

πt(f) =
E0(f(Xt)Λt|FZ,Nt )

E0(Λt|FZ,Nt )
=:

ρt(f)

ρt(1)
. (5)

It is well-known that the measure-valued process ρt satisfies the classical Zakai equation: let

ρ0(f) := E[f(X0)|FZ,N0 ]. Then, for any f ∈ C2
b (Rd), t ∈ [0, T ],

ρt(f) = ρ0(f) +

∫ t

0

ρs(L f)ds+

∫ t

0

ρs(fh
>)dZs +

∫ t

0

ρs−

(
f(λ− 1)

)
dYs, (6)

P0 − a.s., see for instance Theorem 3.24 in Bain and Crisan (2009) (only continuous observa-

tions). A formal proof that under (A1), (6) holds in the setup of the present paper is given in

Xu (2010), Theorem 2.9.

2.3 The Zakai equation for the conditional density

Our aim is to determine the dynamics of the Lebesgue-density of the unnormalized conditional

distribution ρt(dx). Consider the separable Hilbert space H = L2(Rd) with norm ‖ · ‖H and

scalar product (·, ·). To obtain intuition, suppose that

ρt(f) = (qt, f)
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for all f ∈ C2(Rd) with compact support and for some H-valued process q = (qt)0≤t≤T such

that qt(·) can be identified with a smooth function. Denote by the differential operator L ∗ the

formal adjoint of the generator L . As (qt,L f) = (L ∗qt, f) the measure valued equation (6)

simplifies to

(qt, f) = (q0, f) +

∫ t

0

(L ∗qs, f)ds+

∫ t

0

(h>qs, f)dZs +

∫ t

0

((λ− 1)qs−, f)dYs. (7)

This suggest that q solves the stochastic partial differential equation (SPDE)

dqt = L ∗qtdt+ h>qtdZt + (λ− 1)qt−dYt

in an appropriate sense. The next step is to give this equation a precise mathematical meaning

using the theory for mild and weak solutions for SPDEs as in Peszat and Zabczyk (2007).

Besides the Hilbert space H = L2(Rd) we consider the Sobolev space V = H1(Rd) ⊂ H. We

define an extension A∗ of L ∗ with domain D(A∗) ⊂ V as follows: u ∈ V is an element of

D(A∗) if there exists f ∈ H such that for all v ∈ V

−1

2

d∑
i,j=1

∫
Rd

aij(x)
∂u

∂xi

∂v

∂xj
dx+

d∑
i=1

∫
Rd

(
bi −

1

2

d∑
j=1

∂aij(x)

∂xj

) ∂v
∂xi

u dx = (f, v),

and we set A∗u = f in that case. If u ∈ C2
0 (Rd), we obtain that f = L ∗u by checking that

(f, v) = (u,L v) with integration by parts. It is well-known that A∗ generates an C0-semigroup

G∗, i.e. G∗ is a map from [0, T ] into H∗ such that G∗(0) = 0, G∗(t + s) = G∗(t)G∗(s) and G∗

is continuous in the strong operator topology, see Prato and Zabczyk (1992, Proposition A.10).

Moreover, G∗ is analytic.

Mild and weak solutions. Let N 2(0, T ;H) denote the set of all FZ,N -adapted, H-valued

processes ξ = (ξt)0≤t≤T , continuous in the mean square norm, which are such that

|ξ|T :=

(
sup
t∈[0,T ]

E0
(
‖ξ(t)‖2H

))1/2

<∞. (8)

It is well-known that N 2(0, T ;H) is a Banach space with norm | · |T , see Germani and Piccioni

(1987).

Define the multiplication-operators B : H → H l, Bf = fh> and C : H → H, Cf = (λ− 1)f .

A mild solution of the SPDE

dqt = A∗qtdt+ BqtdZt + CqtdYt. (9)

is a process q ∈ N 2(0, T ;H) such that

qt = G∗t q0 +

∫ t

0

G∗t−sBqsdZs +

∫ t

0

G∗t−sCqs−, dYs , t ≤ T. (10)

Denote by A := (A∗)∗ the adjoint operator of A∗ and note that on C2
0 (Rd) the operator A

coincides with the generator L of X. A weak solution of the SPDE (9) is a process q ∈
N 2(0, T ;H) such that for all v ∈ D(A)

(qt, v) = (q0, v) +

∫ t

0

(qs,Av) ds+

∫ t

0

(qs,Bv)dZs +

∫ t

0

(qs−, Cv)dYs, t ≤ T . (11)

In our context q is a weak solution of (9) if and only if it is a mild solution of that equation;

this follows immediately from Theorem 9.15 in Peszat and Zabczyk (2007).
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The Zakai equation. The following result describes the evolution of the density of the

unnormalized conditional distribution ρt(dx).

Theorem 2.2. Assume that (A1) holds. Then for all q0 ∈ V there is a unique mild solution

q of the SPDE (9). Moreover, qt ∈ H1(Rd) and for all f ∈ L2(Rd) we have that

ρt(f) = (qt, f).

In view of this result, equation (9) will be called the Zakai equation for the unnormalized

conditional density.

Theorem 2.2 has been obtained in Pardoux (1979b) and in Germani and Piccioni (1987) for

the case of pure diffusion information and in Pardoux (1979a) for the pure Poisson case (h ≡ 0).

The extension to the case of mixed observations may be found in Xu (2010).

2.4 The Galerkin approximation

The Galerkin approximation for a (stochastic) PDE essentially projects the equation to a finite-

dimensional subspace. In the case of the Zakai equation for the unnormalized conditional density

the solution of the projected equation can be characterized in terms of a finite-dimensional

system of ordinary stochastic differential equations (SDEs), as we now explain.

Formally the Galerkin approximation is defined as follows: Let {e1, e2, . . .} ⊂ D(A∗)∩D(A)

be a basis of the Hilbert-space H. Let Hn be the linear subspace spanned by {e1, . . . , en} and

denote by Pn the projection from H to Hn. We define the projection of the operator A∗ by

(A∗)(n) := PnA∗Pn

and analogously for the operators B and C.

Definition 2.3. The n-dimensional Galerkin approximation of (9) is the solution of

dq
(n)
t = (A∗)(n)q

(n)
t dt+ B(n)q

(n)
t dZt + C(n)q

(n)
t− dYt,

q
(n)
0 = Pnq0.

