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Abstract. Reinsurance counterparty credit risk (RCCR) is the risk of a loss arising from the fact4
that a reinsurance company is unable to fulfill her contractual obligations towards the ceding insurer.5
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dynamic hedging strategies have the potential to significantly reduce RCCR.12
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1. Introduction. General insurers frequently cede parts of their insurance risk15

to reinsurance companies in order to protect themselves from intolerably large losses16

in their insurance portfolio. This gives rise to a new type of risk, so-called reinsurance17

counterparty credit risk or RCCR. This is the risk of a loss for the ceding company18

caused by the fact that the reinsurer fails to honor her obligations from a reinsurance19

contract, for instance because the reinsurer defaults prior to maturity of the con-20

tract. Given the increased visibility of default risk in the reinsurance industry in the21

aftermath of the financial crisis, RCCR has become a highly relevant risk category,22

mainly because reinsurance recoveries represent large assets on insurance companies23

balance sheets. Its importance is also underlined in Solvency II regulatory directives.24

Nonetheless, the techniques for managing RCCR used in practice are mostly of a qual-25

itative nature. Typically, ceding companies have minimum requirements on the credit26

quality of approved reinsurance companies, they set limits for the exposure to individ-27

ual counterparties, and they sometimes require reinsurers to post some collateral; see28

for instance [6]. The existing quantitative approaches for the management of RCCR29

are based on simple one-period models. This is in stark contrast to the banking world30

where sophisticated stochastic models are used in counterparty risk management to31

determine value adjustments for derivative transactions (so-called XVAs) and to find32

dynamic hedging and collateralization strategies, see for instance [23] or [9] for an33

overview.34

In this paper we explore the potential of dynamic risk management techniques for35

reinsurance counterparty risk. Our objective is twofold: we discuss the computation36

of value adjustments to account for reinsurance default when pricing a contract, and37

we analyse dynamic hedging strategies in view of reducing the risk exposure. In fact,38
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2 C. CECI, K. COLANERI, R. FREY AND V. KÖCK

counterparty risk towards a major reinsurance company is a low-frequency, high-39

severity event so that bearing this risk is not attractive for the ceding company.40

We consider a setting that is tailored to the analysis of RCCR. We model the41

aggregate claim amount process L underlying the reinsurance contract under consid-42

eration by a doubly stochastic compound Poisson process. To capture the effect that43

“reinsurance companies are most likely to default in times of market stress, that is44

exactly when cedants are most reliant upon their reinsurance covers” (see [19]), we45

introduce several sources of dependence between the aggregate claim amount L and46

the default process HR of the reinsurance company. There is positive correlation47

between the claim arrival intensity λL and the default intensity λR of the reinsurer;48

moreover, λL exhibits a contagious jump at the default time τR of the reinsurer. In49

line with the concept of market consistent valuation we define the credit value ad-50

justment (CVA) for a reinsurance contract as the expected discounted value of the51

replacement cost for the contract incurred by the insurer at the default time τR. Us-52

ing mathematical results from the companion paper [14], we characterize the CVA53

as classical solution of a partial integro-differential equation. Next we address the54

hedging of RCCR by dynamic trading in a credit default swap (CDS) on the rein-55

surance company. Here we resort to a quadratic hedging approach (see [28]), since56

perfect replication is not possible. To determine the hedging strategy we make use57

of an orthogonal decomposition of the CVA into a hedgeable and a non-hedgeable58

part, based on the Galtchouk-Kunita-Watanabe decomposition of the associated dis-59

counted gains process. The paper closes with a simulation study. We analyse the60

impact of model parameters on the size of the CVA and we compare the performance61

of various hedging strategies. Our numerical experiments show that dynamic CDS62

hedging strategies significantly reduce reinsurance counterparty risk, both compared63

to a static hedging strategy (a strategy where the CDS position is not adjusted) and64

to the case where the insurance company does not hedge at all. More generally, the65

results suggest that dynamic risk-mitigation techniques can be very useful tools in66

the management of reinsurance counterparty risk.67

We continue with a discussion of the existing literature. The quantitative litera-68

ture on RCCR is relatively scarce. Interesting contributions from practitioners include69

