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Abstract: In this paper we study parameter estimation via the Expectation
Maximization (EM) algorithm for a continuous-time hidden Markov model with
diffusion and point process observation. Inference problems of this type arise
for instance in credit risk modelling. A key step in the application of the EM
algorithm is the derivation of finite-dimensional filters for the quantities that
are needed in the E-step of the algorithm. In this context we obtain exact,
unnormalized and robust filters, and we discuss their numerical implementation.
Moreover, we propose several goodness-of-fit tests for hidden Markov models with
Gaussian noise and point process observation. We run an extensive simulation
study to test speed and accuracy of our methodology. The paper closes with an
application to credit risk: we estimate the parameters of a hidden Markov model
for credit quality where the observations consist of rating transitions and credit
spreads for US corporations.

Keywords: Expectation maximization (EM) Algorithm, hidden Markov models,
point processes, non-linear filtering, goodness-of-fit tests, credit risk ratings

1 Introduction
Continuous-time hidden Markov models (models where key variables are affected
by an unobservable finite state Markov chain) are commonly used in finance,
insurance and economics. Examples include portfolio optimization in models
with unobservable Markov-modulated drift such as Sass and Haussmann [2004]
or Rieder and Bäuerle [2005]; dynamic credit risk modelling such as Frey and
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Schmidt [2012]; Markov modulated risk processes in insurance such as Asmussen
[1989]; or high frequency data in finance, see for instance Frey and Runggaldier
[2001]. For further examples of hidden Markov models in finance we refer to the
interesting collections and R. J. Elliott [2007] and and R. J. Elliott [2014].

Statistical inference for hidden Markov models is thus an important issue.
This problem is frequently addressed via the Expectation Maximization (EM)
algorithm (Dempster et al. [1977]). In the so-called E-Step of the algorithm one
needs to solve a complicated non-linear filtering problem, so that a substantial
effort is needed to tailor the method to a given model setting. We now list a
few important contributions in that regard. Dembo and Zeitouni [1986] provide
general results on the EM algorithm for continuous-time stochastic processes that
are observed in Gaussian noise. In an important paper Elliott [1993] specializes
these results to a hidden Markov model observed in Gaussian noise. In particular,
he obtains finite-dimensional filters and smoothers for the quantities needed for
the E-Step, see also the textbook and L. Aggoun and J. B. Moore [1995]. Elliott
and Malcolm [2008] finally study the EM algorithm for a Poisson process whose
intensity is modulated by a finite-state Markov chain.

In this paper we generalize the model for the observation process and consider
a hidden Markov model where the state process is observed simultaneously via
diffusive and point processes information. In recent years there has been an
increasing interest in such models in finance and insurance. In particular, these
models are relevant in the analysis of credit risk, see for instance Frey and
Schmidt [2012] and the example we provide in Section 2.2. We make the following
contributions. First, we derive the exact normalized and unnormalized recursive
filters that are needed for the EM algorithm in our setup. This is a nontrivial
extension of the work of Elliott [1993] and of Elliott and Malcolm [2008]. In the
practical implementation of the algorithm it is important to work with a version of
the filters that depends continuously on the observations (so-called robust filters,
see Clark [1978] or James et al. [1996]). Our second contribution is therefore the
derivation of robust filters for our framework. Third, we develop goodness-of-fit
tests for the hypothesis that the hidden Markov model parametrized in terms of
an estimated parameter vector describes the observed data well. We are not aware
of any prior use of such tests in the context of hidden Markov models, so that this
is also a contribution to the “classical” case of hidden Markov models with only
diffusion or point process observation. Fourth we perform an extensive simulation
analysis that tests the speed and accuracy of the algorithm and of the proposed
goodness-of-fit tests. This analysis suggests that the method yield satisfactory
results in the sense that the EM estimates converge to the corresponding full-
information MLE estimates. Furthermore, we observe that the use of robust
filters improves the stability of the algorithm, especially when working on a
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coarser time grid, and we give examples where the proposed tests are able to
distinguish the correctly estimated model from a misspecified one. Finally we
give an example with real data and apply the methodology to rating transitions
and credit spreads for US corporations. The unobservable ‘true’ credit quality is
modeled as a finite state Markov chain; the point process observation is generated
by defaults and rating changes and the diffusive observation is generated by
observed credit spreads. We obtain reasonable estimates for the parameters
of the model and we find that the filter estimate for the unobservable credit
quality balances the spread- and the rating information in a plausible fashion. A
discrete-time hidden Markov model for rating transitions was estimated via the
EM approach by Korolkiewicz and Elliott [2008]; spread data were not considered
in their analysis.

The remainder of this paper is structured as follows. In Section 2 we introduce
the notation and the setting, we give a motivating example related to credit
risk modeling and we discuss the main steps of the EM algorithm. In Section 3
we study in detail the filtering problems arising in the E-Step of the algorithm;
this is the mathematical core of the paper. Goodness-of-fit tests are discussed
in Section 4. In Section 5 we present the results of our simulation study; the
application to credit data is discussed in Section 6.
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2 EM Algorithm for Diffusion and Point
Process Information

In this section we introduce our setup and provide a motivating example. More-
over, we derive the form that the EM-algorithm takes in our setting.

2.1 The setup

We consider a finite time interval [0, 𝑇 ] and a continuous-time finite-state
Markov chain 𝑋 defined on the filtered probability space (Ω, 𝒢,G,P) where
G = (𝒢𝑡)0≤𝑡≤𝑇 satisfies the usual conditions. All processes we consider are
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G-adapted, that is G is the global filtration. The chain 𝑋 has the state space
𝑆 = {𝑒1, 𝑒2, ..., 𝑒𝐾}, where, without loss of generality, we assume that 𝑒𝑘 is
the 𝑘th basis column vector of R𝐾 . The initial distribution of 𝑋 is denoted
by 𝑝 = (𝑝1, . . . , 𝑝𝐾)′, and the matrix 𝐴 = (𝑎𝑗𝑘), 1 ≤ 𝑗, 𝑘 ≤ 𝐾, represents the
transpose of the generator matrix of 𝑋. Hence the process 𝑀𝑋 with

𝑀𝑋
𝑡 = 𝑋𝑡 − 𝑋0 −

𝑡∫︁
0

𝐴𝑋𝑠𝑑𝑠, 𝑡 ≤ 𝑇, (1)

is a G-martingale.

Information.
We assume that 𝑋 is not directly observable. Instead, we consider the continuous
noisy observation 𝑍 with 𝑍𝑡 =

∫︀ 𝑡

0 𝑔(𝑋𝑠)𝑑𝑠 + 𝜎𝑍𝑊𝑡. Here 𝜎𝑍 > 0 measures
the amount of noise in the continuous observation of 𝑋 and 𝑊 is a standard
P-Brownian motion with respect to the filtration G, independent of 𝑋. We note
that the extension of our results to an arbitrary vector observation process is
straightforward. We introduce the normalized observation process 𝑍𝑡 = 𝑍𝑡/𝜎𝑍

and we let 𝑔 = 𝑔(·)/𝜎𝑍 . Then 𝑍 has dynamics

𝑍𝑡 =
𝑡∫︁

0

𝑔(𝑋𝑠)𝑑𝑠 + 𝑊𝑡, 𝑡 ≥ 0, (2)

so that during the theoretical analysis we assume without loss of generality that
𝜎𝑍 = 1. In theory, the value of 𝜎𝑍 is equal to [𝑍]𝑡/𝑡 where [𝑍] is the quadratic
variation of 𝑍 and is thus observable. However, in practice the observations are
typically not continuous and the value of 𝜎𝑍 has to be estimated. We will discuss
this problem in Section 5.

The second source of information stems from a univariate point process
𝐷; the extension to multivariate point process observation is straightforward.
We assume that 𝐷 admits the G-intensity ℎ𝑡(𝐷)𝜆(𝑋𝑡); here ℎ𝑡(·) is a bounded
functional that depends on the left-continuous version (𝐷𝑠−)0≤𝑠≤𝑡 of the past
trajectory of 𝐷. For instance, the choice ℎ𝑡(𝐷) = 1{𝐷𝑡−=0} models the case where
we can observe only one jump. Alternatively, ℎ can be used to model the case
where 𝐷 is self-exciting. To this we might set ℎ𝑡(𝐷) = 1 + 𝑀 ∧

∫︀ 𝑡−
0 𝑒−𝜅(𝑡−𝑠)𝑑𝐷𝑠

for some (large) threshold 𝑀 and some decay rate 𝜅. It is in principle possible
to estimate parameters of the function ℎ such as 𝜅 using the EM methodology.
However, details depend very much on the specific functional form of ℎ. For this
reason we assume in the present paper that all parameters of ℎ are known. Since
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ℎ is bounded the process

𝑀𝐷
𝑡 = 𝐷𝑡 −

𝑡∫︁
0

ℎ𝑠(𝐷, 𝑐)𝜆(𝑋𝑠)𝑑𝑠 𝑡 ≥ 0, (3)

is a G-martingale (see for example [Brémaud, 1981, Section II, T8]).
The information available to the observer of the system is carried by the

filtration F which is generated by the noisy diffusion information FZ and the
point process information FD, that is, F = FD ∨ FZ. Note that ℱ𝑡 ⊂ 𝒢𝑡 for all
𝑡 ≤ 𝑇 . For a generic integrable process 𝑌 we denote its F-optional projection bŷ︀𝑌 , in particular, ̂︀𝑌𝑡 = E[𝑌𝑡|ℱ𝑡] for all 𝑡 ≤ 𝑇 .

Remark 2.1. In practical applications one is often dealing with noisy observations
arising discretely in time, say, at time points 𝑡𝑛 = 𝑛Δ for a step size Δ > 0. If
one works on a fine time scale, that is with a small Δ, it is still reasonable to use
continuous time models. We now explain how this situation can be embedded in
our setting. Suppose we have a noisy observation of the form 𝑧𝑛 = ̃︀𝑔(𝑋𝑡𝑛) + 𝜖𝑛

for an i.i.d. sequence of noise variables with mean zero and variance 𝜎2
𝜖 . Define

the scaled cumulative observations process by

̃︀𝑍𝑡 := Δ
∑︁
𝑡𝑛≤𝑡

𝑧𝑛 =
∑︁
𝑡𝑛≤𝑡

Δ̃︀𝑔(𝑋𝑡𝑛) + Δ
∑︁
𝑡𝑛≤𝑡

𝜖𝑛 . (4)

For small Δ the first term on the right side is an approximation of
∫︀ 𝑡

0 ̃︀𝑔(𝑋𝑠)𝑑𝑠

and the second term is an approximation of 𝜎𝜖

√
Δ𝑊𝑡 for a standard Brownian

motion 𝑊 (by Donsker’s invariance theorem). It is therefore natural to apply
the continuous-time filtering formulas derived in Section 3.2 to the observation
process ̃︀𝑍 from (4). This immediately raises the issue of robust filtering: one
seeks filters that perform well even if the dynamics of 𝑍 are not exactly of the
form (2), see Section 3.3 below.

2.2 Examples

2.2.1 A Hidden Markov Model for Credit Quality

In this section we introduce an example from the field of credit risk modelling
that fits into our framework. We consider a sample of 𝑚 firms indexed by
𝑖 = 1, . . . , 𝑚; all of these firms are rated by some rating agency and have CDS
contracts outstanding. The corresponding credit ratings (including default) and
CDS spreads are observable and constitute the available information.
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State Process.
Let 𝑋𝑖

𝑡 denote the true credit quality of firm 𝑖, modeled as a finite-state Markov
chain with state space 𝑆 = {𝑒1, . . . , 𝑒𝐾} and generator matrix 𝐴⊤; following the
literature, we assume that this matrix is identical for all firms. Here the state
𝑒1 represents the best credit quality, while 𝑒𝐾 represents the worst non-default
state. In the sequel, we write for two elements of 𝑆 𝑒𝑙 ≥ 𝑒𝑘 whenever 𝑙 > 𝑘, so
that states are ordered according to credit quality.

Observation Process.
We have two sources of information available to the observer of the system. First,
there is the point-process information which stems from observable ratings and
defaults. Second, there is the continuous information provided by the time series
of CDS spreads.