(12)

As previously, there are two equivalent concepts of solutions. The mild solution of (12) is

obtained with (G∗)(n) := exp(A∗)(n). On the other side, the weak form is obtained using the

adjoint operator A(n) :=
(
(A∗)(n)

)∗
. Since for u, v ∈ H one has (PnA∗Pnu, v) = (u, PnAPnv)

the weak form of the Galerkin approximation (12) becomes

d(q
(n)
t , v) = (q

(n)
t , PnAPnv)dt+ (qt, PnBPnv)dZt + (qt−, PnCPnv)dYt , v ∈ H. (13)

Note that for v ∈ H⊥n we obtain d(q
(n)
t , v) = 0. Since moreover q

(n)
0 = Pnq0 ∈ Hn it follows

that q
(n)
t ∈ Hn for t ∈ [0, T ] P-a.s. Hence, q

(n)
t can be written as

q
(n)
t (x) =

n∑
i=1

ψ
(n)
i (t)ei(x), t ∈ [0, T ], (14)

where ψ
(n)
i , 1 ≤ i ≤ n are the Fourier coefficients. Plugging (14) into the weak form of the

Galerkin approximation (13), we get that the Fourier coefficients satisfy the following system

of ordinary SDEs:

n∑
i=1

(ei, ej)dψ
(n)
i (t) =

( n∑
i=1

ψ
(n)
i (t)(ei,Aej)

)
dt+

l∑
`=1

( n∑
i=1

ψ
(n)
i (t)(ei, h

`ej)
)
dZ`t

+
( n∑
i=1

ψ
(n)
i (t−)

(
ei, (λ− 1)ej

))
dYt.
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Define the n× n matrices A,C,D and B`, ` = 1, . . . , l by their components:

aji := (ei,Aej), b`ji := (ei, h
`ej), cji := (ei, (λ− 1)ej), dji := (ei, ej), (15)

and let q
(n)
0 = Pnq0. As {e1, e2, . . . } is a basis of H, the matrix D has full rank and is

invertible. Using matrix notation we obtain the following SDE system for the vector-valued

process Υ(n) := (ψ
(n)
1 , . . . ψ

(n)
n )>

dΥ
(n)
t = D−1

(
AΥ

(n)
t dt+

l∑
`=1

B`Υ
(n)
t dZ`t + CΥ

(n)
t− dYt

)
,

Υ
(n)
0 = D−1q

(n)
0 .

(16)

This SDE system will be the starting point for our numerical analysis in Section 4. Note that

for {e1, e2, . . . } smooth, one has aji = (ei,L ej) which is more convenient for computing the

coefficients of the system (16).

Moments of the conditional distribution. Obviously, the (normalized) conditional

density of πt(dx) can be approximated via

pt :=
qt∫

Rd qt(x)dx
≈ q

(n)
t∫

Rd q
(n)
t (x)dx

=: p
(n)
t ; (17)

here ≈ means that we approximate the term on the left side by the Galerkin approximation

on the right side. In this case we have that E(f(Xt)|FZ,Nt ) ≈ (pnt , f). On the other side, we

can represent some characteristics of the conditional distribution directly via qt. Consider for

simplicity the case d = 1. Denote by x̂t and σ̂2
t be the conditional mean and variance of the

state process at time t ∈ [0, T ]. Then

x̂t = E(Xt|FZ,Nt ) =

∫
xqt(x)dx∫
qt(x)dx

≈
∫
xq

(n)
t (x)dx∫

q
(n)
t (x)dx

=

∑n
i=1 ψ

(n)
i (t)(x, ei)∑n

i=1 ψ
(n)
i (t)(1, ei)

. (18)

Note that the second equality follows from the definition of the unnormalized distribution, see

(5). For the last equality we used (14). In a similar way we approximate in σ̂2
t = E

(
(Xt −

x̂t)
2|FZ,Nt

)
= E(X2

t |F
Z,N
t )− (x̂t)

2 the conditional second moment by

E(X2
t |F

Z,N
t ) ≈

∑n
i=1 ψ

(n)
i (t)(x2, ei)∑n

i=1 ψ
(n)
i (t)(1, ei)

. (19)

Analogously all moments of the conditional distribution can be represented by the Fourier

coefficients. Notice that (1, ei), (x, ei) and (x2, ei) are independent of the observation and

can be computed off-line (we implicitly assume that these integrals exist for the chosen basis

functions).

3 Convergence results

This section gives sufficient conditions for the convergence of the Galerkin approximation q(n)

defined in (14) to the solution of the Zakai equation q from (9) in an appropriate sense. The

following theorem is the main theoretical result of the paper:
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Theorem 3.1. Assume that (A1) holds. Let q be the solution of the Zakai equation in (9) and

q(n) be the corresponding Galerkin approximation. Then, for any q0 ∈ H,

sup
t∈[0,T ]

E0(‖q(n)
t − qt‖2H)→ 0, as n→∞,

if and only if, for any x ∈ H,

lim
n→∞

sup
t∈[0,T ]

∥∥∥( exp(PnA∗Pnt)−G∗t
)
x
∥∥∥
H

= 0. (20)

Note that G∗tx is the solution of the Kolmogorov forward PDE with initial condition x (the

PDE describing the evolution of the transition density of X) and exp(PnA∗Pnt)x is the Galerkin

approximation to this (deterministic) PDE. Hence Theorem 3.1 shows that the Galerkin ap-

proximation for the Zakai equation converges if and only if the Galerkin approximation for the

deterministic forward equation converges.

Necessary and sufficient conditions for (20) to hold can be obtained by means of the Trotter-

Kato theorem. A convenient condition that ensures (20) under (A1) is that⋃
n∈N

Hn is dense in V ; (21)

see Theorem 4, Germani and Piccioni (1984).

Proof of Theorem 3.1

The remainder of this section is devoted to the proof of Theorem 3.1. The essential part of the

proof is a continuity result for the mild form of the Zakai equation, see Proposition 3.4 below.

This result is an extension of a result from Germani and Piccioni (1987) where the case of

continuous observation is treated. We recall the mild form of the Zakai equation in the Banach

space N 2(0, T ;H), qt = G∗t q0 +
∫ t

0
G∗t−sBqsdZs +

∫ t
0
G∗t−sCqs−, dYs, t ≤ T where for f ∈ H,

Bf = h>f and Cf = (λ− 1)f .

We start by introducing some necessary operator spaces. By S we denote the space of all

C0-semigroups of linear bounded operators from H to H such that there exists S̄ ∈ R+ with

for all S ∈ S

sup
t∈[0,T ]

‖St‖ ≤ S̄. (22)

We endow S with the topology of uniform strong convergence on [0, T ], i.e. a sequence (S(n))

in S converges to S ∈ S if for all x ∈ H

lim
n→∞

sup
t∈[0,T ]

∥∥∥(S
(n)
t − St)x

∥∥∥
H

= 0.