[29] or [19] who propose a static model to assess the distribution of the RCCR loss,70

which can be used for reserving and economic capital purposes. They employ cor-71

porate bonds and CDSs to estimate reinsurance default rates and model correlation72

between defaults by reinsurers’ asset return correlations. Another example is offered73

by [24] who study the problem of optimising the weight of different reinsurance com-74

panies in a given reinsurance program in order to minimize the expected loss due to75

RCCR. Also the solvency capital requirement for RCCR under the Solvency II stan-76

dard formula is computed from a simple one-period credit risk model, see for instance77

[13]. On the academic side, [2] and [10] study how the possibility of a default of the78

reinsurer affects the form of optimal reinsurance contracts. An excellent overview79

of counterparty risk management in banking is given in [23] or [9]. Other recent80

contributions are, for instance [15, 16, 5]. Quadratic hedging criteria such as mean81

variance hedging and risk minimization have been applied in the insurance framework82

mainly for hedging life insurance contracts (e.g. unit linked contracts). Some recent83

references are, for instance [26, 17, 30, 11, 3, 12]84

The rest of the paper is organized as follows. In Section 2 we introduce and develop85

the modelling framework and discuss the different forms of interaction between the86

insurance and the reinsurance companies that are captured by our setting. A rigorous87

construction of the model dynamics is provided in Section 2.3. In Section 3 we discuss88
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CVA AND HEDGING OF RCCR 3

the price of the reinsurance contract and the value adjustment to account for the89

reinsurer default. The hedging problem is studied in Section 4, and Section 5 contains90

the results from the numerical analysis. Some longer computations are relegated to91

the Appendix.92

2. The Model.93

2.1. The Setup. We work on a measurable space (Ω,G) with a complete and94

right continuous filtration G = (Gt)t≥0. We assume that on this space there are two95

equivalent probability measures: the physical measure P and a risk neutral measure96

Q which is used for the valuation of financial and actuarial contracts. Using a risk-97

neutral measure for pricing purposes is in line with the principle of market consistency98

valuation, which is frequently used in the insurance framework and which represents99

one of the core elements of the Solvency II regulatory regime.100

We consider a setup with two companies: an insurance company, labelled I, and a101

reinsurer R, who enter into a reinsurance contract with a given maturity T (typically102

one year). To model the losses in the insurance portfolio underlying this contract we103

consider a sequence {Tn}n∈N of claim arrival times and a sequence {Zn}n∈N of claim104

sizes. Precisely, the Tn are G-stopping times such that Tn < Tn+1 a.s. and Zn are a.s.105

strictly positive GTn
-measurable random variables. We define the counting process106

N = (Nt)t≥0 by Nt =
∑∞
n=1 1{Tn≤t}, for every t ≥ 0. Then the process L = (Lt)t≥0107

given by108

Lt =

Nt∑
n=1

Zn , t ≥ 0,109

110

describes the aggregate claim amount underlying the reinsurance contract. It will be111

convenient to work with the integer-valued random measuremL on R+×R+ associated112

with the marked point process L, that is113

mL(dt,dz) =
∑
n≥1

δ{Tn,Zn}(dt,dz)1{Tn<∞},114

where δ{t,z} is the Dirac measure at point (t, z) ∈ R+ × R+. This allows for the
following equivalent expression of L

Lt =

∫ t

0

∫
R+

z mL(ds,dz), t ≥ 0.

In our setting the reinsurance company may default and we denote by τR the G-115

stopping time representing its default time; the default indicator process HR =116

(HR
t )t≥0 is given by117

HR
t = 1{τR≤t}, t ≥ 0.118119

If τR ≤ T , the reinsurer will not be able to fulfill his obligations which creates rein-120

surance counterparty credit risk (RCCR).121

Next we specify the model for the loss process L and the default indicator HR.122

In our analysis we are mostly concerned with valuation issues so we work under the123

risk-neutral measure Q; to simplify the exposition we therefore introduce directly the124

Q dynamics of L and HR. Model calibration and the relation between the measures125