Point process observation. We denote by 𝑅𝑖
𝑡 ∈ 𝑆 the observed rating of

firm 𝑖 at time 𝑡. In order to model the dynamics of the process 𝑅𝑖 in a simple
way, we assume that there are only three types of events possible. Suppose that
the current state of 𝑅𝑡 is 𝑒𝑙. First, there may be an upgrading of firm 𝑖, that
is a transitions of 𝑅𝑖

𝑡 to the state 𝑒𝑙−1; second there may be a downgrading of
firm 𝑖, that is a transitions of 𝑅𝑖

𝑡 to the state 𝑒𝑙+1; third, firm 𝑖 might default.
Note that an upgrading is only possible if 𝑙 > 1, that is if the observed rating of
the firm is not yet in the best rating category; similarly, a downgrading is only
possible if 𝑙 < 𝐾. Hence the dynamics of 𝑅𝑖

𝑡 can be described in terms of the
following three point processes:
i) 𝐷+,𝑖

𝑡 , the number of upgradings of firm 𝑖 up to time 𝑡;
ii) 𝐷−,𝑖

𝑡 , the number of downgradings of firm 𝑖 up to time 𝑡;
iii) 𝐷𝑑,𝑖

𝑡 , the default indicator of firm 𝑖 (a point process that jumps to one at
the default time of firm 𝑖).

Note that for simplicity we do not consider upgradings or downgradings of size
larger than one; if real rating data exhibit an upgrading (downgrading) by more
than one category we will treat this as several upgradings (downgradings) of size
one.

We denote by 𝜆+, 𝜆− and by 𝜆𝑑 the intensities of 𝐷+, 𝐷− and of 𝐷𝑑,
respectively. We assume that these intensities are identical across firms. We
propose the following parametrization: if 𝑅𝑖

𝑡 > 𝑒1 we let

𝜆+(𝑋𝑖
𝑡 , 𝑅𝑖

𝑡) = 𝜆+
1 1{𝑋𝑖

𝑡 <𝑅𝑖
𝑡} + 𝜆+

2 1{𝑋𝑖
𝑡 =𝑅𝑖

𝑡} + 𝜆+
3 1{𝑋𝑖

𝑡 >𝑅𝑖
𝑡};

moreover, 𝜆+(𝑋𝑖
𝑡 , 𝑒1) ≡ 0. This parametrization is motivated by the idea that

the observed rating follows the true credit quality, albeit with some rating error.
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In particular we expect that 𝜆+
1 > 𝜆+

2 > 𝜆+
3 , that is, an upgrading is most likely

when the true credit quality is lower than the observed rating. Similarly, for
𝑅𝑖

𝑡 < 𝑒𝐾 we let

𝜆−(𝑋𝑖
𝑡 , 𝑅𝑖

𝑡) = 𝜆−
1 1{𝑋𝑖

𝑡 <𝑅𝑖
𝑡} + 𝜆−

2 1{𝑋𝑖
𝑡 =𝑅𝑖

𝑡} + 𝜆−
3 1{𝑋𝑖

𝑡 >𝑅𝑖
𝑡}.

Moreover, 𝜆−(𝑋𝑖
𝑡 , 𝑒𝐾) ≡ 0. In this case, we expect to have 𝜆−

1 < 𝜆−
2 < 𝜆−

3 .
Finally, concerning the default process we take

𝜆𝑑(𝑋𝑖
𝑡) = ⟨𝜆𝑑, 𝑋𝑖

𝑡⟩, for 𝜆𝑑
1 < · · · < 𝜆𝑑

𝐾 .

Continuous observation. The diffusion information stems from observed
CDS spreads as we explain next. Let 𝑧𝑖

𝑛 = log(𝐶𝐷𝑆𝑖
𝑡𝑛

), that is, 𝑧𝑖
𝑛 is the logarithm

of the observed CDS spread of firm 𝑖 at time 𝑡𝑛, 𝑛 ∈ {1, . . . , 𝑁}, 𝑡𝑁 = 𝑇 . We
assume that

𝑧𝑖
𝑛 = 𝑔(𝑋𝑖

𝑡𝑛
) + 𝜖𝑖

𝑛, (5)

where 𝜖𝑖
𝑛, 𝑛 ∈ {1, . . . , 𝑁}, 1 ≤ 𝑖 ≤ 𝑚 are independent noise variables with mean

zero and some variance 𝜎𝜖. The relation (5) is motivated by empirical work for
corporate credit markets such as Berndt et al. [2008], which shows that there is
a reasonably stable regression-type relation between observed logarithmic CDS
spreads and credit quality as measured by short-term default probabilities or
by ratings. Identifying (5) with a continuous model as in Remark 2.1 gives the
observation process ̃︀𝑍𝑖

𝑡 .

2.2.2 Other applications

Parameter estimation problems for hidden Markov models with point process
information arise also in other areas of finance and insurance and we now give
a few examples. In insurance one considers frequently Markov modulated risk
processes where the arrival intensity of claims is driven by an unobservable
Markov chain. Some authors such as Schmidli [1995] consider perturbed risk
processes, where a Brownian component is added to the risk process in order to
model fluctuations caused by small claims, investment returns or other sources
of randomness. This line of modelling gives rise to a hidden Markov model with
diffusion and point process information. Another interesting area of application
for our methodology is high frequency data in finance. It is well-known that
on very fine time-scales asset prices follow a pure jump process since in reality
quoted prices are constant between trades and jump only when new orders
arrive. Moreover, there are good reasons for introducing an unobservable regime
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switching factor in the price dynamics: this helps to reproduce the clustering
in inter-event durations, and a hidden Markov chain can be used to model the
feedback effect from the trading activity of the rest of the market, see for instance
Cont [2011] or Colaneri et al. [2017] for details. Hence it makes sense to consider
hidden Markov models with point process information in the analysis of high
frequency data.

2.3 The EM Algorithm

Note that for a generic function 𝑓 : 𝑆 → R it holds that 𝑓(𝑋𝑡) = ⟨𝑋𝑡, 𝑓⟩ where
⟨ , ⟩ denotes the scalar product on R𝐾 and 𝑓𝑘 = 𝑓(𝑒𝑘), 1 ≤ 𝑘 ≤ 𝐾, so that
functions of the Markov chain can be identified with 𝐾-vectors. Hence parameters
to be estimated are given by the parameter vector

𝜃 =
(︀
𝑎𝑗𝑘, 𝑔𝑗 , 𝜆𝑗 , 𝑗, 𝑘 ∈ {1, . . . , 𝐾}, 𝑗 ̸= 𝑘

)︀
;

the set of admissible parameter vectors is denoted by Θ.
We use the EM algorithm to estimate the model parameters and to infer

the unobserved realization of the state process 𝑋. Denote by P𝜃 the probability
measure corresponding to the parameter vector 𝜃 ∈ Θ. In order to describe the
algorithm, we define the full-information log-likelihood by

𝐿(𝜃, 𝜃′) := log 𝑑P𝜃

𝑑P𝜃′

⃒⃒
𝒢𝑇

, for all 𝜃, 𝜃′ ∈ Θ . (6)

Of course, in making this definition we implicitly assume that P𝜃 and P𝜃′ are
equivalent on 𝒢𝑇 which is stronger than requiring equivalence of these measures
on the observation 𝜎-field ℱ𝑇 .

The EM algorithm is an iterative procedure that leads to a sequence {𝜃𝑚}𝑚≥1
of parameter estimates such that the likelihood of the observations increases
in each step. Schematically, given the optimal parameter vector 𝜃𝑚 after the
𝑚th iteration of the algorithm, iteration 𝑚 + 1 of the algorithm consists of the
following two steps:
Expectation (E) : Compute the estimate ̂𝐿(𝜃, 𝜃𝑚) = 𝐸𝜃𝑚 [𝐿(𝜃, 𝜃𝑚) | ℱ𝑇 ].
Maximization (M) : Find 𝜃𝑚+1 ∈ argmax𝜃∈Θ

̂𝐿(𝜃, 𝜃𝑚).

In our setup the steps of the EM algorithm are as follows.
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E-Step.

In order to write the full-information log likelihood in compact form we introduce
a couple of stochastic processes related to the Markov chain 𝑋. Let for 𝑡 ≤ 𝑇

and 1 ≤ 𝑗, 𝑘 ≤ 𝐾, 𝑗 ̸= 𝑘,

𝑁 𝑗𝑘
𝑡 =

∑︁
0<𝑠≤𝑡

1{𝑋𝑠−=𝑒𝑗}1{𝑋𝑠=𝑒𝑘} (number of jumps from state 𝑗 to state 𝑘),

(7)

𝐺𝑗
𝑡 =

𝑡∫︁
0

1{𝑋𝑠−=𝑒𝑗}𝑑𝑍𝑠, (level integral for state 𝑗), (8)

𝐽𝑗
𝑡 =

𝑡∫︁
0

1{𝑋𝑠−=𝑒𝑗}𝑑𝑠 (occupation time for state 𝑗), (9)

𝐵𝑗
𝑡 =

𝑡∫︁
0

1{𝑋𝑠−=𝑒𝑗}𝑑𝐷𝑠 (jump level integral for state 𝑗), (10)

𝐶𝑗
𝑡 =

𝑡∫︁
0

1{𝑋𝑠−=𝑒𝑗}ℎ𝑠(𝐷)𝑑𝑠 (modified occupation time for state 𝑗). (11)

Combining the Girsanov theorem for point processes (see [Brémaud, 1981,
pg 166, Theorem T3]) with the likelihood function given in Elliott [1993] gives
that the full-information log-likelihood equals

𝐿(𝜃, 𝜃′) =
𝐾∑︁

𝑗,𝑘=1𝑗 ̸=𝑘

(︁
𝑁 𝑗𝑘

𝑇 log 𝑎𝑘𝑗 − 𝑎𝑘𝑗𝐽𝑗
𝑇

)︁
+

𝐾∑︁
𝑗=1

(︂
𝑔𝑗𝐺𝑗

𝑇 − 1
2(𝑔𝑗)2𝐽𝑗

𝑇

)︂

+
𝐾∑︁

𝑗=1

(︁
log(𝜆𝑗)𝐵𝑗

𝑇 − 𝜆𝑗𝐶𝑗
𝑇

)︁
+ 𝑅(𝜃′),

where 𝑅(𝜃′) is independent of 𝜃. This gives

̂𝐿(𝜃, 𝜃𝑚) = 𝐸𝜃𝑚

[︂
log 𝑑P𝜃

𝑑P𝜃𝑚

⃒⃒⃒
ℱ𝑇

]︂
=

𝐾∑︁
𝑗,𝑘=1,𝑗 ̸=𝑘

(︂̂︂
𝑁 𝑗𝑘

𝑇 log 𝑎𝑘𝑗 − 𝑎𝑘𝑗̂︁𝐽𝑗
𝑇

)︂

+
𝐾∑︁

𝑗=1

(︂
𝑔𝑗 ̂︁𝐺𝑗

𝑇 − 1
2(𝑔𝑗)2̂︁𝐽𝑗

𝑇

)︂
+

𝐾∑︁
𝑗=1

(︂
log
(︀
𝜆𝑗
)︀ ̂︁

𝐵𝑗
𝑇 − 𝜆𝑗 ̂︁𝐶𝑗

𝑇

)︂
+ ̂︀𝑅(𝜃𝑚).

(12)
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M-Step.

Since 𝐿(·, 𝜃𝑚) is concave, the new parameter vector 𝜃𝑚+1 is given by equating
the partial derivatives of (12) to zero. We thus obtain

(𝑎𝑘𝑗)𝑚+1 =
̂︂
𝑁 𝑗𝑘

𝑇̂︁
𝐽𝑗

𝑇

, (𝑔𝑗)𝑚+1 =
̂︁
𝐺𝑗

𝑇̂︁
𝐽𝑗

𝑇

and (𝜆𝑗)𝑚+1 =
̂︁
𝐵𝑗

𝑇̂︁
𝐶𝑗

𝑇

. (13)

3 Filtering
To perform the EM algorithm, one has to obtain the filtered estimates of the
quantities in (12). This is a non-linear filtering problem with diffusion and point
process information. Following Frey and Schmidt [2012], in Section 3.1 we address
this problem via the innovations approach to nonlinear filtering. In Section 3.2
we derive unnormalized filters and the Zakai equation; Section 3.3 is concerned
with robust filtering.