For any l ∈ N denote by U l the space of linear bounded operators from H to H l (l-fold

product of H). In the special case l = 1 we write U = U1. An operator A ∈ U l can be written

by its component-wise: for all x ∈ H,

Ax = (A1x, . . . , Alx)>

with Ai ∈ U . The space U l is endowed with the strong topology, that is a sequence (A(n)) in

U l converges to A ∈ U l, if for all x ∈ H

lim
n→∞

∥∥∥(A(n) −A)x
∥∥∥
Hl

= 0.
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The studied SPDEs. For the proof we study a more general class of linear stochastic

partial differential equations that includes the Zakai equation (10) as a special case. Consider

a generic semigroup S ∈ S and linear operators B ∈ U l, C ∈ U and some f ∈ H. In the sequel

we study the following equation in N 2(0, T ;H):

ξt = Stf +

∫ t

0

St−sBξsdZs +

∫ t

0

St−sCξs−dYs, t ∈ [0, T ]. (23)

The following decomposition of this equation is the starting point for our analysis: define

the linear operator L on N 2(0, T ;H) by

(Lξ)(t) :=

∫ t

0

St−sBξsdZs +

∫ t

0

St−sCξs−dYs (24)

for all t ∈ [0, T ] and ξ ∈ H. Furthermore, set ξ
[0]
t := Stf such that ξ[0] ∈ N 2(0, T ;H). We

obtain that (23) can be rewritten as the following equation in N 2(0, T ;H)

ξ = ξ[0] + Lξ. (25)

The operator L is a bounded linear operator and it is moreover quasinilpotent, as the following

estimate shows.

Lemma 3.2. Set γ :=
√
T S̄(‖B‖2 + ‖C‖2)

1
2 . Then, for all n ∈ N

‖Ln‖ 1
n ≤ γ

(n!)
1
2n

. (26)

The proof is given in the appendix A.1.

Lemma 3.3. Equation (25) has a unique solution in N 2(0, T ;H),

ξ = (I − L)−1ξ[0] :=

∞∑
i=0

Liξ[0], (27)

and (I −L)−1 : N 2(0, T ;H)→ N 2(0, T ;H) is a bounded linear operator: ‖(I −L)−1‖ < κ with

κ = 2√
3
e2γ2

.

Proof. The crucial part in the proof of the lemma is the estimate

∞∑
n=0

‖L‖n ≤
∞∑
n=0

γn

(n!)
1
2

=

∞∑
n=0

2−n
(2γ)n

(n!)
1
2

≤

(( ∞∑
n=0

2−2n
)( ∞∑

n=0

(2γ)2n

n!

)) 1
2

= κ,

which shows that the Volterra series
∑n
i=0 L

i does in fact converge as n→∞.

In view of Lemma 3.3 we can define the mapping F : H × U l × U × S → N 2(0, T ;H) by

F (f,B,C, S) := ξ,

where ξ is the unique solution in N 2(0, T ;H) of (23) with coefficients (f,B,C, S). The following

result shows that F is continuous.

Proposition 3.4. Consider sequences (f (n)), (B(n)), (C(n)) and (S(n)) in H, U l, U and S,

converging to f ∈ H, B ∈ U l, C ∈ U and S ∈ S, respectively. Then,∣∣∣F (f (n), B(n) C(n), S(n))− F (f,B,C, S)
∣∣∣
T
→ 0, as n→∞.

9



Proof of Proposition 3.4. Since S(n) → S , B(n) → B and C(n) → C, by the uniform bounded-

ness principle there exist N̄ and a constant γ̄ such that

sup
t∈[0,T ],n≥N̄

{
‖St‖ ∨ ‖S(n)

t ‖ ∨ ‖B‖ ∨ ‖B(n)‖ ∨ ‖C‖ ∨ ‖C(n)‖
}
≤ γ̄. (28)

In the following, we only consider sufficiently large n > N̄ . Set

ξ := F (f,B,C, S), ξ(n) := F (f (n), B(n), C(n), S(n)).

Together with ξ
[0,(n)]
t := S

(n)
t f (n) we define L(n) by

(L(n)ξ)(t) :=

∫ t

0

S
(n)
t−sB

(n)(ξs)dZs +

∫ t

0

S
(n)
t−sC

(n)(ξs−)dYs

for all ξ ∈ N 2(0, T ;H). Then, by the very definition of F ,

ξ(n) = ξ[0,(n)] + L(n)ξ(n), ξ = ξ[0] + Lξ.

Hence

ξ(n) − ξ = (ξ[0,(n)] − ξ[0]) + L(n)(ξ(n) − ξ) + (L(n) − L)ξ

= (I − L(n))−1
(

(ξ[0,(n)] − ξ[0]) + (L(n) − L)ξ
)
. (29)

By Lemma 3.3 there exists a constant κ = κ(γ̄), such that∥∥(I − L(n))−1
∥∥ ≤ κ. (30)

Furthermore, as S(n) ∈ S,∣∣ξ[0,(n)] − ξ[0]
∣∣2
T

= sup
t∈[0,T ]

∥∥∥S(n)
t f (n) − Stf

∥∥∥2

H

≤2 sup
t∈[0,T ]

∥∥∥S(n)
t (f (n) − f)

∥∥∥2

H
+ 2 sup

t∈[0,T ]

∥∥∥(S
(n)
t − St)f

∥∥∥2

H

≤2γ̄2‖f (n) − f‖2H + 2 sup
t∈[0,T ]

∥∥∥(S
(n)
t − St)f

∥∥∥2

H
.

The last term converges to zero as (f (n)) and (S(n)) converge to f and S, respectively.

Finally, we show that (L(n) − L)ξ converges to zero. From the definition of L and L(n) we

obtain by the Itô-isometry that

|(L(n) − L)ξ|2T = sup
t∈[0,T ]

E0
(
|((L(n) − L)ξ)(t)|2H

)
= sup
t∈[0,T ]

E0

(∫ t

0

∥∥∥(S
(n)
t−sB

(n) − St−sB)ξs

∥∥∥2

Hl
ds+

∫ t

0

∥∥∥(S
(n)
t−sC

(n) − St−sC)ξs

∥∥∥2

H
ds
)

≤ 2

[
sup
t∈[0,T ]

E0
(∫ t

0

∥∥∥S(n)
t−s(B

(n) −B)ξs

∥∥∥2

Hl
ds
)

+ sup
t∈[0,T ]

E0
(∫ t

0

∥∥∥(S
(n)
t−s − St−s)Bξs

∥∥∥2

Hl
ds
)

+ sup
t∈[0,T ]

E0
(∫ t

0

∥∥∥S(n)
t−s(C

(n) − C)ξs

∥∥∥2

H
ds
)

+ sup
t∈[0,T ]

E0
(∫ t

0

∥∥∥(S
(n)
t−s − St−s)Cξs

∥∥∥2

H
ds
)]

:= 2(E1 + E2 + E3 + E4).
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We consider the terms E1 to E4 separatly. Observe that by (22),

E1 ≤ γ̄2E0
(∫ T

0

∥∥∥(B(n) −B
)

(ξτ )
∥∥∥2

Hl
dτ
)
.