P and Q are discussed in more detail in Section 2.2. We assume that the point126
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4 C. CECI, K. COLANERI, R. FREY AND V. KÖCK

process N modeling the claim arrivals has the (G,Q)-intensity λL for a nonnegative127

G-adapted cádlág process λL = (λLt )t≥0 (called in the sequel loss intensity), that is128

(Nt −
∫ t
0
λLs−ds)t≥0 is a (G,Q)-martingale. We assume that claim sizes are indepen-129

dent random variables with identical distribution ν(dz), and also independent of N .130

Therefore the (G,Q)-predictable compensator of the measure mL(dt,dz) is given by131

λLt−ν(dz)dt 1. We assume that the default indicator process HR admits a stochastic132

intensity λR = (λRt )t≥0 (in the sequel called the default intensity of R), which is a133

nonnegative G-adapted cádlág process such that the process134

(1) MR
t := HR

t −
∫ t∧τR

0

λRs−ds, t ≥ 0,135

is a (G,Q)-martingale. Finally we describe the dynamics of the default and the136

claim arrival intensity. We assume that there is a standard two-dimensional (G,Q)-137

Brownian motion W = (W 1
t ,W

2
t )t≥0 and that the processes λL and λR are of the138

form λLt = λL(Xt), λ
R
t = λR(Yt), t ≥ 0, where X = (Xt)t≥0 and Y = (Yt)t≥0 are139

intensity-factor processes that satisfy the following system of SDEs140

dXt = γX(Xt−) dHR
t + bX(Xt)dt+ σX(Xt)dW

1
t , X0 = x0 ∈ R,141

dYt = bY (Yt)dt+ σY (Yt)(ρdW 1
t +

√
1− ρ2dW 2

t ), Y0 = y0 ∈ R,142143

for some ρ ∈ [0, 1] and measurable functions bX , bY : R → R, σX , σY : R → R+.144

We assume that the functions λL : R → R+ and λR : R → R+ and γX : R → R+145

are continuous and increasing. A detailed construction of this model is given in146

Section 2.3. Modelling λL and λR as functions of the intensity factors X and Y is147

mathematically convenient, as it facilitates the application of mathematical results148

from the companion paper [14].149

We assume that the indemnity payment of the reinsurance contract is of the form
φ(LT ) for some bounded, increasing and Lipschitz continuous function φ. This covers
typical forms of reinsurance (see, e.g. [1]). For examples, for a stop loss reinsurance
contract with priority or lower attachment point K and upper limit K one takes
φ(l) = min

{
K, [l−K]+

}
(with [x]+ = max{x, 0}). Another example is offered by the

excess-of-loss (XL) contract with retention level M and upper limit K. The payoff of
this contract is given by

min
{
K,

NT∑
n=1

[Zi −M ]+
}
.

This can be written in the form φ(LXL
T ) if we set LXL

t =
∑
{Tn≤t,Zn>M}[Zn−M ] and150

φ(l) = min{K, l}.151

We denote by r ≥ 0 the risk-free interest rate which is taken constant for sim-152

plicity. In line with market consistent valuation we define the market value of the153

reinsurance contract by154

(2) V φt := EQ
[
e−r(T−t)φ(LT )|Gt

]
, 0 ≤ t ≤ T .155

1By definition of (G,Q)-predictable compensator, for every nonnegative, G-predictable random

function (Γ(t, z))t≥0 with EQ
[∫ t

0

∫
R+ |Γ(s, z)|λLs−ν(dz)ds

]
<∞, for every t ≥ 0, the process∫ t

0

∫
R+

Γ(s, z)(mL(ds, dz)− λLs−ν(dz)ds), t ≥ 0,

is a (G,Q)-martingale.
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CVA AND HEDGING OF RCCR 5

The quantity V φt is the theoretical value of the reinsurance contract at time t. Due to156

the fact that the reinsurer R may default, the transaction price (the price at which I157

and R are actually entering into the contract) needs to be adjusted. This is done via158

the credit value adjustment introduced in Section 3.159

Our setting accounts for various forms of dependence between the aggregate claim160

amount L and the default time τR. First, there is correlation between Brownian mo-161

tions driving the intensities λL and λR, modelled by the parameter ρ. In practice162

one would take ρ > 0, so that in a scenario where the insurance company expe-163

riences many losses (high claim arrival intensity λL), the economic outlook for the164

reinsurance company gets less favourable (high default intensity λR). This models165

the observation that “often there are strong correlations between reinsurance default166

and the loss experience of the ceded portfolio” (see [19]). Second, there is pricing167

contagion: For γX > 0, the risk-neutral claim arrival intensity λL jumps upward at168