In the following we consider 𝜃𝑚 given and fixed and we simply write P
and E instead of P𝜃𝑚 and E𝜃𝑚 . Moreover, we always denote G martingales by
upper-case letters and F martingales by lower-case letters.

3.1 Filtering via the Innovations Approach

The innovations Brownian motion (the martingale part in the F-semimartingale
decomposition of 𝑍) is given by

𝑤𝑡 = 𝑍𝑡 −
𝑡∫︁

0

⟨ ̂︀𝑋𝑠, 𝑔⟩𝑑𝑠, (14)

and the F-martingale part of the point process 𝐷 is given by

𝑚𝐷
𝑡 = 𝐷𝑡 −

𝑡∫︁
0

ℎ𝑠(𝐷)⟨ ̂︀𝑋𝑠, 𝜆⟩𝑑𝑠. (15)

The next theorem gives the first filtering result.

Theorem 3.1. Consider a scalar process 𝐻 of the form

𝐻𝑡 = 𝐻0 +
𝑡∫︁

0

𝛼𝐻
𝑠 𝑑𝑠 +

𝑡∫︁
0

𝛾𝐻
𝑠 𝑑𝑊𝑠 +

𝑡∫︁
0

(︀
𝛽𝐻

𝑠

)︀⊤
𝑑𝑀𝑋

𝑠 +
𝑡∫︁

0

𝛿𝐻
𝑠 𝑑𝑀𝐷

𝑠 , (16)
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where 𝛼𝐻 , 𝛾𝐻 and 𝛿𝐻 are G-predictable scalar processes and 𝛽𝐻 is a 𝐾-
dimensional vector process that is G-predictable. Moreover, suppose that
(A2) E

[︁∫︀ 𝑇

0

(︁
|𝛼𝐻

𝑠 | + |𝛿𝐻
𝑠 | +

(︀
𝛾𝐻

𝑠

)︀2
)︁

𝑑𝑠
]︁

+ E
[︁∫︀ 𝑇

0
∑︀𝐾

𝑖=1|
(︀
𝛽𝐻

𝑠

)︀𝑖|𝑑𝑠
]︁

< ∞.

Then, ̂︀𝐻 has the dynamics ̂︀𝐻𝑡 = ̂︀𝐻0 +
∫︀ 𝑡

0
̂︁𝛼𝐻

𝑠𝑑𝑠+
∫︀ 𝑡

0 𝜇𝐻
𝑠 𝑑𝑤𝑠 +

∫︀ 𝑡

0 𝜅𝐻
𝑠 𝑑𝑚𝐷

𝑠 , where

𝜇𝐻
𝑠 = ̂︁𝛾𝐻

𝑠 + ( ̂⟨𝑋, 𝑔⟩𝐻)𝑠 − ⟨ ̂︀𝑋𝑠, 𝑔⟩ ̂︀𝐻𝑠, (17)

𝜅𝐻
𝑠 = 1

⟨ ̂︀𝑋𝑠−, 𝜆⟩

(︁
( ̂⟨𝑋, 𝜆⟩𝛿𝐻)𝑠− + ( ̂⟨𝑋, 𝜆⟩𝐻)𝑠− − ⟨ ̂︀𝑋𝑠−, 𝜆⟩ ̂︀𝐻𝑠−

)︁
. (18)

Proof. During the proof we will frequently make use of the following facts:
(F1) For every true G-martingale 𝑀 , the projection ̂︁𝑀 is F-martingale.

(F2) For a G-adapted, integrable process 𝛼, the process ( ̂∫︀ 𝑡

0 𝛼𝑠𝑑𝑠−
∫︀ 𝑡

0 ̂︀𝛼𝑠𝑑𝑠)0≤𝑡≤𝑇

is an F-martingale.
(F3) For every F-martingale 𝑚, there exists a F-adapted process 𝛿 and an

integrable, F-predictable process 𝜈 such that 𝑚 has the representation 𝑚𝑡 =∫︀ 𝑡

0 𝛿𝑠𝑑𝑤𝑠 +
∫︀ 𝑡

0 𝜈𝑠𝑑𝑚𝐷
𝑠 .

(F1) and (F2) are standard in the nonlinear-filtering literature, for a proof of
(F3) we refer to Frey and Schmidt [2012]. Using (F1) and (F2) we first writê︀𝐻𝑡 = ̂︀𝐻0 +

∫︀ 𝑡

0
̂︁𝛼𝐻

𝑠 𝑑𝑠 + 𝑚𝐻
𝑡 for some F martingale 𝑚𝐻 . Using (F3) therefore gives

that

̂︀𝐻𝑡 = ̂︀𝐻0 +
𝑡∫︁

0

̂︁𝛼𝐻
𝑠 𝑑𝑠 +

𝑡∫︁
0

𝜇𝐻
𝑠 𝑑𝑤𝑠 +

𝑡∫︁
0

𝜅𝐻
𝑠 𝑑𝑚𝐷

𝑠 . (19)

It remains to identify the integrands 𝜇𝐻 and 𝜅𝐻 . Define for some arbitrary
bounded, F-predictable process 𝜁 the F-adapted process 𝜌 by

𝜌𝑡 :=
𝑡∫︁

0

𝜁𝑠𝑑𝐷𝑠 .

In order to identify 𝜅𝐻 we will compare two different representations for ̂︁𝜌𝐻.
On the one hand we get from Ito’s product formula that 𝐻𝑡𝜌𝑡 =

∫︀ 𝑡

0 𝐻𝑠−𝑑𝜌𝑠 +∫︀ 𝑡

0 𝜌𝑠−𝑑𝐻𝑠 + [𝜌, 𝐻]𝑡. As [𝜌, 𝐻]𝑡 =
∫︀ 𝑡

0 𝛿𝐻
𝑠 𝜁𝑠𝑑𝐷𝑠 we have for 𝑡 ≥ 0

𝐻𝑡𝜌𝑡 =
𝑡∫︁

0

𝜌𝑠𝛼𝐻
𝑠 𝑑𝑠 +

𝑡∫︁
0

𝐻𝑟𝜁𝑠ℎ𝑠(𝐷)⟨𝑋𝑠, 𝜆⟩𝑑𝑠 +
𝑡∫︁

0

𝛿𝐻
𝑠 𝜁𝑠ℎ𝑠(𝐷)⟨𝑋𝑠, 𝜆⟩𝑑𝑠 + 𝑀𝑡,
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where 𝑀 is a G-martingale. Then, using (F1) and (F2), we get the following
representation for (̂︁𝐻𝜌)𝑡

(̂︁𝐻𝜌)𝑡 =
𝑡∫︁

0

𝜌𝑠
̂︁𝛼𝐻

𝑠 𝑑𝑠+
𝑡∫︁

0

𝜁𝑠ℎ𝑠(𝐷)( ̂⟨𝑋, 𝜆⟩𝐻)𝑠𝑑𝑠+
𝑡∫︁

0

𝜁𝑠ℎ𝑠(𝐷)( ̂⟨𝑋, 𝜆⟩𝛿𝐻)𝑠𝑑𝑠+𝑚𝑡,

(20)
where 𝑚 is an F-martingale.

On the other hand, it holds that (̂︁𝐻𝜌)𝑡 = ̂︀𝐻𝑡𝜌𝑡, as 𝜌 is F-adapted. Moreover,̂︀𝐻𝑡𝜌𝑡 =
∫︀ 𝑡

0
̂︀𝐻𝑠−𝑑𝜌𝑠 +

∫︀ 𝑡

0 𝜌𝑠−𝑑 ̂︀𝐻𝑠 + [𝜌, ̂︀𝐻]𝑡, and [𝜌, ̂︀𝐻]𝑡 =
∫︀ 𝑡

0 𝜁𝑠𝜅𝐻
𝑠 𝑑𝐷𝑠. Hence we

obtain

̂︀𝐻𝑡𝜌𝑡 =
𝑡∫︁

0

𝜌𝑠
̂︁𝛼𝐻

𝑠 𝑑𝑠 +
𝑡∫︁

0

ℎ𝑠(𝐷)⟨ ̂︀𝑋𝑠, 𝜆⟩ ̂︀𝐻𝑠𝜁𝑠𝑑𝑠 +
𝑡∫︁

0

ℎ𝑠(𝐷)⟨ ̂︀𝑋𝑠, 𝜆⟩𝜅𝐻
𝑠 𝜁𝑠𝑑𝑠 + �̃�𝑡 ,

(21)
for an F-martingale �̃�. Now, ̂︁𝐻𝜌 is a special semimartingale and hence has a
unique decomposition (see, e.g, Protter [2013][Chapter 7, Thm. 34]). This implies
that the martingale and finite variation parts in (20) and (21) must be equal.
Comparing the two equations, we get

0 =
𝑡∫︁

0

𝜁𝑠ℎ𝑠(𝐷)
(︁

( ̂⟨𝑋, 𝜆⟩𝛿𝐻)𝑠 + ( ̂⟨𝑋, 𝜆⟩𝐻)𝑠 − ⟨ ̂︀𝑋𝑠, 𝜆⟩ ̂︀𝐻𝑠 − 𝜅𝐻
𝑠 ⟨ ̂︀𝑋𝑠, 𝜆⟩

)︁
𝑑𝑠.

(22)
Moreover, the integrands in (22) are continuous in 𝑠 for almost all 𝑠 (they jump
only at the jump times of 𝐷). Hence it also holds that

0 =
𝑡∫︁

0

𝜁𝑠ℎ𝑠(𝐷)
(︁

( ̂⟨𝑋, 𝜆⟩𝛿𝐻)𝑠− + ( ̂⟨𝑋, 𝜆⟩𝐻)𝑠− − ⟨ ̂︀𝑋𝑠−, 𝜆⟩ ̂︀𝐻𝑠− − 𝜅𝐻
𝑠 ⟨ ̂︀𝑋𝑠−, 𝜆⟩

)︁
𝑑𝑠.

(23)
As 𝜁 is arbitrary and as 𝜅𝐻 is predictable, (23) yields (18).

In order to determine 𝜇𝐻 one follows same strategy and compares two
different representations for ̂︂𝐻𝑍, we omit the details.

Note that the integrands in (17) involve the filtered estimate of the product term
𝐻𝑡⟨𝑋𝑡, 𝑔⟩. This is inconvenient for practical purposes as the resulting filters are
not recursive. As a remedy Elliott [1993] proposes to derive filters for the product
𝐻𝑡𝑋𝑡. One has 𝐻𝑡𝑋𝑡 =

∑︀𝐾
𝑖=1 𝐻𝑡⟨𝑋𝑡, 𝑒𝑖⟩𝑒𝑖 and hence

(̂︂𝐻𝑋)𝑡 =
𝐾∑︁

𝑖=1
( ̂𝐻⟨𝑋, 𝑒𝑖⟩)𝑡𝑒𝑖.
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Let 1 = (1, · · · , 1)⊤ ∈ R𝐾 . Given (̂︂𝐻𝑋)𝑡, the filter for 𝐻 can then be obtained
from the relation

E[𝐻𝑡 | ℱ𝑡] = E
[︁
𝐻𝑡

𝐾∑︁
𝑖=1

⟨𝑋𝑡, 𝑒𝑖⟩ | ℱ𝑡

]︁
=

𝐾∑︁
𝑖=1

( ̂𝐻⟨𝑋, 𝑒𝑖⟩)𝑡 = ⟨(̂︂𝐻𝑋)𝑡, 1⟩.