As B(n) converges to B, we have for all t ∈ [0, T ] and ω ∈ Ω∥∥∥(B(n) −B
)

(ξs(ω))
∥∥∥2

Hl
→ 0.

In order to show that E1 → 0 as n→∞ we apply dominated convergence. Since ‖B(n)‖, ‖B‖ ≤
γ̄ we get ∥∥∥(B(n) −B

)
(ξs)

∥∥∥2

Hl
≤ 4γ̄2‖ξs‖2H

and the last term is integrable since E0
( ∫ T

0
‖ξs‖2Hds

)
≤ T |ξ|2T <∞.

In a similar way

E2 ≤ sup
t∈[0,T ]

E0
(∫ t

0

sup
s≤τ≤T

∥∥∥(S
(n)
τ−s − Sτ−s)Bξs

∥∥∥2

Hl
ds
)

=E0
(∫ T

0

sup
s≤τ≤T

∥∥∥(S
(n)
τ−s − Sτ−s)Bξs

∥∥∥2

Hl
ds
)

(31)

while uniform strong convergence of S(n) gives sups≤τ≤T

∥∥∥(S
(n)
τ−s − Sτ−s)Bξs(ω)

∥∥∥2

Hl
→ 0 for all

ω ∈ Ω. As

E0
(∫ T

0

sup
s≤τ≤T

∥∥∥(S
(n)
τ−s − Sτ−s)Bξs

∥∥∥2

Hl
ds
)
≤ 4γ̄4E0

(∫ T

0

‖ξs‖2Hds
)
≤ 4γ̄4T |ξ|2T

and |ξ|T < ∞ by Lemma 3.3 we obtain again by dominated convergence that E2 → 0. Analo-

gously we obtain E3 → 0 and E4 → 0 and we conclude.

Finally we turn to the

Proof of Theorem 3.1. Under Condition (20) the assumptions of Proposition 3.4 are clearly

satisfied for the Galerkin approximation of the Zakai equation, as Pnx → x, PnBPnx → Bx

and PnCPnx → Cx for all x ∈ H. For the proof of the converse statement (the fact that (20)

is also necessary for the convergence of the Galerkin approximation) we refer to the proof of

Theorem 6.1 in Germani and Piccioni (1987).

4 Numerical methods

In this section we discuss various aspects of the practical implementation of the Galerkin ap-

proximation of the Zakai equation. We begin with a few algorithms for the numerical solution of

the SDE system (16). In Section 4.2 we consider the special class of basis functions constructed

from Hermite polynomials. It turns out that the efficiency of the Galerkin approximation can

be improved substantially if the scale and the location of the bases are changed adaptively, an

issue which we discuss in Section 4.3.
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4.1 Numerical solution of the Zakai equation

In order to solve the SDE system in (16) numerically, we discretize the system in time. As nu-

merical schemes we consider the Euler-Maruyama method and the splitting-up method. While

the Euler-Maruyama method is fast to implement it can become quite unstable if the time step

is relatively large (see Figure 3). This difficulty can be overcome with the splitting-up method.

Note that in practical filtering problems the observation often comes at discrete time points, so

that the time-discretization step can not be chosen arbitrarily small.

Our aim is to approximate Equation (16). It will be convenient to use N instead of Y = N−t
as driver, so that the equation becomes

dΥ
(n)
t = (A− C)Υ

(n)
t dt+

l∑
`=1

B`Υ
(n)
t dZt + CΥ

(n)
t− dNt, Υ

(n)
0 = q

(n)
0 . (32)

Consider the equidistant partition 0 = t0 < t1 < · · · < tK = T with step size ∆ := T/K.

The approximation at time points t1, . . . , tK is denoted by Υ1, . . . ,ΥK with Υ0 := Υ
(n)
0 and

Υk = (ψk,1, . . . , ψk,n)′ .

Euler-Maruyama method. The Euler-Maruyama method (EM) generalizes the Euler

method to stochastic differential equations, see e.g. McLachlan and Krishnan (1997). It is

described in the following algorithm:

Algorithm 4.1 (EM method). For k = 1, . . . ,K, compute Υk from Υk−1 by

Υk =Υk−1 +D−1
(

(A− C)Υk−1∆ +

l∑
`=1

B`Υk−1(Z`tk − Z
`
tk−1

) + CΥk−1(Ntk −Ntk−1
)
)
.

Splitting-up method. The splitting-up method (SU) is a numerical method based on

semigroup theory. It decomposes the original SDE into stochastic and a deterministic equa-

tions which are easier to handle. We refer to Bensoussan, Glowinski, and Rascanu (1990) and

Le Gland (1992) for further details in the case of continuous observations. Here we propose

an extension of the method to the case with mixed observations. For simplicity, we assume

D = D−1 = In, i.e. the basis {e1, e2, . . . , en} consists of orthonormal functions.

Intuitively, the SU method computes Υk from Υk−1 in three steps: the first step uses only

the dt-part of equation (32) and returns the solution of the SDE dΥ1
t = (A − C)Υ1

tdt. The

solution of this equation on [tk−1, tk] is the matrix exponential Υ1
tk

= exp
(
(A − C)∆

)
Υ1
tk−1

.

Step 2 incorporates the new information from Z via the linear SDE dΥ2
t = BΥ2

tdZt with initial

condition Υ2
tk−1

= Υ1
tk

. The solution of this SDE is given by the matrix exponential

Υ2
tk

= exp

( l∑
`=1

(
B`(Ztk − Ztk−1

)− 1

2
(B`)2∆

))
Υ1
tk
.

The new jump information is incorporated via the linear equation dΥ3
t = CΥ3

t−dNt, this time

with initial condition Υ3
tk−1

= Υ2
tk

, which gives

Υ3
tk

= (In + C)(Ntk
−Ntk−1

)Υ2
tk
.

These steps lead to the following algorithm:

Algorithm 4.2 (SU method). For k = 1, . . . ,K, compute Υk from Υk−1 by

(1) Compute Υ1
k := exp

(
(A− C)∆

)
Υk−1.
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(2) Compute Υ2
k := exp

(∑l
`=1(B`(Ztk − Ztk−1

)− 1
2 (B`)2∆)

)
Υ1
k.