τR which translates into an upward jump of the market value V φt of the reinsurance169

contract at t = τR. Pricing contagion reflects the fact that the default of R reduces170

the supply for reinsurance (as R leaves the market), so that the insurer has to pay171

a higher price to renew his reinsurance cover. Note that each of these two forms of172

dependence between L and τR imply that173

(3) EQ
[
V φt |τR = t

]
> EQ

[
V φt

]
.174

Following the financial literature on counterparty risk we refer to this inequality as175

wrong-way risk.176

We now introduce a set of assumptions that give sufficient conditions for existence
and uniqueness for the solutions of certain partial integro-differential equations that
arise in the computation of the value adjustment and of the hedging strategy. Define
the instantaneous covariance matrix of (X,Y ) as

Σ(x, y) :=

(
(σX(x))2 ρσX(x)σY (y)

ρσX(x)σY (y) (σY (y))2

)
for every (x, y) ∈ R2.

177

Assumption 2.1. (A1) The functions bX , bY , σX and σY are Lipschitz;178

(A2) There exists β > 0 such that for every w ∈ R2 we have179

w>Σ(x, y)w ≥ β‖w‖2.180181

(A3) The functions λL, λR are Lipschitz continuous and bounded.182

(A4) The claim-size distribution ν has finite second moment.183

2.2. Calibration. We now sketch an approach for the calibration of our model.184

This should also help to clarify the role played by the valuation measure Q as opposed185

to the historical measure P. We begin with the calibration of the risk-neutral default186

intensity λR. In practice one would calibrate a model for λR to CDS spreads of187

R observed on the market, see e.g. [8, Chapter 22] for a detailed discussion and188

numerical examples. Here one is dealing only with market quantities, so that it is189

sufficient to consider the Q-default intensity of R.190

Next we describe a method for calibrating the Q-characteristics of the loss process
and we explain how to relate market consistent valuation of the reinsurance contract to
more standard actuarial valuation approaches. At this point we are dealing with risks
that are largely non-traded so that the P-dynamics of the loss process are relevant as

This manuscript is for review purposes only.



6 C. CECI, K. COLANERI, R. FREY AND V. KÖCK

well. We proceed in three steps. In step one techniques from actuarial statistics (for
instance [1, Chapter 4 and 5]) are used to estimate a doubly stochastic compound
Poisson process model for L with claim size distribution νP and loss intensity λL,P

using historical loss data. In the estimation we propose to work with a model of
the form λL,Pt = λL,P(X̃t) for the P-loss intensity and we assume that X̃ follows a
diffusion,

dX̃t = bX(X̃t)dt+ σX(X̃t)dW
1
t , X̃0 = x0 ,

for a P-Brownian motion W 1. Notice that for the estimation we refer to a process191

X̃ (see Section 2.3 below) which represents a contagion-free version of the intensity-192

factor X (i.e. the processes X and X̃ share the same dynamics up to time τR but193

X̃ does not jump at τR). This reflects the fact that the default of R has no impact194

on the P-loss intensity as λL,P models the arrival intensity of claim events in the195

real world such as storms or flooding. The reinsurance contract is then valued via an196

actuarial premium principle, see e.g. [1, Chapter 7], leading to the counterparty-risk197

free actuarial value of the contract. For instance, one could use the expected value198

principle with safety-loading parameter α > 0, which gives an actuarial value equal199

to (1 + α)EP[e−rTφ(LT )].200

In step two we choose a contagion-free risk-neutral measure Q̃ such that L has201