Theorem 3.2. Consider a G-adapted process 𝑌 of the form

𝑌𝑡 = 𝑌0 +
𝑡∫︁

0

𝛼𝑌
𝑠 𝑑𝑠 +

𝑡∫︁
0

𝛾𝑌
𝑠 𝑑𝑊𝑠 +

𝑡∫︁
0

(︀
𝛽𝑌

𝑠

)︀⊤
𝑑𝑀𝑋

𝑠 +
𝑡∫︁

0

𝛿𝑌
𝑠 𝑑𝑀𝐷

𝑠 . (24)

Define the diagonal matrices Γ = diag(𝑔) and Λ = diag(𝜆) Then we get with
𝛽 = 𝛽𝑌

(̂︂𝑌 𝑋)𝑡 = (̂︂𝑌 𝑋)0 +
𝑡∫︁

0

(𝛼𝑌 𝑋)𝑠 + 𝐴(̂︂𝑌 𝑋)𝑠𝑑𝑠 +
𝑡∫︁

0

𝜇𝑌 𝑋
𝑠 𝑑𝑤𝑠 +

𝑡∫︁
0

𝜅𝑌 𝑋
𝑠 𝑑𝑚𝐷

𝑠

+
𝐾∑︁

𝑖,𝑗=1

𝑡∫︁
0

⟨︀
(̂︂𝛽𝑗𝑋)𝑠 − (̂︂𝛽𝑖𝑋)𝑠, 𝑒𝑖

⟩︀
𝑎𝑗𝑖𝑑𝑠(𝑒𝑗 − 𝑒𝑖), (25)

where

𝜇𝑌 𝑋
𝑠 = (𝛾𝑌 𝑋)𝑠 + Γ(̂︂𝑌 𝑋)𝑠 − ⟨ ̂︀𝑋𝑠, 𝑔⟩(̂︂𝑌 𝑋)𝑠, (26)

𝜅𝑌 𝑋
𝑠 = 1

⟨ ̂︀𝑋𝑠−, 𝜆⟩

(︁
Λ
(︁

(𝛿𝑌 𝑋)𝑠− + (̂︂𝑌 𝑋)𝑠−

)︁
− ⟨ ̂︀𝑋𝑠−, 𝜆⟩(̂︂𝑌 𝑋)𝑠−

)︁
. (27)

Proof. In order to reduce the claim to Theorem 3.1 we need to find the
G-semimartingale decomposition of 𝐻 = 𝑌 𝑋. Note first that [𝑌, 𝑋]𝑡 =∑︀

0≤𝑠≤𝑡(𝛽
⊤
𝑠 Δ𝑋𝑠)Δ𝑋𝑠. Hence we get from the Itô product formula that

𝑌𝑡𝑋𝑡 = 𝑌0𝑋0 +
𝑡∫︁

0

(𝑌𝑠𝐴𝑋𝑠 + 𝛼𝑌
𝑠 𝑋𝑠)𝑑𝑠 +

𝑡∫︁
0

𝛾𝑌
𝑠 𝑋𝑠𝑑𝑊𝑠 +

𝑡∫︁
0

(𝑌𝑠− + 𝑋𝑠−𝛽⊤
𝑠 )𝑑𝑀𝑋

𝑠

+
𝑡∫︁

0

𝑋𝑠−𝛿𝑌
𝑠 𝑑𝑀𝐷

𝑠 +
∑︁

0≤𝑠≤𝑡

(𝛽⊤
𝑠 Δ𝑋𝑠)Δ𝑋𝑠.

It is shown in the proof of [Elliott, 1993, Theorem 2] that

∑︁
0≤𝑠≤𝑡

(𝛽⊤
𝑠 Δ𝑋𝑠)Δ𝑋𝑠 =

𝑡∫︁
0

𝐾∑︁
𝑖,𝑗=1

⟨𝛽𝑗
𝑠𝑋𝑠 − 𝛽𝑖

𝑠𝑋𝑠, 𝑒𝑖⟩𝑎𝑗𝑖(𝑒𝑗 − 𝑒𝑖) + 𝑀𝑡



14

for some G-martingale 𝑀 . Hence we may write 𝐻 = 𝑌 𝑋 in the form (16) with

𝛼𝐻
𝑠 = 𝐴𝑌𝑠𝑋𝑠 + 𝛼𝑌

𝑠 𝑋𝑠 +
𝐾∑︁

𝑖,𝑗=1
⟨𝛽𝑗

𝑠𝑋𝑠 − 𝛽𝑖
𝑠𝑋𝑠, 𝑒𝑖⟩𝑎𝑗𝑖(𝑒𝑗 − 𝑒𝑖),

𝛿𝐻
𝑠 = 𝛿𝑌

𝑠 𝑋𝑠− and 𝛾𝐻
𝑠 = 𝛾𝑌

𝑠 𝑋𝑠−.

The claim follows by substituting these identities in Theorem 3.1. In order
to illustrate the computational tricks involved we now explain in detail the
derivation of 𝜅𝑌 𝑋

𝑠 , the integrand in the stochastic integral with respect to the
compensated point process 𝑚𝐷. With 𝐻 = 𝑌 𝑋 and hence 𝛿𝐻

𝑡 = 𝛿𝑌
𝑡 𝑋𝑡 we get

from Theorem 3.1 that

𝜅𝑌 𝑋
𝑡 = 1

⟨ ̂︀𝑋𝑡, 𝜆⟩

(︁
( ̂⟨𝑋𝑡, 𝜆⟩𝛿𝐻)𝑡 + ( ̂⟨𝑋, 𝜆⟩𝐻)𝑡 − ⟨ ̂︀𝑋𝑡, 𝜆⟩ ̂︀𝐻𝑡

)︁
. (28)

Moreover, ⟨𝑋𝑡, 𝜆⟩𝛿𝑌
𝑡 𝑋𝑡 =

∑︀𝐾
𝑖=1 𝜆𝑖𝛿

𝑌
𝑡 ⟨𝑋𝑡, 𝑒𝑖⟩𝑒𝑖 so that

( ̂⟨𝑋, 𝜆⟩𝛿𝑌 𝑋)𝑡 =
𝐾∑︁

𝑖=1
𝜆𝑖( ̂𝛿𝑌 ⟨𝑋, 𝑒𝑖⟩)𝑡𝑒𝑖 = Λ(𝛿𝑌 𝑋)𝑡 .

Similarly, one gets that ( ̂⟨𝑋, 𝜆⟩𝑌 𝑋)𝑡 =
∑︀𝐾

𝑖=1 𝜆𝑖( ̂𝑌 ⟨𝑋, 𝑒𝑖⟩)𝑡𝑒𝑖 = Λ(̂︂𝑌 𝑋)𝑡 , and
the form of 𝜅𝑌 𝑋 follows by plugging these identities in (28).

In the following, we compute the filters for the quantities needed for the E-Step
of the EM algorithm. We begin with the state filter.

Corollary 3.3. The filtered estimate of the unobserved process 𝑋 is given by

̂︀𝑋𝑡 = ̂︀𝑋0+
𝑡∫︁

0

𝐴 ̂︀𝑋𝑠𝑑𝑠+
𝑡∫︁

0

(︁
Γ ̂︀𝑋𝑠 − ⟨ ̂︀𝑋𝑠, 𝑔⟩ ̂︀𝑋𝑠

)︁
𝑑𝑤𝑠+

𝑡∫︁
0

(︃
Λ ̂︀𝑋𝑠−

⟨ ̂︀𝑋𝑠−, 𝜆⟩
− ̂︀𝑋𝑠−

)︃
𝑑𝑚𝐷

𝑠 .

Proof. The result follows from Theorem 3.2 with 𝑌𝑡 = 𝑌0 = 1 and hence with
𝛼𝑌 = 𝛾𝑌 = 𝛽𝑌 = 𝛿𝑌 = 0.

Next we consider the number of jumps 𝑁 𝑖𝑗 defined in (7). Fix two states
𝑖 ̸= 𝑗. Since 𝑎𝑗𝑖 gives the transition intensity from state 𝑖 to state 𝑗 and since
1{𝑋𝑠−=𝑒𝑖}1{𝑋𝑠=𝑒𝑗} = ⟨𝑋𝑠−, 𝑒𝑖⟩⟨Δ𝑋𝑠, 𝑒𝑗⟩, the semimartingale decomposition of
𝑁 𝑖𝑗 is given by

𝑁 𝑖𝑗
𝑡 =

𝑡∫︁
0

⟨𝑋𝑠−, 𝑒𝑖⟩⟨𝑑𝑋𝑠, 𝑒𝑗⟩ =
𝑡∫︁

0

⟨𝑋𝑠−, 𝑒𝑖⟩⟨𝑑𝑀𝑋
𝑠 , 𝑒𝑗⟩ +

𝑡∫︁
0

⟨𝑋𝑠−, 𝑒𝑖⟩𝑎𝑗𝑖𝑑𝑠.

This gives the following.
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Corollary 3.4. The filtered estimate for 𝑁 𝑖𝑗 is given by ̂︂𝑁 𝑖𝑗
𝑡 = ⟨(𝑁 𝑖𝑗𝑋)𝑡, 1⟩

where

(𝑁 𝑖𝑗𝑋)𝑡=
𝑡∫︁

0

⟨ ̂︀𝑋𝑠, 𝑒𝑖⟩𝑎𝑗𝑖𝑒𝑗𝑑𝑠 +
𝑡∫︁

0

𝐴(𝑁 𝑖𝑗𝑋)𝑠𝑑𝑠 +
𝑡∫︁

0

(︂
Λ(𝑁 𝑖𝑗𝑋)𝑠−

⟨ ̂︀𝑋𝑠−, 𝜆⟩
− (𝑁 𝑖𝑗𝑋)𝑠−

)︂
𝑑𝑚𝐷

𝑠

+
𝑡∫︁

0

(︁
Γ(𝑁 𝑖𝑗𝑋)𝑠 − ⟨ ̂︀𝑋𝑠, 𝑔⟩(𝑁 𝑖𝑗𝑋)𝑠

)︁
𝑑𝑤𝑠.

Proof. The result follows if we take in Theorem 3.2 𝑌 = 𝑁 𝑖𝑗 and hence 𝑌0 = 0,
𝛼𝑌

𝑠 = ⟨𝑋𝑠, 𝑒𝑖⟩𝑎𝑗𝑖, 𝛽𝑌
𝑠 = ⟨𝑋𝑠, 𝑒𝑖⟩𝑒𝑗 , 𝛾𝑌 = 0, 𝛿𝑌 = 0. To identify the drift of

(𝑁 𝑖𝑗𝑋) we argue as follows: it holds that 𝛽ℓ
𝑠 = ⟨𝑋𝑠, 𝑒𝑖⟩𝛿ℓ,𝑗 so that 𝛽𝑗𝑋𝑠 =

⟨𝑋𝑠, 𝑒𝑖⟩𝑒𝑖 and 𝛽ℓ𝑋𝑠 = 0 ∈ R𝐾 for ℓ ̸= 𝑗. Hence

𝐾∑︁
𝑘,ℓ=1

⟨(̂︂𝛽ℓ𝑋)𝑠, 𝑒𝑘⟩𝑎ℓ𝑘 = ⟨ ̂︀𝑋𝑠, 𝑒𝑖⟩𝑎𝑗𝑖

and
∑︀𝐾

𝑘,ℓ=1⟨(𝛽𝑘𝑋)𝑠, 𝑒𝑘⟩𝑎ℓ𝑘 = 0 so that

𝐾∑︁
𝑘,ℓ=1

𝑡∫︁
0

⟨︀
(̂︂𝛽ℓ𝑋)𝑠 − (𝛽𝑘𝑋)𝑠, 𝑒𝑘

⟩︀
𝑎ℓ𝑘𝑑𝑠(𝑒ℓ − 𝑒𝑘) =

𝑡∫︁
0

⟨ ̂︀𝑋𝑠, 𝑒𝑖⟩𝑎𝑗𝑖𝑑𝑠(𝑒𝑗 − 𝑒𝑖) .

Moreover, 𝛼𝑌
𝑠 𝑋𝑠 = ⟨𝑋𝑠, 𝑒𝑖⟩𝑎𝑗𝑖𝑒𝑖 and hence (𝛼𝑌 𝑋)𝑠 = ⟨ ̂︀𝑋𝑠, 𝑒𝑖⟩𝑎𝑗𝑖𝑒𝑖. Plugging

these identities into Theorem 3.2 gives the result.

Next we consider the occupation time 𝐽 𝑖 defined in (9).