(3) Return Υk := (In + C)(Ntk
−Ntk−1

)Υ2
k

4.2 Galerkin approximation based on Hermite polynomials

The choice of the basis functions has a large impact on the quality of the Galerkin approximation.

Ahmed and Radaideh (1997) propose to use Gaussian series, i.e. a series build by densities of

n-dimensional Gaussian distributions with different means and arbitrary positive, symmetric

covariance matrices. Ahmed and Radaideh (1997) show that these are linearly independent and

complete and hence they can be used to construct Galerkin approximations as described above.

In this paper we instead consider a basis computed from Hermite polynomials. This basis

has a number of computational advantages over Gaussian series as will become clear below. We

start by recalling some properties of Hermite polynomials, see e.g. Courant and Hilbert (1968).

Define the Hermite polynomials by

fi(x) = (−1)iex
2/2 d

i

dxi
e−x

2/2, x ∈ R (33)

with i = 0, 1, 2, . . .. These polynomials are orthogonal with respect to the weighting func-

tion φ(x) := (2π)−1/2 e−x2/2, as
∫
R fi(x)fj(x)φ(x)dx = i! 1{i=j}. Consequently, the functions

e1, e2, . . . given by

ei(x) :=

√
φ(x)

(i− 1)!
fi−1(x), x ∈ R, (34)

constitute an orthonormal basis of L2(R), which we call Hermite basis. In the following result

we deduce the convergence of the Galerkin approximation with the use of (21).

Proposition 4.3. Assume that (A1) holds and that q
(n)
t is as in (14) with respect to the

Hermite basis. Then, for any q0 ∈ H,

sup
t∈[0,T ]

E0(‖q(n)
t − qt‖2H)→ 0, as n→∞.

The proof is given in Appendix A.1.

To actually obtain the Galerkin approximation under the Hermite basis one computes the

coefficient matrices A,B1, . . . , Bl, C,D as in (15) with respect to the Hermite basis and then

solves (16) numerically by one of the methods described beforehand. In some special cases one

obtains explicit formulas for the entries of the coefficient matrices as in the following example.

Example 4.4 (Kalman filter with point process observations). Consider d = m = l = 1 and

assume that b(x) = bx and σ(x) = σ, such that

Xt = X0 +

∫ t

0

bXsds+ σVt

with X0 ∼ N (µ0, σ
2
0). Moreover, consider h(x) = hx and λ(x) = λx2 with λ > 0 such that the

observation is given by Zt =
∫ t

0
hXsds+Wt and the doubly stochastic Poisson process N with
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intensity (λX2
t )t≥0. From (15) we compute that dji = (ei, ej) = 1{i=j} and

aji = (ei,Aej) =


(− b

2 + σ2

8 )
√

(j + 2)(j + 1) if i = j + 2,

− b
2 −

σ2(2j+1)
8 if i = j,

( b2 + σ2

8 )
√
j(j − 1) if i = j − 2;

(35)

b1ji = (ei, h(·)ej) =

{
h
√
j if i+ 1 = j,

h
√
j + 1 if i− 1 = j;

(36)

cji = (ei, (λ(·)− 1)ej) =


λ
√
j(j − 1) if i = j − 2,

2λj if i = j,

λ
√

(j + 2)(j + 1) if i = j + 2.

(37)

Finally, one needs to express q0 in terms of Hermite polynomials, which we do with some

additional notation in (38).

Computation of moments. The i-th Hermite function is an polynomial of order i, and

we denote by ϑi0, . . . , ϑ
i
i the coefficients in the representation fi(x) =

∑i
k=0 ϑ

i
kx

k. We state the

first number of coefficients in the appendix, section A.2. Conversely, any power of x can be

represented as linear combination of Hermite polynomials and we write xi =
∑i
k=0 ι

i
kfk(x).

With this we are able to compute the initial density in the previous example.

Example 4.5 (Example 4.4 continued). With the above notation we are able to compute the

projection of the initial density q0(x) = (2πσ2
0)−1/2 exp

(
− (x−µ2)2

2σ2
0

)
and obtain

q0j = (q0, ej) =
1√
j!

j∑
k=0

ϑjk

k∑
i=0

Cikc
i
1c

(k−i)
2 ιi0, (38)

where c1 =
√

2σ2
0

2+σ2
0

and c2 = 2µ0

2+σ2
0
.

Recall from (18) that in order to compute mean and variance of the filter distribution via

Galerkin approximation one needs to determine be integrals (xj , ei). For the Hermite basis this

is done in the following lemma.

Lemma 4.6. With respect to the Hermite basis we have that

(xj , ei) =

√
2(2π)

1
4

√
i!

i∑
k=0

ϑik2
k
2 ιk+j

0 , j = 0, 1, . . . (39)

4.3 The adaptive Galerkin approximation

During the filtering process the conditional distribution πt(dx) typically changes location and

scale. This can create problems for the Galerkin approximation with a fixed basis. For instance,

the graphs in Figure 1 show that while the standard Hermite polynomials do approximate the

density of a normal distribution well if the mean is close to zero and if the variance σ2 lies

between one and two, the fit becomes substantially worse if µ is substantially different from

zero or if σ2 is outside of the interval [1, 2]. Hence we propose an adaptive scheme, called

adaptive Galerkin approximation (AGA), which improves the numerical performance of the

Galerkin approach significantly.
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Figure 1: Comparison of the density p of a normal distribution with mean µ and variance σ2 with

its approximation p̂ =
∑n

i=1(p, ei)ei for different choices of µ and σ: the graphs show the distance

d := (
∫

(p̂ − p)2dx)1/2 as function of µ and as function of σ with fixed σ =
√

2 (left) and µ = 0

(right). The approximation is bad if µ 6∈ (−5, 5) (left) or σ 6∈ (0.9, 2) (right). The adaptive Galerkin

method overcomes this difficulty.

Assume for simplicity that l = 1 and that the basis {ei} ⊂ D(A∗) of H consists of orthonor-

mal functions. We consider the equidistant time discretisation given by tk = T/K, k = 0, . . . ,K.

The standard Galerkin approximation computes Υk at each time tk. The AGA additionally

adapts the location µk and the scale σk > 0 of the basis by choosing appropriate values for these

parameters at every time step. Hence the method works with the adapted basis {ek1 , ek2 , . . . }
given by

eki (x) :=
1
√
σk
ei

(x− µk
σk

)
, x ∈ R. (40)

Similar to (15), we denote by Ak, Bk, Ck and Dk the matrices given by

akji = (eki ,Aekj ), bkji = (eki , he
k
j ), ckji = (eki , (λ− 1)ekj ), dkji = (eki , e

k
j ). (41)

In algorithmic form the AGA can be described as follows:

Algorithm 4.7 (AGA). 1. Initialization:

i) Set µ0 and σ0 using the initial density: µ0 =
∫
xp0(x)dx and σ0 =

( ∫
(x−µ0)2p0(x)dx

)1/2
,

and define the basis functions e0
i , 1 ≤ i ≤ n, as in (40).

ii) Compute A0, B0, C0 and D0 according to (41).

iii) Compute Υ0 = (ψ0,1, . . . , ψ0,n) by (14): ψ0,i = (p0, e
0
i ).