Q̃-local characteristics (λL,Q̃, νQ̃) and such that (i) Q̃ is equivalent to P and (ii)202

the contagion-free market value EQ̃[e−rTφ(LT )] coincides with the actuarial value of203

the contract. By general change-of-measure results for marked point processes (see.204

e.g., [7, Theorem VIII.T10]) condition (i) is satisfied if νQ̃ is equivalent to νP and if205

the Radon Nikodym derivative dνQ̃/dνP(z) =: ψ(z) and the ratio λL,Q̃t /λL,Pt =: κt206

satisfy mild integrability conditions; condition (ii) can be ensured by an appropriate207

choice of parameters. Given the large amount of freedom in choosing νQ̃ and λL,Q̃,208

we propose to preserve the mathematical structure of the local characteristics of L in209

the transition from P to Q̃. More precisely, we assume that νQ̃ belongs to the same210

class of distributions as νP; that W 1 is also a Q̃-Brownian motion; and finally that211

under Q̃ the loss intensity is of the form λL,Q̃t = cλL,P(X̃t) , 0 ≤ t ≤ T, for some212

constant c > 0, so that under Q̃ there is no pricing contagion.2 The parameter c in213

the Q̃-loss intensity is calibrated to ensure that the contagion free market value of the214

reinsurance contract equals the actuarial value (which is contagion free by design).215

Moreover, to account for risk aversion on the part of the reinsurer, the parameters of216

the claim size distribution can be altered so that large claims are more likely under217

Q̃ than under P.218

In step three we model the loss intensity λL and the claim size distribution ν
under the risk-neutral measure Q. In order to incorporate pricing contagion and
the risk of default of R we assume that the risk-neutral loss intensity is of the form
λLt = cλL,P(Xt), where X solves the SDE

dXt = γX(Xt−)dHR
t + bX(Xt)dt+ σX(Xt)dW

1
t ,

2Note that the change of measure is accomplished via the Radon Nikodym derivative dQ̃
dP
|GT = ζT

where ζ solves the SDE

dζt = ζt−(κtψ(z)− 1)(mL(dt, dz)− νP(dz)λPt dt), ζ0 = 1;

see [7, Theorem VIII.T10] for details. This change of measure affects only the local characteristics
of L, the law of the Brownian motions and of the default process stay unchanged.
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for γX(x) > 0 and a Q-Brownian motion W 1. Note that the intensity-factor X219

exhibits an upward jump at the default time τR which increases the risk neutral loss220

intensity, so that under Q there is pricing contagion. On the other hand there is no221

need to alter the claim size distribution in the transition from Q̃ to Q, that is we take222

ν = νQ̃.223

The final task in model calibration is to determine γX and the intensity correlation224

ρ. Here we propose to rely on the expert judgement from experienced underwriters.225

Remark 2.2. If one lacks sufficient data to calibrate a full-fledged diffusion model226

for λL,P or if past loss data warrant a simpler model for the loss intensity one could227

assume that the P loss intensity is constant, that is λL,Pt = λL,P0 ; the contagion-free228

loss intensity is then constant as well, and to account for pricing contagion the Q loss229

intensity takes the form λL,Qt = λL,Q0 (1 + γHR
t ) for some γ > 0. Such a model might230

be sufficient for certain applications.231

2.3. Model construction. The goal of this section is to provide a step-by-232

step construction of the model introduced in Section 2.1. Moreover, we establish233

certain mathematical properties that are needed for the characterization of the credit234

value adjustment. We start by fixing a filtered probability space (Ω,G,Q). Let235

W = (Wt)t≥0 be a two-dimensional Brownian motion with components (W 1
t ,W

2
t )t≥0,236

let η = (ηt)t≥0 be a standard Poisson process independent of W , and {Zn}n∈N be237

a sequence of independent random variables with identical distribution ν(dz), and238

that are also independent of W and η. Define the process M = (Mt)t≥0 with Mt =239 ∑ηt
n=1 Zn. This is a compound Poisson process with intensity equal to one and jump240

size distribution ν(dz). Let the process Y be the unique solution of the SDE241

dYt = bY (Yt)dt+ σY (Yt)(ρdW 1
t +

√
1− ρ2dW 2

t ), Y0 = y0 ∈ R.242243

We assume that there exists a G-measurable random variable ϑ with unit exponential244

law, independent of W and M and we define τR as245

τR := inf
{
t ≥ 0 :