Corollary 3.5. The filtered estimate of the occupation time of state 𝑒𝑖 is given
by ̂︀𝐽 𝑖

𝑡 = ⟨(̂︂𝐽 𝑖𝑋)𝑡, 1⟩, where

(̂︂𝐽 𝑖𝑋)𝑡 =
𝑡∫︁

0

⟨ ̂︀𝑋𝑠𝑒𝑖⟩𝑒𝑖𝑑𝑠 +
𝑡∫︁

0

𝐴(̂︂𝐽 𝑖𝑋)𝑠𝑑𝑠 +
𝑡∫︁

0

(︁
Γ(̂︂𝐽 𝑖𝑋)𝑠 − ⟨ ̂︀𝑋𝑠, 𝑔⟩(̂︂𝐽 𝑖𝑋)𝑠

)︁
𝑑𝑤𝑠

+
𝑡∫︁

0

(︂
Λ(̂︂𝐽 𝑖𝑋)𝑠−

⟨ ̂︀𝑋𝑠−, 𝜆⟩
− (̂︂𝐽 𝑖𝑋)𝑠−

)︂
𝑑𝑚𝐷

𝑠 .

Proof. Substituting 𝑌 = 𝐽 𝑖 and hence 𝑌0 = 0, 𝛼𝑌
𝑠 = ⟨𝑋𝑠, 𝑒𝑖⟩, 𝛽𝑌

𝑠 = 0 ∈ R𝐾 ,
𝛾𝑌 = 0 and 𝛿𝑌

𝑠 = 0 in Theorem 3.2 yields the result.
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Next we turn to the level integral defined in (8).

Corollary 3.6. The filtered estimate of 𝐺𝑖
𝑡 is given by ̂︁𝐺𝑖

𝑡 = ⟨(̂︂𝐺𝑖𝑋)𝑡, 1⟩, where

(̂︂𝐺𝑖𝑋)𝑡 = 𝑔𝑖

𝑡∫︁
0

⟨̂︁𝑋𝑠, 𝑒𝑖⟩𝑒𝑖𝑑𝑠 +
𝑡∫︁

0

𝐴(̂︂𝐺𝑖𝑋)𝑠𝑑𝑠 +
𝑡∫︁

0

(︃
Λ(̂︂𝐺𝑖𝑋)𝑠−

⟨ ̂︀𝑋𝑠−, 𝜆⟩
− (̂︂𝐺𝑖𝑋)𝑠−

)︃
𝑑𝑚𝐷

𝑠

+
𝑡∫︁

0

(︁
⟨̂︁𝑋𝑠, 𝑒𝑖⟩𝑒𝑖 + Γ(̂︂𝐺𝑖𝑋)𝑠 − ⟨̂︁𝑋𝑠, 𝑔⟩(̂︂𝐺𝑖𝑋)𝑠

)︁
𝑑𝑤𝑠.

Proof. Note that 𝐺𝑖
𝑡 = 𝑔𝑖

∫︀ 𝑡

0 ⟨𝑋𝑠, 𝑒𝑖⟩𝑑𝑠 +
∫︀ 𝑡

0 ⟨𝑋𝑠, 𝑒𝑖⟩𝑑𝑊𝑠. Hence the claim follows
from Theorem 3.2 if we let 𝑌𝑡 = 𝐺𝑖

𝑡 and hence 𝑌0 = 0, 𝛼𝑌
𝑠 = 𝑔𝑖⟨𝑋𝑠, 𝑒𝑖⟩,

𝛾𝑌
𝑠 = ⟨𝑋𝑠, 𝑒𝑖⟩, 𝛽𝑌 = 0 ∈ R𝐾 and 𝛿𝑌

𝑠 = 0.

Finally, we consider the jump level integral 𝐵𝑖
𝑡 :=

∫︀ 𝑡

0 ⟨𝑋𝑠, 𝑒𝑖⟩𝑑𝐷𝑠 and the modified
occupation time 𝐶𝑖 that were introduced in (10) and (11).

Corollary 3.7. The filtered estimate of 𝐶𝑖
𝑡 and 𝐵𝑖

𝑡 are given by ̂︁𝐶𝑖
𝑡 = ⟨(̂︂𝐶𝑖𝑋)𝑡, 1⟩

and ̂︁𝐵𝑖
𝑡 = ⟨(𝐵𝑖𝑋)𝑡, 1⟩, where

(̂︂𝐶𝑖𝑋)𝑡 =
𝑡∫︁

0

ℎ𝑠(𝐷)⟨̂︁𝑋𝑠, 𝑒𝑖⟩𝑒𝑖𝑑𝑠 +
𝑡∫︁

0

𝐴(̂︂𝐶𝑖𝑋)𝑠𝑑𝑠 +
𝑡∫︁

0

Γ(̂︂𝐶𝑖𝑋)𝑠 −⟨̂︁𝑋𝑠, 𝑔⟩(̂︂𝐶𝑖𝑋)𝑠𝑑𝑤𝑠

+
𝑡∫︁

0

1
⟨ ̂︀𝑋𝑠−, 𝜆⟩

(︁
Λ(̂︂𝐶𝑖𝑋)𝑠− − ⟨ ̂︀𝑋𝑠−, 𝜆⟩(̂︂𝐶𝑖𝑋)𝑠−

)︁
𝑑𝑚𝐷

𝑠 ,

(𝐵𝑖𝑋)𝑡 =
𝑡∫︁

0

ℎ𝑠(𝐷)𝜆𝑖⟨̂︁𝑋𝑠, 𝑒𝑖⟩𝑒𝑖𝑑𝑠 +
𝑡∫︁

0

𝐴(𝐵𝑖𝑋)𝑠𝑑𝑠 +
𝑡∫︁

0

Γ(𝐵𝑖𝑋)𝑠 −⟨̂︁𝑋𝑠, 𝑔⟩(𝐵𝑖𝑋)𝑠𝑑𝑤𝑠

+
𝑡∫︁

0

1
⟨̂︂𝑋𝑠−, 𝜆⟩

(︁
Λ
(︀
⟨ ̂︀𝑋𝑠−𝑒𝑖⟩𝑒𝑖 + (𝐵𝑖𝑋)𝑠−

)︀
− ⟨ ̂︀𝑋𝑠−, 𝜆⟩(𝐵𝑖𝑋)𝑠−

)︁
𝑑𝑚𝐷

𝑠 .

Proof. In order to compute (𝐵𝑖𝑋)𝑡, we take 𝑌𝑡 = 𝐵𝑖
𝑡, 𝑌0 = 0, 𝛼𝑌

𝑠 =
ℎ𝑠(𝐷)𝜆𝑖⟨𝑋𝑠, 𝑒𝑖⟩, 𝛾𝑌

𝑠 = 0, 𝛽𝑌 = 0 ∈ R𝐾 and 𝛿𝑌
𝑠 = ⟨𝑋𝑠, 𝑒𝑖⟩ and apply The-

orem 3.2. To obtain (𝐶𝑖𝑋)𝑡 we take 𝑌𝑡 = 𝐶𝑖
𝑡 , 𝑌0 = 0, 𝛼𝑌

𝑠 = ℎ𝑠(𝐷)⟨𝑋𝑠, 𝑒𝑖⟩,
𝛾𝑌

𝑠 = 0, 𝛽𝑌 = 0 ∈ R𝐾 and 𝛿𝑌
𝑠 = 0 and apply Theorem 3.2.
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3.2 Unnormalized Filters

In this section we derive so-called unnormalized filters for the quantities arising in
the E-Step of the EM algorithm. The resulting filtering equations are linear and
driven directly by the observation processes 𝑍 and 𝐷. Moreover, unnormalized
filters are needed for the derivation of robust filters in Section 3.3 below.

Denote by P* the so-called reference probability measure on (Ω, 𝒢). That is,
under P*, 𝑍 is a Brownian motion and 𝐷 is a Poisson process with unit intensity,
independent of 𝑋. Let

𝑑P
𝑑P*

⃒⃒⃒
𝒢𝑡

= 𝐿𝑡 = 1 +
𝑡∫︁

0

𝐿𝑠𝑔(𝑋𝑠)𝑍𝑠 +
𝑡∫︁

0

𝐿𝑠−(𝜆(𝑋𝑠−)ℎ𝑠−(𝐷) − 1) (𝑑𝐷𝑠 − 𝑑𝑠).

It follows from the Girsanov theorem that under P, 𝑍 and 𝐷 have the correct joint
law. For any G-adapted and integrable process 𝑌 we denote the unnormalized
conditional expectation by

𝜎(𝑌 )𝑡 = E*[𝐿𝑡𝑌𝑡|ℱ𝑡]. (29)

From Bayes’ rule, we have ̂︀𝑌𝑡 = 𝜎𝑡(𝑌 )/𝜎𝑡(1). In what follows our objective is
to derive the Zakai equation (the dynamics of the unnormalized conditional
expectation (29)). The first step towards this goal is to derive 𝜎𝑡(1) = E*[𝐿𝑡|ℱ𝑡].

Lemma 3.8. The dynamics of 𝜎𝑡(1) are given by

𝜎𝑡(1) = 1 +
𝑡∫︁

0

𝜎𝑠(1)⟨𝑔, ̂︀𝑋𝑠⟩𝑑𝑍𝑠 +
𝑡∫︁

0

𝜎𝑠−(1)
(︀
⟨𝜆, ̂︀𝑋𝑠−⟩ℎ𝑠(𝐷) − 1

)︀
𝑑(𝐷𝑠 − 𝑠).

(30)

Proof. The proof follows similar arguments as in [Elliott, 1993, Thm 3]: we
use the fact that the process 𝐿 is a (P*,G) martingale so that a version of
Theorem 3.1 applies with 𝑌𝑟 = 𝐿𝑟 𝛼𝑌 = 0, 𝛾𝑌

𝑟 = 𝐿𝑟⟨𝑔, 𝑋𝑟⟩, 𝛽𝑌 = 0, 𝛿𝑌
𝑟 =

𝐿𝑟(⟨𝜆, 𝑋𝑟⟩ℎ𝑟(𝐷) − 1), 𝑍 a Brownian motion and 𝐷𝑡 − 𝑡 a martingale. Then we
use Bayes’ rule and obtain the result.

Now we are ready to prove the main theorem of this section.
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Theorem 3.9. Consider a G-adapted process 𝑌 of the form (24). Then, with
𝛽 = 𝛽𝑌 , it holds

𝜎𝑡(𝑌 𝑋) = 𝜎0(𝑌 𝑋) +
𝑡∫︁

0

𝜎𝑠(𝛼𝑌 𝑋)𝑑𝑠 +
𝑡∫︁

0

𝐴𝜎𝑠(𝑌 𝑋)𝑑𝑠

+
𝐾∑︁

𝑖,𝑗=1

𝑡∫︁
0

⟨︀
𝜎𝑠(𝛽𝑗𝑋) − 𝜎𝑠(𝛽𝑖𝑋), 𝑒𝑖

⟩︀
𝑎𝑗𝑖𝑑𝑠(𝑒𝑗 − 𝑒𝑖)

+
𝑡∫︁

0

𝜎𝑠(𝛾𝑌 𝑋) + Γ𝜎𝑠(𝑌 𝑋)𝑑𝑍𝑠

+
𝑡∫︁

0

(︀
ℎ𝑠(𝐷)Λ𝜎𝑠−(𝛿𝑌 𝑋) + (ℎ𝑠(𝐷)Λ − 𝐼)𝜎𝑠−(𝑌 𝑋)

)︀
(𝑑𝐷𝑠 − 𝑑𝑠).

Proof. It follows from Bayes’ formula that 𝜎𝑡(𝑌 𝑋) = ̂︂𝑌 𝑋𝑡𝜎𝑡(1). Hence, we apply
Itô’s product rule for jump diffusions and write

𝑑𝜎𝑡(𝑌 𝑋) = 𝜎𝑡−(1)𝑑(̂︂𝑌 𝑋)𝑡 + (̂︂𝑌 𝑋)𝑡−𝑑𝜎𝑡(1) + 𝑑[𝜎(1),̂︂𝑌 𝑋]𝑡. (31)

Then, inserting (25) and (30) in (31), using Bayes’ formula and making the
necessary cancellations, we obtain the result; the details are omitted.

Using unnormalized filters, ̂︀𝑌𝑡 can be computed from 𝜎𝑡(𝑌 𝑋) and 𝜎𝑡(𝑋) as
follows: ̂︀𝑌𝑡 = ⟨(̂︂𝑌 𝑋)𝑡, 1⟩ = ⟨𝜎𝑡(𝑌 𝑋), 1⟩

𝜎𝑡(1) = ⟨𝜎𝑡(𝑌 𝑋), 1⟩
⟨𝜎𝑡(𝑋), 1⟩

. (32)

Next we compute the unnormalized filters for the various quantities of interest.
In what follows, we use the simpler notation 𝑞𝑡 = 𝜎(𝑋)𝑡.