2. Iteration: For k = 1, . . . ,K − 1 do the following steps.

i) Compute Υ̃k = (ψ̃k,1, . . . , ψ̃k,n)′ from Υk−1 applying Algorithm 4.1 or 4.2, using the basis

functions ek−1
i , 1 ≤ i ≤ n.

ii) Compute the following estimates of the conditional mean and standard deviation:

x̂
(n)
k =

∑n
i=1 ψ̃k,i(x, e

k−1
i )∑n

i=1 ψ̃
(n)
k,i (1, ek−1

i )
and σ̂

(n)
k =

(∑n
i=1 ψ̃k,i(x

2, ek−1
i )∑n

i=1 ψ̃k,i(1, e
k−1
i )

− (x̂
(n)
k )2

) 1
2

If |x̂(n)
k − µk−1| and |σ̂(n)

k − σk−1| are smaller than a given threshold, set Υk = Υ̃k,

µk = µk−1, σk = σk−1, eki := ek−1
i , 1 ≤ i ≤ n. Let k = k + 1 and continue with the

iteration (Step 2).
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iii) Otherwise do a transition of the basis as follows: let µk := x̂
(n)
k , σk := σ̂

(n)
k , define the

new basis functions as in (40) and compute the matrices Ak, Bk, Ck and Dk according

to (41). Finally, compute Υk by projecting q̃tk =
∑n
i=1 ψ̃k,ie

k−1
i on the new basis: let

ψk,i = (q̃tk , e
k
i ) and set Υk = (ψk,1, . . . , ψk,n)′. Let k = k + 1 and continue with Step 2.

The AGA provides better results compared to the standard Galerkin approximation (see the

numerical experiments in Section 5 below) while it is typically more time consuming since the

coefficient matrices in (41) need to be recomputed at every transition of the basis. However, in

the AGA with respect to the Hermite basis the corresponding terms can be computed explicitly

which leads to an efficient implementation of the AGA. In particular, when the coefficients b,

σ2, h and λ are of polynomial type, the corresponding coefficients can be computed explicitly

with the aid of Lemma 4.6.

4.4 The multi-dimensional case

In this section we shortly sketch the extension to the multi-dimensional case. For an introduction

of multi-dimensional Hermite polynomials, we refer to Berkowitz and Garner (1970). Here, we

proceed by the following method: let {e1, e2, . . . } denote the Hermite bases defined in Equation

(34). This constitutes a basis of L2(R). Hence,{
ei1 ⊗ ei2 ⊗ · · · ⊗ eid : i1, i2, . . . id ∈ N0

}
is a Hilbert basis of L2(Rd), where the tensor product is defined by (e⊗f)(x1, x2) := e(x1)f(x2).

The nd-dimensional subspace Vn turns out to be

Vn = span
{
ei1 ⊗ ei2 ⊗ · · · ⊗ eid : i1, i2, . . . id ∈ {0, 1, . . . , n− 1}

}
.

5 Numerical Experiments

General description. In this section we present results from a number of numerical case

studies. The aim is to assess the performance of the Galerkin approximation relative to other

methods (mostly particle filters) and to illustrate various practical aspects of the method. The

basic setup of each numerical experiment is as follows. In Step 1 a trajectory x = (xt)0≤t≤T of

the signal process (2) was generated using the Euler-Maryuama method. In Step 2 we generated

for the given trajectory x from Step 1 a trajectory z of the continuous observation (4) and a

trajectory n of the point process observation N . In Step 3 various variants of the Galerkin

approximation were used to solve the corresponding Zakai equation for the conditional filter

density. For comparison purposes the filter problem was also solved using a particle filter.

The performance of the numerical filtering algorithms was assessed in different ways:

• By design, the mean x̂t of the filter distribution at time t minimizes the L2-distance

between the unobserved state Xt and the set L2(Ω,FZ,Nt ,P). This suggests the following

performance criterion: Generate m independent trajectories xj , zj , nj , 1 ≤ j ≤ m and

solve numerically the ensuing filter problem for discrete time points t1, . . . , tK . Compute

the so-called root mean square error (abbreviated RMSE) given by

RMSE =
( 1

mK

m∑
j=1

K∑
k=1

‖Xj(tk)− x̂j(tk)‖2
) 1

2

,

Obviously, a filtering method that leads to a smaller RMSE can be considered to be more

accurate.

16



• We can plot individual trajectories x, x̂ and σ̂2 of the signal, and of the conditional mean

and variance of the filter distribution. This allows for a pathwise comparison of different

numerical methods.

• Finally, in some cases (e.g. Kalman-filtering for linear Gaussian models) the filter density

pt is known explicitly. In those cases we can compare the filter density ptk(·) and the

approximation pk(·) that is obtained by normalizing the numerical solution of the Zakai

equation (see (17)).

Our numerical experiments with a one-dimensional signal process use the setup of Exam-

ple 4.4. In this case X is a one-dimensional Ornstein-Uhlenbeck process with mean-reversion

parameter b and volatility σ, and h(·) and λ(·) are of the form h(x) = hx and λ(x) = λx2. The

parameter values are as follows: b = 0.5, σ = 2, and the initial distribution of X is normal with

µ = 5, σ2 = 0.01. Unless stated otherwise we took a time step ∆ = 10−6 (essentially continuous

observations). The values of h and λ vary with the experiments and are hence given in the

captions of the graphs and tables.

We also considered the case of a multidimensional signal process of dimension d = 5. We

assumed that the signal process has dynamics dXt = bXtdt+σdVt for a 3-dimensional Brownian

motion V . The observation process is three-dimensional and h(x) = h̃x. The matrices b, σ and

h̃ are as follows:

b =

 1 0 0 1 0
1 1 −1 0 1
0 1 −1 −1 −1
0 −1 −1 1 1
1 −1 0 0 1

 , σ =

 1 0 1
2 1 1
1 1 1
1 1 1
0 0 1

 , h =

(
0.2 0.3 0.2 0.3 0.4
0.2 0.1 0.2 0.1 0.2
0.2 0.2 0.4 0.2 0.2

)
.

and N is a one-dimensional Poisson process with intensity 0.1(X1
t )2 + 0.2(X2

t )2 + 0.3(X3
t )2 +

0.1(X4
t )2 + 0.1(X5

t )2. The basis functions were chosen as indicated in Section 4.4.