∫ t

0

λR(Ys)ds ≥ ϑ
}
.246

247

By construction the random time τR is doubly stochastic with respect to the filtration248

FW ∨ FM with hazard rate (λR(Yt))t≥0, that is we have for every t > 0249

Q(τR > t | FW∞ ∨ FM∞ ) = Q
(∫ t

0

λR(Ys)ds ≤ ϑ | FW∞ ∨ FM∞
)

= e−
∫ t
0
λR(Ys)ds;250

see, e.g. [4, Section 8.2.1] or [25, Section 10.5] for details. We define HR
t = 1{τR≤t},251

t ≥ 0, and we introduce the process X as the unique solution to the SDE252

dXt = γX(Xt−) dHR
t + bX(Xt)dt+ σX(Xt)dW

1
t , X0 = x0 ∈ R.253254

To construct the aggregate claims process we use a time change argument. Define the255

process θ = (θt)t≥0 by θt :=
∫ t
0
λL(Xs−)ds for every t ≥ 0 and let Nt := ηθt , t ≥ 0.256

It is easy to see that N = (Nt)t≥0 is a doubly stochastic point process with intensity257

(λL(Xt))t≥0 (see, e.g. [22]) and that the loss process is given by Lt = Mθt =
∑Nt

n=1 Zn.258

Finally we define the filtration G = (Gt)t≥0 by259

Gt = FWt ∨ FLt ∨Ht, t ≥ 0,260261
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8 C. CECI, K. COLANERI, R. FREY AND V. KÖCK

completed with Q-null sets, where H = (Ht)t≥0 is the natural filtration of the process262

HR. Notice that the random variables Zn are GTn
-measurable, with {Tn}n∈N being263

the sequence of jump times of N . Moreover, τR is a stopping time with respect to264

the filtration G. We also have that MR in equation (1) is (G,Q)-martingale. This265

is a consequence of the fact that MR is a martingale with respect to the filtration266

FW ∨H and, due to independence between M and W , this is also a martingale with267

respect to filtration FW ∨H ∨ FM∞ . Now, since FWt ∨ FLt ∨Ht ⊂ FWt ∨ FM∞ ∨Ht for268

every t ≥ 0, then we have that the martingale property for MR holds for the filtration269

FW ∨ FL ∨H.270

The contagion-free market. In the remaining part of this section we introduce271

the contagion-free setting which will be used in the computations of the credit value272

adjustment and of the hedging strategies. Let X̃ = (X̃t)t≥0 be the unique solution to273

the SDE274

dX̃t = bX(X̃t)dt+ σX(X̃t)dW
1
t , X̃0 = x0 ∈ R.275276

It is easy to see that X̃ has the same dynamics as the “original” factor X except for277

the jump at τR. We define Ñt := ηθ̃t for every t ≥ 0, where θ̃t =
∫ t
0
λL(X̃s)ds, then278

Ñ = (Ñt)t≥0 is a doubly stochastic point process with intensity (λL(X̃t))t≥0. We can279

use these processes to construct L̃ = (L̃t)t≥0 as follows,280

L̃t = Mθ̃t
, t ≥ 0.281

282

Notice that before default, the triples (X,N,L) and (X̃, Ñ , L̃) coincide, that is the283

processes (1−HR
t )(Xt, Nt, Lt) and (1−HR

t )(X̃t, Ñt, L̃t) are indistinguishable. We let284

F := (Ft)t≥0 with285

Ft = FWt ∨ F L̃t .(4)286287

The following result holds.288

Lemma 2.3. The random time τR is doubly stochastic with respect to the back-289

ground filtration F.290

Proof. By the construction of τR we have Q(τR > t | FW∞ ∨ FM∞ ) = e−
∫ t
0
λR(Ys)ds

for every t ≥ 0. Now we observe that λR(Y ) is adapted to FW and so is

(e−
∫ t
0
λR(Ys)ds)t≥0. Moreover we have that

FW∞ ∨ F L̃∞ ⊆ FW∞ ∨ FM∞ ,

which implies that Q(τR > t | FW∞ ∨ F L̃∞) = e−
∫ t
0
λR(Ys)ds.291

3. Credit Value Adjustment. To resume the problem, we consider a reinsur-
ance contract between I and R with maturity T and payoff φ(LT ) for a nonnegative
and increasing function φ. For technical reasons we assume that φ is bounded and Lip-
schitz continuous; this assumption holds for the examples considered in Section 2.1.
Moreover, the counterparty-risk free market value of this contract is given by

V φt := EQ
[
e−r(T−t)φ(LT )|Gt

]
, 0 ≤ t ≤ T.