Corollary 3.10. The dynamics of the unnormalized filter for 𝑋 (the Zakai equa-
tion) are given by

𝑞𝑡 = 𝑞0 +
𝑡∫︁

0

𝐴𝑞𝑠𝑑𝑠 +
𝑡∫︁

0

Γ𝑞𝑠𝑑𝑍𝑠 +
𝑡∫︁

0

(ℎ𝑠(𝐷)Λ − 𝐼)𝑞𝑠−(𝑑𝐷𝑠 − 𝑑𝑠) . (33)

Proof. We set 𝑌𝑡 = 1, 𝛼𝑌
𝑟 = 𝛽𝑌

𝑟 = 𝛾𝑌
𝑟 = 𝛿𝑌

𝑟 = 0 and we apply Theorem 3.9.
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Corollary 3.11. We have the following unnormalized filters:

𝜎𝑡(𝑁 𝑖𝑗𝑋) =
𝑡∫︁

0

⟨𝑞𝑠, 𝑒𝑖⟩𝑎𝑗𝑖𝑒𝑗 𝑑𝑠 +
𝑡∫︁

0

𝐴𝜎𝑠(𝑁 𝑖𝑗𝑋) 𝑑𝑠 +
𝑡∫︁

0

Γ𝜎𝑠(𝑁 𝑖𝑗𝑋) 𝑑𝑍𝑠

+
𝑡∫︁

0

(ℎ𝑠(𝐷)Λ − 𝐼)𝜎𝑠−(𝑁 𝑖𝑗𝑋) (𝑑𝐷𝑠 − 𝑑𝑠)

𝜎𝑡(𝐽 𝑖𝑋) =
𝑡∫︁

0

⟨𝑞𝑠, 𝑒𝑖⟩𝑒𝑖𝑑𝑠 +
𝑡∫︁

0

𝐴𝜎𝑠(𝐽 𝑖𝑋)𝑑𝑠 +
𝑡∫︁

0

Γ𝜎𝑠(𝐽 𝑖𝑋)𝑑𝑍𝑠

+
𝑡∫︁

0

(ℎ𝑠(𝐷)Λ − 𝐼)𝜎𝑠−(𝐽 𝑖𝑋) (𝑑𝐷𝑠 − 𝑑𝑠),

𝜎𝑡(𝐺𝑖𝑋) = 𝑔𝑖

𝑡∫︁
0

⟨𝑞𝑠, 𝑒𝑖⟩𝑒𝑖 𝑑𝑠 +
𝑡∫︁

0

𝐴𝜎𝑠(𝐺𝑖𝑋) 𝑑𝑠 +
𝑡∫︁

0

(Γ𝜎𝑠(𝐺𝑖𝑋) + ⟨𝑞𝑠, 𝑒𝑖⟩𝑒𝑖) 𝑑𝑍𝑠

+
𝑡∫︁

0

(ℎ𝑠(𝐷)Λ − 𝐼)𝜎𝑠−(𝐺𝑖𝑋) (𝑑𝐷𝑠 − 𝑑𝑠),

𝜎𝑡(𝐵𝑖𝑋) = 𝜆𝑖

𝑡∫︁
0

ℎ𝑠(𝐷)⟨𝑞𝑠, 𝑒𝑖⟩𝑒𝑖 𝑑𝑠 +
𝑡∫︁

0

𝐴𝜎𝑠(𝐵𝑖𝑋) 𝑑𝑠 +
𝑡∫︁

0

Γ𝜎𝑠(𝐵𝑖𝑋) 𝑑𝑍𝑠

+
𝑡∫︁

0

(︀
(ℎ𝑠(𝐷)Λ − 𝐼)𝜎𝑠−(𝐵𝑖𝑋) + ℎ𝑠(𝐷)Λ⟨𝑞𝑠−, 𝑒𝑖⟩𝑒𝑖

)︀
(𝑑𝐷𝑠 − 𝑑𝑠),

𝜎𝑡(𝐶𝑖𝑋) =
𝑡∫︁

0

ℎ𝑠(𝐷)⟨𝑞𝑠, 𝑒𝑖⟩𝑒𝑖𝑑𝑠 +
𝑡∫︁

0

𝐴𝜎𝑠(𝐶𝑖𝑋)𝑑𝑠 +
𝑡∫︁

0

Γ𝜎𝑠(𝐶𝑖𝑋)𝑑𝑍𝑠

+
𝑡∫︁

0

(ℎ𝑠(𝐷)Λ − 𝐼)𝜎𝑠−(𝐶𝑖𝑋)(𝑑𝐷𝑠 − 𝑑𝑠) .

Proof. In order to obtain these results, we use an analogous reasoning as in the
proof of Corollary 3.10.
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3.3 Robust Filters and discretization

In this section, our objective is to derive robust filters in the sense of Clark [1978]
and James et al. [1996]. These filters are Lipschitz continuous “in the observation
process”, so that they perform well if applied to a situation where 𝑍 and 𝐷 are
only approximately of the form (2) and (3); a case in point is that of discrete
observations, see Remark 2.1. In order to derive these filters one transforms the
filter dynamics in such a way that they involve a minimal number of stochastic
integrals.

Robust filters

Throughout this section we assume that ℎ𝑡(𝐷) > 0 for all 𝑡; see however Re-
mark 3.12, point 3, below. Following the approach of James et al. [1996] and of
Elliott and Malcolm [2008] we first define

Π𝑖
𝑡 = exp

{︂
𝑔𝑖𝑍𝑡 − 1

2(𝑔𝑖)2𝑡 + (1 − ℎ𝑡(𝐷)𝜆𝑖)𝑡 + 𝐷𝑡 log(ℎ𝑡(𝐷)𝜆𝑖)
}︂

and we let

Π𝑡 = diag
{︀

Π1
𝑡 , . . . , Π𝐾

𝑡

}︀
= exp

{︂
Γ𝑍𝑡 − 1

2Γ2𝑡 + (𝐼 − ℎ𝑡(𝐷)Λ)𝑡 + 𝐷𝑡Λ𝐿
𝑡

}︂
,

where Λ𝐿
𝑡 = diag

{︀
log(ℎ𝑡(𝐷)𝜆1), . . . , log(ℎ𝑡(𝐷)𝜆𝐾)

}︀
. The corresponding dynam-

ics are 𝑑Π𝑡 = Π𝑡Γ𝑑𝑍𝑡 + Π𝑡(ℎ𝑡(𝐷)Λ − 𝐼)(𝑑𝐷𝑡 − 𝑑𝑡), and the Itô formula yields

𝑑Π−1
𝑡 − Π−1

𝑡 Γ𝑑𝑍𝑡 + Π−1
𝑡 Γ2𝑑𝑡

− Π−1
𝑡

(︂
𝐼 − 1

ℎ𝑡(𝐷)Λ−1
)︂

𝑑𝐷𝑡 + Π−1
𝑡 (ℎ𝑡(𝐷)Λ − 𝐼)𝑑𝑡.

For any G-adapted, integrable process 𝑌 we define

𝜎𝑡(𝑌 𝑋) = Π−1
𝑡 𝜎𝑡(𝑌 𝑋). (34)

It follows from Itô’s product formula that 𝑞𝑡 := 𝜎(𝑋𝑡) has the dynamics

𝑑

𝑑𝑡
𝑞𝑡 = Π−1

𝑡 𝐴Π𝑡𝑞𝑡; (35)

in particular, 𝑞𝑡 is a process of finite variation. The unnormalized filter is then
given by 𝜎𝑡(𝑋) = Π𝑡𝑞𝑡. Note that in order to compute 𝜎𝑡(𝑋) in this way we only
have to discretize the ODE (35) and to evaluate 𝑍 and 𝐷 at given time points;
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it is not necessary to approximate a stochastic integral driven by these processes
(as one would have to do in a naive discretization of the Zakai equation (33)).

In a similar vein 𝜎𝑡(𝑌 𝑋) can be computed for the other quantities needed
for the EM algorithm. We obtain

𝑑𝜎𝑡(𝐽 𝑖𝑋) = ⟨𝑞𝑡, 𝑒𝑖⟩𝑒𝑖 𝑑𝑡 + Π−1
𝑡 𝐴Π𝑡𝜎𝑡(𝐽 𝑖𝑋) 𝑑𝑡. (36)

𝑑𝜎𝑡(𝑁 𝑖𝑗𝑋) = ⟨𝑞𝑡, 𝑒𝑖⟩⟨𝐴𝑒𝑖, 𝑒𝑗⟩𝑒𝑗 𝑑𝑡 + Π−1
𝑡 𝐴Π𝑡𝜎𝑡(𝑁 𝑖𝑗𝑋) 𝑑𝑡, (37)

𝑑𝜎𝑡(𝐺𝑖𝑋) = ⟨𝑞𝑡, 𝑒𝑖⟩𝑒𝑖 𝑑𝑍𝑡 + Π−1
𝑡 𝐴Π𝑡𝜎𝑡(𝐺𝑖𝑋) 𝑑𝑡, (38)

𝑑𝜎𝑡(𝐵𝑖𝑋) = ⟨𝑞𝑡, 𝑒𝑖⟩𝑒𝑖 𝑑𝐷𝑡 + Π−1
𝑡 𝐴Π𝑡𝜎𝑡(𝐵𝑖𝑋) 𝑑𝑡, (39)

𝑑𝜎𝑡(𝐶𝑖𝑋) = ℎ𝑡(𝐷)⟨𝑞𝑡, 𝑒𝑖⟩𝑒𝑖 𝑑𝑡 + Π−1
𝑡 𝐴Π𝑡𝜎𝑡(𝐶𝑖𝑋) 𝑑𝑡. (40)

Discretization.

For the numerical implementation we need to discretize the filter equations. We
now explain how to do this for the robust filters derived above. In what follows we
will consider the partition 0 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑁 = 𝑇 on the interval [0, 𝑇 ], and
we let Δ𝑛 = 𝑡𝑛 − 𝑡𝑛−1. The easiest approach to discretize the ODE for 𝜎𝑡 is to
use a simple explicit Euler scheme, see also Elliott and Malcolm [2008][Section D].
If we apply this to the ODE (35) for 𝑞𝑡 we obtain

𝑞𝑡𝑛
≈ 𝑞𝑡𝑛−1 + Π−1

𝑡𝑛−1
𝐴Π𝑡𝑛−1Δ𝑛𝑞𝑡𝑛−1 .

In order to obtain the unnormalized filter we multiply both sides with Π𝑡𝑛 :

𝑞𝑡𝑛 ≈ Π𝑡𝑛Π−1
𝑡𝑛−1

(𝐼 + 𝐴Δ𝑛)𝑞𝑡𝑛−1 . (41)

Hence, (41) gives a way for the recursive estimation of the unnormalized state
probabilities. Now we define 𝑧Δ

𝑛 = 𝑍𝑡𝑛 − 𝑍𝑡𝑛−1 , apply the same procedure and
obtain the following recursions for the remaining filters:

𝜎𝑡𝑛(𝐺𝑖𝑋) ≈ Π𝑡𝑛Π−1
𝑡𝑛−1

(︀
(𝐼 + 𝐴Δ𝑛)𝜎𝑡𝑛−1(𝐺𝑖𝑋) + ⟨𝑞𝑡𝑛−1 , 𝑒𝑖⟩𝑒𝑖𝑧

Δ
𝑛

)︀
,

𝜎𝑡𝑛(𝐽 𝑖𝑋) ≈ Π𝑡𝑛Π−1
𝑡𝑛−1

(︀
(𝐼 + 𝐴Δ𝑛)𝜎𝑡𝑛−1(𝐽 𝑖𝑋) + ⟨𝑞𝑡𝑛−1 , 𝑒𝑖⟩𝑒𝑖Δ𝑛

)︀
,

𝜎𝑡𝑛(𝑁 𝑖𝑗𝑋) ≈ Π𝑡𝑛Π−1
𝑡𝑛−1

(︀
(𝐼 + 𝐴Δ𝑛)𝜎𝑡𝑛−1(𝑁 𝑖𝑗𝑋) + ⟨𝑞𝑡𝑛−1 , 𝑒𝑖⟩⟨𝐴𝑒𝑖, 𝑒𝑗⟩𝑒𝑗Δ𝑛

)︀
,

𝜎𝑡𝑛(𝐵𝑖𝑋) ≈ Π𝑡𝑛Π−1
𝑡𝑛−1

(︀
(𝐼 + 𝐴Δ𝑛)𝜎𝑡𝑛−1(𝐵𝑖𝑋) + ⟨𝑞𝑡𝑛−1 , 𝑒𝑖⟩𝑒𝑖(𝐷𝑡𝑛 − 𝐷𝑡𝑛−1)

)︀
,

𝜎𝑡𝑛(𝐶𝑖𝑋) ≈ Π𝑡𝑛Π−1
𝑡𝑛−1

(︀
(𝐼 + 𝐴Δ𝑛)𝜎𝑡𝑛−1(𝐶𝑖𝑋) + ℎ𝑡(𝐷)⟨𝑞𝑡𝑛−1 , 𝑒𝑖⟩𝑒𝑖Δ𝑛

)︀
.