Results. In the following we summarize the key findings from our numerical experiments;

the outcome is described in detail in the captions of Figures 2 – Figure 7 below.

(i) For a one-dimensional state variable process the adaptive Galerkin approximation per-

forms very well: given a sufficient number of basis functions the precision is equal to the

precision of a particle filter, but the computation time is significantly lower. This can

be seen from inspection of Table 1, where we give the RMSE and the computation time

for various filtering algorithms and parameter values. The performance of the Galerkin

approximation is further illustrated in Figure 2. In Figure 3 we consider the special case

of the Kalman Bucy filter (no point process observations). Here the filter density is known

explicitly and we can compare the approximation obtained via Galerkin approximation to

the correct density. The figure clearly shows that the Galerkin approximation provides a

good approximation to the overall density (and not just to the conditional mean x̂t).

(ii) Figure 7 for the case d = 5 indicates that the Galerkin approximation works reasonably

well also for a higher dimensional signal process. However, the number of basis functions

increases exponentially in d (at least for the basis chosen as in Section 4.4). It would be

interesting to see if a further performance enhancement is possible if we choose a different

basis, but this is left for further research.

(iii) The adaptive Galerkin method can bring a substantial performance enhancement if we

consider examples with small observation noise and hence with rapidly moving scale and

location of the filter distribution. This is clearly illustrated in Figure 5.

(iv) While computationally more involved, the splitting-up approximation is significantly more

stable if the time-discretisation step ∆ is moderately large, as is clearly shown in Figure 6.
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NG/NP 5/20 10/50 15/100 20/1000

AGA(EM) 0.63 (0.1s) 0.42 (0.1s) 0.42 (0.1s) 0.42 (0.1s)

AGA(SU) 0.65 (2.4s) 0.43 (3.1s) 0.43 (3.9s) 0.43 (4.3s)

PF 0.46 (9s) 0.46 (22s) 0.42 (46s) 0.43 (472s)

Table 1: Performance comparison for different filter algorithms: we plot the RMSE and in

brackets the computation time for two Galerkin filters and a particle filter. Here NG represents

the number of basis functions in the Galerkin approximation and NP the number of particle in the

particle filter. AGA(EM) respectively AGA(SU) stands for the adaptive Galerkin approximation

with Euler-Maruyama approximation, respectively with splitting-up approximation for Equation

(16). We used the values h̃ = λ̃ = 0.1 which corresponds to a relatively uninformative observation

filtration; in computing the RMSE we used m = 100.

At this point we would like to stress that in many applications of filtering, observations

arrive at discrete time points such as daily observations, and that one resorts to continuous-

time filtering methods merely for convenience. This implies that ∆ cannot be freely chosen

by the analyst and it is important to have numerical methods that are robust with respect

to the choice of ∆.
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Figure 2: Illustration of filtering and the value of point process information. We choose h = 5.5, λ = 10.

Left: trajectories of X and of x̂ using the Galerkin method and particle filtering. Both methods perform

well. We additionally plot both methods in the case where the point process information is neglected

(PFC and GFC). In the right graph we illustrate the gain of using point process observations: we plot the

trajectory of the conditional standard deviation σ̂t for the case with only continuous observation λ̃ = 0

and with continuous and point process observations (λ = 10, lower trajectory). The approximation by

the two methods are very close in that case. Clearly, including point process information reduces the

conditional standard deviation significantly.
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Figure 3: Comparison of the theoretical filter density and the AGA. We consider a Hermite basis and the

case of purely continuous observations (λ = 0). In this case, the filter problem has an explicit solution

that can be computed with the Kalman-Bucy filter (KBF). Left: filter densities; right: approximation

error. The adaptive Galerkin approximation (AGA) is very close to the explicit solution for N ≥ 8.
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Figure 4: Filter estimate (left) and conditional standard deviation (right) for a varying number NG = n

of basis functions in the adaptive Galerkin approximation (AGA). Here h = 5.5, λ = 10 and we use

the AGA with n = 4, 8, 16 basis functions. The case n = 4 shows a bad performance; the filter with 8

and 16 basis functions performs reasonably well. The right plot indicates that plots of the conditional

variance can be a useful tool for determining if the number of basis functions used is appropriate.
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Figure 5: Comparison of the ordinary Galerkin approximation (GF) with the adapted Galerkin ap-

proximation (AGF). Both approximations work with N = 20 Hermite basis functions. In this example

h = 20, λ = 10 (these parameter values correspond to a very low observation noise). Note that the

ordinary Galerkin filter performs poorly, whereas the AGA performs reasonably well.
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Figure 6: Comparison of splitting-up approximation and Euler-Maruyama approximation. In this figure,

we compare the results obtained by these two methods for different ∆. The results obtained coincide

for ∆ = 10−5, but the splitting-up approximation is more stable when ∆ is large. In particular, the

splitting up method provides a good estimate even for ∆ = 10−2.
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Figure 7: The multidimensional case. comparison of the adaptive Galerkin approximation (GF) with

the particle filter (PF) for the case of a multi-dimensional signal process X. We show plots of the

conditional mean for a basis of size n = 45 = 1024. For the particle filter we took 103 particles. The

computation time was 12 seconds (particle filter) and 9 seconds (AGA) while the obtained results are

very close.
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A Appendix

A.1 Proofs

This appendix contains the proofs of Lemma 3.2 and Proposition 4.3.

Proof of Lemma 3.2. Our aim is to show that for all n ∈ N it holds that

‖Ln‖ 1
n ≤

√
T S̄(‖B‖2 + ‖C‖2)

1
2

(n!)
1
2n

. (42)

The operator L was defined in (24). We rewrite Lξ as

(Lξ)(t) =:

∫ t

0

E(t, s)ξs−dMs

with the l + 1-dimensional martingale M := (Z>, Y )> and E(t, s) := St−s(B
>, C)>. Iterative

application of L gives that

(Lnξ)(t) =

∫ t

0

E(t, t1)

(∫ t1

0

E(t1, t2)
(
. . .

∫ tn−1

0

E(tn−1, tn)ξtndMtn . . .
)
dMt2

)
dMt1 .

To compute |Lnξ|T = supt∈[0,T ]

(
E0
(
‖(Lnξ)(t)‖2H

))1/2
, note that the quadratic variation of M

is < M >t= Il+1t where Il+1 is the identity matrix on Rl+1. The Itô-isometry therefore yields

E0
(
‖(Lnξ)(t)‖2H

)
= E0

(∫ t

0

∥∥∥E(t, t1)

(∫ t1

0

E(t1, t2)
(
. . .