We assume that the premium for the contract has been paid at t = 0 so that I has no292

financial obligation towards R. If R defaults before the maturity date T , the insurance293
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company needs to renew her protection, that is she needs to buy a new reinsurance294

contract at the post-default market value V φτR . We assume that I receives a recovery295

payment of size (1 − δR)V φτR where δR ∈ (0, 1] is the loss given default (LGD) of R.296

Hence I suffers a loss of size δRV φτR . We denote by CL = (CLt)0≤t≤T the payment297

stream arising from the counterparty-risk loss. We have that298

CLt := δRV φτR1{τR≤t} = δR
∫ t

0

V φs dHR
s , 0 ≤ t ≤ T.(5)299

300

Note that under wrong-way risk, i.e. with EQ
[
V φt |τR = t

]
> EQ

[
V φt

]
, the loss301

of I at τR is higher than its unconditional value. This is an important issue in the302

management of RCCR. For instance, in the Solvency II regulation it is stated that “As303

the failure of the counterparty is more likely when the potential loss is high, the LGD304

(in our case the loss caused by the default of R) should be determined for the case305

of a stressed situation,” see [13]. It is a strong point of our approach that wrong-way306

risk is generated endogenously by the model. In contrast, in the standard formula of307

Solvency II ad-hoc adjustments are necessary to account for wrong-way risk.308

We define the credit value adjustment (CVA) for the reinsurance contract as the309

market consistent value of the future credit loss, that is310

CVAt = EQ

[∫ T

t

δRV φs e
−r(s−t)dHR

s |Gt

]
, 0 ≤ t ≤ T.(6)311

312

The amount CVAt can be viewed as a risk reserve that the insurance company has to313

set aside at time t to cover for losses due to reinsurance counterparty risk. Alterna-314

tively, CVAt0 can be viewed as the pricing adjustment to account for RCCR at time315

t0, that is on {τR > t0} the market consistent value of the cash-flow that is actually316

received by I is equal to V φt0 − CVAt0 . This follows from the following lemma.317

Lemma 3.1. For 0 ≤ t0 ≤ T one has

EQ

[∫ T

t0

e−r(s−t0)V φs dHR
s | Gt0

]
= 1{τR>t0}E

Q
[
HR
T e
−r(T−t0)φ(LT ) | Gt0

]
.

Proof. Define the stopping time σR := (τR ∧ T ) ∨ t0. Since (e−rtV φt )0≤t≤T is a318

(G,Q)-martingale and σR ≤ T , we get from the optional sampling theorem that319

(7) V φσR
= EQ

[
e−r(T−σR)φ(LT ) | GσR

]
.320

Notice that σR = τR on the set {t0 < τR ≤ T} and therefore using equation (7) we321

get322

EQ

[∫ T

t0

e−r(s−t0)V φs dHR
s | Gt0

]
= EQ

[
1{t0<τR≤T}e

−r(τR−t0)V φτR | Gt0
]

323

= EQ
[
1{t0<τR≤T}e

−r(σR−t0)V φσR
| Gt0

]
324

= EQ
[
EQ
[
1{t0<τR≤T}e

−r(T−t0)φ(LT ) | GσR

]
| Gt0

]
,325

326

so that the lemma follows from iterated conditional expectations (as Gt0 ⊆ GσR
).327
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Now we return to the interpretation of the CVA. Fix t0 ∈ [0, T ]. On {τR > t0} the

cash flow actually received by I is given by φ(LT )(1 − HR
T ) + (1 − δR)