Remark 3.12. 1) Note that when the filters are represented in integral form,
it is possible to make use of the integration by parts formula and convert the
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stochastic integrals with respect to the processes 𝐷 and 𝑍 into integrals with
respect to time. For example,

𝜎𝑡(𝐵𝑖𝑋) = ⟨𝑞𝑡, 𝑒𝑖⟩𝑒𝑖𝐷𝑡 −
𝑡∫︁

0

𝐷𝑠⟨𝑑𝑞𝑠, 𝑒𝑖⟩𝑒𝑖 +
𝑡∫︁

0

Π−1
𝑠 𝐴Π𝑠𝜎𝑠(𝐵𝑖𝑋) 𝑑𝑠. (42)

This can be used to obtain a robust filter for 𝐵𝑖 that does not contain a stochastic
integral with repect to 𝐷. In a similar vein, partial integration can be used to
eliminate the stochastic integral with respect to 𝑍 in the robust filter for 𝐺𝑖.

2) There are other ways to discretize the ODE part in the robust filter
equations (35) and (36) – (40) that can be advantageous if the generator 𝐴′ of
𝑋 has been constructed as a discrete approximation of a diffusion process. In
that case Clark [1978] recommends an implicit discretization of the ODEs.

3) If ℎ𝑡(𝐷) ≡ 0 on some stochastic interval (𝜏1, 𝜏2) for F-stopping times 𝜏1
and 𝜏2 one works with the solution of the matrix SDE 𝑑Π𝑡 = ΓΠ𝑡𝑑𝑍𝑡 instead;
this leads to the robust filters derived in James et al. [1996].

4 Goodness-of-fit Tests
In this section we propose several statistical tests for the hypothesis that the
hidden Markov model from Section 2.1, parameterized in terms of a (estimated)
parameter vector 𝜃*, models the observed data (𝑍, 𝐷) well. These tests are based
on two observations: first,

𝑤𝑡 = 𝑍𝑡 −
𝑡∫︁

0

⟨𝑔*, ̂︀𝑋𝑠⟩𝑑𝑠 is a F-Brownian motion; (43)

second, 𝐷 is a point process with F-intensity 𝜆*
𝑡 := ℎ𝑡(𝐷)⟨𝜆*, ̂︀𝑋𝑡⟩𝑑𝑡 (both under

P𝜃*). Define the time change 𝒯 (𝑡) =
∫︀ 𝑡

0 𝜆*
𝑠𝑑𝑠 and suppose that lim𝑡→∞ 𝒯 (𝑡) = ∞

a.s. Denote by 𝒯 −1(𝑡) = inf{𝑠 ≥ 0, 𝒯 (𝑠) ≥ 𝑡} the inverse transform. Then it
holds that the process ̃︀𝐷 defined by

̃︀𝐷𝑡 = 𝐷 ∘ 𝒯 −1(𝑡), 0 ≤ 𝑡 ≤ 𝒯 (𝑇 ), is a standard Poisson process. (44)

The hypotheses (43) and (44) can be tested in various ways; this leads to a
number of goodness-of-fit tests for our setup. Note that in (43) and (44) the
filter ̂︀𝑋𝑡 and the time change 𝒯 and 𝒯 −1 are computed under P𝜃* , so that all
components of 𝜃* enter into the testing procedure.
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Testing the Brownian-motion hypothesis

Fix some time interval Δ̄ and let 𝑡𝑘 = 𝑘Δ̄, 𝑘 = 0, 1, . . . , 𝜅 := ⌊𝑇/Δ̄⌋. Define the
random variables

𝑉𝑘 = 𝑤𝑡𝑘 − 𝑤𝑡𝑘−1 ≈ 𝑍𝑡𝑘 − 𝑍𝑡𝑘−1 − ⟨𝑔*, ̂︀𝑋𝑡𝑘−1⟩Δ̄.

Under P𝜃* , {𝑉𝑘}𝑘≥1 is a sequence of independent, 𝑁(0, Δ̄)-distributed random
variables. All of this can be tested: a standard 𝑡-test can be performed to test the
hypothesis that the 𝑉𝑘 have mean zero, that is that the drift estimate ⟨𝑔*, ̂︀𝑋𝑡⟩ is
correct ‘on average’. The normality assumption can be tested graphically via a
QQ-plot or numerically using for instance a Kolmogorov Smirnov goodness-of-fit
test. The independence assumption (which implies zero autocorrelation at all lags)
can be assessed graphically via correlograms or numerically using for instance a
Ljung-Box test. Tests of the independence assumption are in fact particularly
important, as this provides a check if the model captures the dynamics of 𝑍 well.

Testing the Poisson-process hypothesis

If ̃︀𝐷 is standard Poisson the random variables 𝑈𝑘 = ̃︀𝐷𝑡𝑘 − ̃︀𝐷𝑡𝑘−1 , 𝑘 = 1, . . . , 𝜅, are
iid Poisson with parameter Δ̄. This implies that the random variables ̃︀𝑈𝑘 = 𝑈𝑘 ∧1,
𝑘 = 1, . . . , 𝜅 are Bernoulli distributed with parameter 𝑝 = 1 − exp(−Δ̄), which
can be tested with a standard binomial test. Moreover, one can test if the inter-
arrival times of the jumps of ̃︀𝐷 follow a standard exponential distribution (as
they should under the Poisson hypothesis). This can be tested graphically via a
QQ-plot or numerically using Kolmogorov Smirnov. Testing the exponentiality
of the inter-arrival times of ̃︀𝐷 is very useful to check if the model is able to
‘decluster’ the jumps of 𝐷 and hence to capture the dynamics of 𝐷 reasonably
well. Note that the tests of the Poisson hypothesis are closely related to tests
for the accuracy of Value at Risk models in market risk management, see for
instance Section 9.3. of McNeil et al. [2015]. For numerical illustrations of the
proposed goodness-of-fit tests we refer to the example in Section 5.

5 Simulation Analysis
In this section we present the results from a simulation study that tests the
speed, efficiency and accuracy of the various algorithms and methods introduced
so far. This analysis is crucial for the fine-tuning of the methods and it serves as
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a bridge between theoretical results and practical implementation. We discuss
the performance of the EM algorithm (in Section 5.1), the advantage of robust
filtering algorithms (Section 5.2) and the performance of the goodness-of-fit tests
(Section 5.3).

Throughout we consider a 3-state Markov chain and we use the parameter
vector from Table 1 to generate data sets. The stepsize is taken as Δ𝑛 = 1

500 ,
and we use 𝑁 = 20 000 observations.

𝑎12 𝑎13 𝑎21 𝑎23 𝑎31 𝑎32 𝑔1 𝑔2 𝑔3 𝜆1 𝜆2 𝜆3 𝜎𝑍

0.2 0.3 0.3 0.2 0.2 0.3 -0.5 0 0.5 0.6 1 4 0.05

Table 1: Parameters used in simulation study.

5.1 EM Algorithm

In this section we illustrate the performance of the EM algorithm. For this we
fix a parameter vector 𝜃, an initial distribution 𝑝, some noise variance 𝜎2

𝑍 and
we generate trajectories of size 𝑁 with step size Δ𝑛 for the Markov chain 𝑋,
the continuous observation 𝑍 and the point process 𝐷. Given these data and
an initial parameter vector 𝜃0 we run several iterations of the algorithm and
we stop as soon as the relative change in the parameter values is lower than a
given tolerance level. Here the following issue arises. Recall that the theoretical
results are derived assuming that the Brownian motion 𝑊 has unit variance.
When this is not the case, but the noise variance has a known value, it suffices to
normalize Gaussian observations before initiating the EM algorithm. In practice,
though, this value is typically unknown. However, as explained in James et al.
[1996][Section VI-B], in a discretized setting it is possible to obtain an MLE
estimate of the noise variance. Following this, throughout this section we assume
that the noise variance is unknown and we estimate it accordingly.

In Table 2 we present a typical outcome of this analysis. The table contains
a comparison between the true parameters, the parameters estimated via the EM
algorithm and the MLE estimates (the estimates computed in the hypothetical
case where the trajectory of the chain is observable). For the EM algorithm the
termination tolerance is set to 1% and the starting values are 50% of the true
ones. The final estimate for the volatility is given by 𝜎MLE

𝑍 = 0.05054923. The
evolution of the estimates for the generator of 𝑋 (in dependence of the number of
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iterations 𝑚 of the EM algorithm) is shown in Figure 1. Our analysis shows that
in this case the performance of the algorithm is reasonable. Only the estimates
for the generator matrix of the chain are somewhat off from their true values.
However, these parameters are difficult to estimate as can be seen from the fact
that the MLE estimates also deviate from the true parameter value by a similar
amount.

Parameters 𝑎12 𝑎13 𝑎21 𝑎23 𝑎31 𝑎32

True 0.20000 0.30000 0.30000 0.20000 0.20000 0.30000
EM 0.10275 0.18030 0.21879 0.14359 0.39011 0.22059

MLE 0.09608 0.14972 0.34329 0.14972 0.34329 0.09608
Parameters 𝑔1 𝑔2 𝑔3 𝜆1 𝜆2 𝜆3

True -0.50000 0.00000 0.50000 0.60000 1.00000 4.00000
EM -0.48445 -0.03426 0.48943 0.52917 1.00920 3.45954

MLE -0.49259 -0.03862 0.48687 0.51493 1.00884 3.44363

Table 2: True parameters, EM estimates and MLE estimates (estimates for the hypothetical
case where 𝑋 is observable).
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Fig. 1: Evolution of parameter estimates for matrix 𝐴.
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5.2 Effect of Robust Discretization

Performing a robust discretization of the filters allows one to obtain much
smoother estimates of the quantities of interest in compared to those obtained
when directly discretizing the exact filters using the Euler-Maruyama method.
Naturally, the larger the discretization step size (Δ𝑛 in our notation), the more
evident this effect. The robust discretization effect is illustrated in Figure 2,
where we focused on state filters for the data set generated with the parameters
given in Table 1. For visualization purposes, only the first 5 000 points are shown.
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Fig. 2: Naive discretization of exact state filters vs. robust discretization, discretization step
Δ𝑛 = 1

500

5.3 Tests for Model Validation

In this section we provide a numerical illustration of the goodness-of-fit tests
proposed in Section 4. For this we compare two cases. Case 1 corresponds to
the situation where all parameters have been estimated correctly. In Case 2 we
assume that the generator matrix of 𝑋 has been estimated correctly while the
estimates for 𝜆 and 𝑔 are constant across states and given by 𝜆*,𝑗 = ⟨𝜆, 𝜋⟩ for
all 𝑗 and 𝑔*,𝑗 = ⟨𝑔, 𝜋⟩ for all 𝑗, where 𝜋 is the stationary distribution of the
Markov chain 𝑋. This parameter choice implies that the increments of 𝑤 and
of the time transformed process ̃︀𝐷 have the correct mean. However, the model
misses the autocorrelation caused by the randomness in the drift of 𝑤 and the
clustering in the jump times of 𝐷. Hence we expect that the 𝑡 test and the
binomial test do not reject Case 2, but the tests for independence respectively
for the exponentiality of the inter-arrival times should lead to a rejection.
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To test this conjecture we again use a data set generated with the parameters
given in Table 1. The left plot in Figure 3 shows the correlogram of the increments
of 𝑤 for Case 1 (correct parameters); the right plot shows the correlogram for
Case 2. We see that working erroneously with a constant 𝑔 induces significant
autocorrelation at all lags. Next we turn to the Poisson hypothesis. Here the
null hypothesis of the Kolmogorov-Smirnov test for exponentiality is rejected in
Case 2 (p-value: 0.02201), but not in Case 1 (p-value: 0.8934). Figure 4 provides
a graphical illustration: the left QQ-plot corresponds to the correctly estimated
model, the right one to Case 2. The more erratic behavior in the latter is evident.
The null hypothesis of the standard binomial test is not rejected in both cases
(the p-values are 0.5484364 and 0.4388406, respectively).
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Fig. 3: Comparison of correlograms: Case 1 (left) and Case 2 (right).