∫ tn−1

0

E(tn−1, tn)ξtndMtn . . .
)
dMt2

)∥∥∥2

dt1

)
≤ S̄2(‖B‖2 + ‖C‖2)

∫ T

0

E0

(∫ t1

0

∥∥∥E(t1, t2)
(
. . .

∫ tn−1

0

E(tn−1, tn)ξtndMtn . . .
)
dMt2

∥∥∥2

H

)
dt1

≤ S̄2n(‖B‖2 + ‖C‖2)n|ξ|2T ·
∫ T

0

∫ t1

0

. . .

∫ tn−1

0

dtn, . . . , dt1

= S̄2n(‖B‖2 + ‖C‖2)n|ξ|2T ·
Tn

n!

and we obtain (42).

Proof of Proposition 4.3. As remarked after Theorem 3.1, in (21) the claim is proved if we can

show that ∪nVn is dense in V = H1(Rd). Here Vn = span{e1, . . . , en} and V = H1(Rd). Let

C∞0 be the set of smooth functions with compact support. Then, by Proposition 1 and Theorem

4 in Bongioanni and Torrea (2006), there exist for all u ∈ C∞0 a sequence un ∈ ∪nVn such that

‖u− un‖V → 0 as n→∞. Since C∞0 is dense in V the claim follows.

A.2 Hermite polynomials

For convenience of the reader we state some Hermite polynomials: f0(x) = 1, f1(x) = x,

f2(x) = x2 − 1 and f3(x) = x3 − 3x. Often it is useful to exploit the following reccurence

relation:

fi+1(x) = xfi(x)− ifi−1(x), f
′

i (x) = ifi−1(x). (43)
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Proof of Lemma 4.6. First, note that,

(1, ei) =
1√
i!

∫ ∞
−∞

(2π)−
1
4 e−

x2

4 fi(x)dx

=
1√
i!

√
2(2π)−

1
4

∫ ∞
−∞

e−
x2

2 fi(
√

2x)dx

=
1√
i!

√
2(2π)−

1
4

∫ ∞
−∞

e−
x2

2

i∑
k=0

ϑik2
k
2 xkdx

=
1√
i!

√
2(2π)

1
4

∫ ∞
−∞

1√
2π
e−

x2

2

i∑
k=0

ϑik2
k
2

k∑
j=0

ιkj fj(x)dx

=
1√
i!

√
2(2π)

1
4

i∑
k=0

ϑik2
k
2

k∑
j=0

ιkj

∫ ∞
−∞

1√
2π
e−

x2

2 fj(x)dx

=
1√
i!

√
2(2π)

1
4

i∑
k=0

ϑik2
k
2

k∑
j=0

ιkj

∫ ∞
−∞

1√
2π
e−

x2

2 fj(x)f0(x)dx

=
1√
i!

√
2(2π)

1
4

i∑
k=0

ϑik2
k
2

k∑
j=0

ιkj δ0,j

=
1√
i!

√
2(2π)

1
4

i∑
k=0

ϑik2
k
2 ιk0 .

since any power of x can be represented by the Hermite polynomials; we use the notation

from page 14. An analogous argument with the constant function 1 replaced by xj gives the

result.
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Brémaud, P. (1981). Point Processes and Queues: Martingale Dynamics. Springer, New York.

Budhiraja, A., L. Chen, and C. Lee (2007). A survey of numerical methods for nonlinear

filtering problems. Physica D 230, 27–36.

Courant, R. and D. Hilbert (1968). Methoden der Mathematischen Physik. Springer.

Crisan, D., P. D. Moral, and T. Lyons (1999). Discrete filtering using branching and inter-

acting particle systems. Markov Processes and Related Fields 5 (3), 293–318.

Cvitanic, J., R. Liptser, and B. Rozovski (2006). A filtering approach to tracking volatility

from prices observed at random times. The Annals of Applied Probability 16, 1633–1652.

24



Di Masi, G. and W. Runggaldier (1982). On approximation methods for nonlinear filtering. In

Nonlinear filtering and stochastic control, Volume 972 of Lecture-Notes in Mathematics,

Berlin, pp. 249–259. Springer.

Dupuis, P. G. and H. J. Kushner (2001). Numerical Methods for Stochastic Control Problems

in Continuous Time. New York: Springer.

Frey, R. and W. Runggaldier (2001). A nonlinear filtering approach to volatility estimation

with a view towards high frequency data. International Journal of Theoretical and Applied

Finance 4, 199–210.

Frey, R. and W. Runggaldier (2010). Pricing credit derivatives under incomplete information:

a nonlinear filtering approach. Finance and Stochastics 14, 495–526.

Frey, R. and T. Schmidt (2010). Pricing and hedging of credit derivatives via the innovations

approach to nonlinear filtering. to appear in Finance and Stochastics.

Frey, R. and T. Schmidt (2011). Filtering and incomplete information in credit risk. In

T. Bielecki, D. Brigo, and F. Patras (Eds.), Recent Advancements in the Theory and

Practice of Credit Derivatives, pp. 185–218. Bloomberg Press.

Germani, A. and M. Piccioni (1984). A Galerkin approximation for the Zakai equation.

Lecture Notes in Control and Information Sciences 59, 415–423.

Germani, A. and M. Piccioni (1987). Finite-dimensional approximations for the equations of

nonlinear filtering derived in mild form. Applied Mathematics and Optimization 16 (1),

51–72.

Gobet, E., G. Pagès, H. Pham, and J. Printems (2006). Discretization and simulation of

Zakai equation. SIAM Journal on Numerical Analysis 44, 2505–2538.

Jazwinski, A. (1970). Stochastic Processes and Filtering Theory. Academic Press.

Le Gland, F. (1992). Splitting-up approximation for SPDEs and SDEs with application to

nonlinear filtering. Lecture Notes in Control and Information Sciences 176, 177–187.

Lototsky, S. V. (2006). Wiener chaos and nonlinear filtering. Appl. Math. Optim. 54 (3),

265–291.

McLachlan, G. J. and T. Krishnan (1997). The EM Algorithm and Extensions (2nd ed.).

John Wiley & Sons. New York.

Pardoux, E. (1979a). Filtering of a diffusion process with Poisson-type observation. In

Stochastic Control Theory and Stochastic Differential Systems, Volume 16 of Lecture

Notes in Control and Information Science, pp. 510–518. Berlin- Heidelberg: Springer.

Pardoux, E. (1979b). Stochastic partial differential equations and filtering of diffusion pro-

cesses. Stochastics 3, 127–167.

Peszat, P. and J. Zabczyk (2007). Stochastic Partial Differential Equations with Lévy Noise.
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