6 Application to credit risk

Implementation

We applied the HMM for credit quality described in Example 2.2 to a real
data set consisting of five US corporations, considering seven non-default rating
categories. We assume that the model parameters are identical for all firms, but
that signal and observation for different firms are independent. This implies
that the log-likelihood of the observations is the sum of the likelihoods for the
different firms, and the EM parameter updates are easily computed. In fact, this
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Fig. 4: Comparison of QQ-plots for inter-arrival times: Case 1 (left) and Case 2 (right).

assumption leads to the filter-based cohort approach proposed in Korolkiewicz
and Elliott [2008]. We use normalized continuous observations as input, where
the normalizing factor is given by an average of the volatility estimates for each
of the five companies.

We introduce a couple of restrictions on the parameters: first, we assume
for simplicity that the Markov chain 𝑋 that models the true credit quality can
jump only to neighboring states; second, since we observe only one default in our
data set, we do not estimate 𝜆𝑑 but instead we keep it fixed and take it equal to

𝜆𝑑 = (0.00005, 0.00020, 0.00060, 0.00180, 0.01116, 0.04134, 0.17972)⊤.

These values are derived from estimated default rates of different rating classes,
as given in McNeil et al. [2015], Table 10.2. Since the intensity of the up-and
downgrade processes depends on the observable ratings, we need a slight extension
of the EM methodology developed in Section 2 and 3; details are discussed in
Appendix A.
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Results

Since the state space 𝑆 of the observed rating 𝑅𝑖 and of the hidden true credit
quality 𝑋 are taken identical, we identify 𝑆 with the rating categories we consider
(AAA, AA, A, BBB, BB, B, CCC-C). The estimates for the transition rates
between the different states of 𝑋 are given in Table 3. Note that transition
intensities to non-neighbor states are zero by assumption. Overall the estimates
appear reasonable; the large transition rates between the highest categories
(labelled AAA, AA and A) are probably due to the fact that given the limited
amount of data the algorithm is not able to distinguish clearly between the three
classes.

AAA AA A BBB BB B CCC-C
AAA -5.9814 5.9814 0 0 0 0 0
AA 6.6849 -15.5480 8.8630 0 0 0 0
A 0 18.6123 -20.9233 2.3109 0 0 0

BBB 0 0 0.3700 -0.6641 0.2943 0 0
BB 0 0 0 0.3492 -0.3493 0.0000 0
B 0 0 0 0 0.1122 -0.1122 0.0000

CCC-C 0 0 0 0 0 0.0000 0.0000

Table 3: Estimated generator matrix 𝐴⊤.

The estimates for the drift coefficients 𝑔 are given in Table 4. These estimates
are monotonously increasing, in line with the stylized fact that credit spreads
are higher when the credit quality of a firm is worse.

𝑔𝐴𝐴𝐴 𝑔𝐴𝐴 𝑔𝐴 𝑔𝐵𝐵𝐵 𝑔𝐵𝐵 𝑔𝐵 𝑔𝐶𝐶𝐶−𝐶

33.97179 34.44579 35.06211 39.61831 48.75934 64.17487 99.36986

Table 4: Estimated drift coefficients

The estimates for the up- and downgrade intensities 𝜆+ and 𝜆− are given
in Table 5. Note that the elements of the estimated vectors 𝜆+ and 𝜆− respect
the expected ordering (decreasing for 𝜆+ and increasing for 𝜆−), vindicating the
intuition that observed ratings follow the true credit quality albeit with some
rating error.
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𝜆+
1 𝜆+

2 𝜆+
3

0.47943 0.20457 0.00042
𝜆−
1 𝜆−

2 𝜆−
3

0.05020 0.12984 0.27643

Table 5: Estimates for 𝜆+ and 𝜆−

We also applied the goodness-of-fit tests described in Section 4. The results
for the Poisson process hypothesis were quite satisfactory: the 𝑝 value of the
Kolmogorov-Smirnov test for the exponentiality of the interarrival times of the
time transformed processes ̃︀𝐷+ and ̃︀𝐷− was 0.2125 for upgrades and 0.5685 for
downgrades 𝐷−; the 𝑝 value of the binomial test was 0.1645 for upgrades and
0.255 for downgrades. The tests for the Brownian motion hypothesis were a bit
more problematic, essentially because the observed log-credit spreads show a
very strong degree of autocorrelation; we omit the details.

Finally we use the model to compute a filter estimate for the unobservable
true credit quality of a given firm. In Figure 5 and in Figure 6 we graph the
estimated credit quality for Medtronic and Abbott, together with the observed
(logarithmic) CDS spread and the observed rating. The analysis shows that
the estimated credit quality balances the impact of both sources of information
(ratings and CDS spreads).

7 Conclusion
In this work we study an EM algorithm for the setting where the state variable
follows a Markov chain observed via diffusive and point processes information. On
the theoretical side, we derived the dynamics for the exact and the unnormalized
filters, and we computed discretized, robust versions of the filters in the sense
of Clark [1978]. Moreover, we proposed several goodness-of-fit tests for hidden
Markov models with Gaussian noise and point process observation. On the
applied side we carried out a simulation analysis to test the performance of our
methodology, and we considered an application to credit risk: we estimate the
parameters of a HMM for credit quality where the observations consist of rating
transitions and credit spreads for five US corporations. Our work opens interesting
avenues for future empirical work such as an analysis of sovereign credit spreads
and of contagion effects between sovereigns or parameter estimation in hidden
Markov models for high frequency data in finance.
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Medtronic − Observed ratings and filtered estimates
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Fig. 5: Medtronic - Observed ratings and filtered estimate for credit quality (top) and
observed credit spread on log-scale (bottom).

A EM algorithm for Example 2.2
In what follows we are going to provide the steps of the EM algorithm corresponding
to Example 2.2. To this, we need to define new processes due to the dependence of the
variates 𝜆+

𝑡 and 𝜆−
𝑡 on the rating observation 𝑅𝑖

𝑡. Namely, we define the processes 𝐶𝑗𝑘

and 𝐵𝑗𝑘, 1 ≤ 𝑗, 𝑘 ≤ 𝐾 with the following:

𝐵+,𝑗𝑘
𝑡 =

𝑡∫︁
0

1{𝑅𝑠=𝑒𝑗 }⟨𝑋𝑠, 𝑒𝑘⟩𝑑𝐷+
𝑠 and 𝐶𝑗𝑘

𝑡 =

𝑡∫︁
0

1{𝑅𝑠=𝑒𝑗 }⟨𝑋𝑠, 𝑒𝑘⟩𝑑𝑠.

We can define 𝐵−,𝑗𝑘 in a similar fashion. Now we have the following likelihood function

𝐿(𝜃, 𝜃′) = · · · +

𝑡∫︁
0

log(𝜆+(𝑋𝑠, 𝑅𝑠)) 𝑑𝐷+
𝑠 −

𝑡∫︁
0

𝜆+(𝑋𝑠, 𝑅𝑠) 𝑑𝑠 (45)

+

𝑡∫︁
0

log(𝜆−(𝑋𝑠, 𝑅𝑠)) 𝑑𝐷−
𝑠 −

𝑡∫︁
0

𝜆−(𝑋𝑠, 𝑅𝑠) 𝑑𝑠 + 𝑅(𝜃′). (46)
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Abbott Laboratories − Observed ratings and filtered estimates
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Fig. 6: Abbott - Observed ratings and filtered estimate for credit quality(top) and observed
credit spread on log-scale (bottom).

Note that we can write 𝜆+(𝑋𝑠, 𝑅𝑠) =
∑︀𝐾

𝑖=1

∑︀𝐾

𝑗=1 𝜆+,𝑖𝑗1{𝑅𝑠=𝑒𝑗 }⟨𝑋𝑠, 𝑒𝑖⟩. Hence

𝐿(𝜆+, 𝜆+′) =

𝑡∫︁
0

𝐾∑︁
𝑘=1

𝐾∑︁
𝑗=1

log(𝜆+,𝑗𝑘)1{𝑅𝑠=𝑒𝑗 }⟨𝑋𝑠, 𝑒𝑘⟩ 𝑑𝐷+
𝑠

−

𝑡∫︁
0

𝐾∑︁
𝑘=1

𝐾∑︁
𝑗=1

𝜆+,𝑗𝑘1{𝑅𝑠=𝑒𝑗 }⟨𝑋𝑠, 𝑒𝑘⟩ 𝑑𝑠 + 𝑅(𝜆+′).

Thus we have

𝐿(𝜆+, 𝜆+′) =
𝐾∑︁

𝑘=1

𝐾∑︁
𝑗=1

log(𝜆+,𝑗𝑘)𝐵+,𝑗𝑘
𝑡 −

𝐾∑︁
𝑘=1

𝐾∑︁
𝑗=1

𝜆+,𝑗𝑘𝐶𝑗𝑘
𝑡 + 𝑅(𝜆+′). (47)

Next we write the filtered estimate of the log-likelihood function:

̂𝐿(𝜆+, 𝜆+′) =
𝐾∑︁

𝑘=1

𝐾∑︁
𝑗=1

log(𝜆+,𝑗𝑘)𝐵+,𝑗𝑘
𝑡 −

𝐾∑︁
𝑘=1

𝐾∑︁
𝑗=1

𝜆+,𝑗𝑘 ̂︁𝐶𝑗𝑘
𝑡 + 𝑅(𝜆+′). (48)

Hence, we have what is needed for the E-step. Let us now use the parametrization

𝜆+,𝑗𝑘 = 𝜆+
1 1{𝑘<𝑗} + 𝜆+

2 1{𝑘=𝑗} + 𝜆+
3 1{𝑘>𝑗}, 1 ≤ 𝑗, 𝑘 ≤ 𝐾, 𝑘 > 1. (49)
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Hence

̂𝐿(𝜆+, 𝜆+′) =
𝐾∑︁

𝑘=2

𝐾∑︁
𝑗=1

log(𝜆+
1 1{𝑘<𝑗} + 𝜆+

2 1{𝑘=𝑗} + 𝜆+
3 1{𝑘>𝑗})𝐵+,𝑗𝑘

𝑡

−
𝐾∑︁

𝑘=2

𝐾∑︁
𝑗=1

(𝜆+
1 1{𝑘<𝑗} + 𝜆+

2 1{𝑘=𝑗} + 𝜆+
3 1{𝑘>𝑗})̂︁𝐶𝑗𝑘

𝑡 + 𝑅(𝜆+′).

From the first order conditions we then obtain the following estimates

̂︁𝜆+
1 =

∑︀𝐾

𝑗=1

∑︀𝐾

1<𝑘<𝑗
𝐵+,𝑗𝑘

𝑡∑︀𝐾

𝑗=1

∑︀𝐾

1<𝑘<𝑗
̂︁𝐶𝑗𝑘

𝑡

, ̂︁𝜆+
2 =

∑︀𝐾

𝑘=2 𝐵+,𝑘𝑘
𝑡∑︀𝐾

𝑘=2
̂︂𝐶𝑘𝑘

𝑡

.

̂︁𝜆+
3 =

∑︀𝐾

𝑗=1

∑︀𝐾

𝑘>𝑗
𝐵+,𝑗𝑘

𝑡∑︀𝐾

𝑗=1

∑︀𝐾

𝑘>𝑗
̂︁𝐶𝑗𝑘

𝑡

.

To apply the algorithm we need to obtain the filtered estimates for the quantities 𝐶𝑗𝑘
𝑡 and

𝐵𝑗𝑘
𝑡 , and their robust version. These are computed exactly as in Section 3.
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