∫ T
t0
V φs dHR

s .
The expected discounted value of this cash-flow equals

V φt0 − EQ
[
e−r(T−t0)φ(LT )HR

T | Gt0
]

+ EQ

[∫ T

t0

e−r(s−t0)V φs dHR
s | Gt0

]
− CVAt0

which is equal to V φt0 − CVAt0 , as the terms in the middle cancel by Lemma 3.1.328

Next we want to represent the value of the CVA as classic solution of a partial329

integro-differential equation (PIDE). This allows for an alternative characterization of330

the adjusted price in addition to the stochastic representation given in equation (6),331

and it is essential for the computation of the hedging strategy in Section 4. As a first332

step we analyze the term V φτR that appears in the definition of the credit loss. Note that333

the shifted process (XτR+t, LτR+t)t≥0 has the same dynamics as the contagion-free334

processes (X̃t, L̃t)t≥0; hence it is a two-dimensional Markov process with generator335

L(L̃,X̃)f(t, l, x) =
∂f

∂x
(t, l, x)bX(x) +

1

2

∂2f

∂x2
(t, l, x)(σX(x))2(8)336

+

∫
R+

(
f(t, l + z, x)− f(t, l, x)

)
λL(x)ν(dz).337

338

This suggests that V φτR can be described as the solution of a backward equation in-339

volving the generator L(L̃,X̃). The next proposition shows that this is in fact correct.340

Proposition 3.2. Under Assumption 2.1, there exists a unique bounded classical341

solution vφ (i.e. continuous, C1 in t and C2 in x) of the following backward PIDE342

∂vφ

∂t
(t, l, x) + L(L̃,X̃)vφ(t, l, x) = rvφ(t, l, x), (t, l, x) ∈ [0, T )× R+ × R,(9)343

344

with terminal condition vφ(T, l, x) = φ(l). Moreover, it holds for τR ≤ T that

V φτR = vφ
(
τR, L̃τR , X̃τR + γX(X̃τR)

)
.

Proof. The process (L̃, X̃) is a two-dimensional Markov process with pure jump

component L̃ and generator L(L̃,X̃) given in (8). The existence of a classical solution
vφ to the backward equation (9) follows from [14]. Moreover, it holds that

vφ(t, l, x) = EQ
[
e−r(T−t)φ(L̃T ) | L̃t = l, X̃t = x

]
.

The strong Markov property thus gives that on {τR ≤ T},

V φτR = vφ
(
τR, LτR , XτR

)
= vφ(τR, L̃τR , X̃τR + γX(X̃τR)) ,

where in the last equality we used that LτR = L̃τR , XτR = X̃τR + γX(X̃τR) and345

X̃τR− = X̃τR .346

Note that the regularity properties of the function vφ (C1 in t, C2 in x but only347

continuous in l) are due to the fact that L̃ is a pure jump process and therefore348

the smoothing effect coming from the diffusion does not apply in the l direction. In349

the statement of Proposition 3.2 we refer for brevity to Assumption 2.1. However,350

Proposition 3.2 does not involve the process Y and therefore some of the conditions351

in the list (A1)–(A4) are unnecessary.352
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Proposition 3.3. Under Assumptions 2.1 the value of the CVA is given by353

CVAt = δR(1−HR
t )fCVA(t, Lt, Xt, Yt)(10)354355

where fCVA : [0, T ]×R+×R×R→ R+ is a classical solution (i.e. continuous, C1 in356

t and C2 in (x, y)) of the following backward PIDE357

∂fCVA

∂t
+ L(L̃,X̃,Y )fCVA + λR(y)vφ(t, l, x+ γX(x)) = (λR(y) + r)fCVA,(11)358

359

for all (t, l, x, y) ∈ [0, T )×R+ ×R2 with terminal condition fCVA(T, l, x, y) = 0. The360

operator L(L̃,X̃,Y ) (the generator of the three-dimensional Markov process (L̃, X̃, Y ))361

is given by362

L(L̃,X̃,Y )f =
∂f

∂x
bX(x) +

∂f

∂y
bY (y) +

1

2

∂2f

∂x2
(σX(x))2 +

1

2

∂2f

∂y2
(σY (y))2(12)363

+
∂2f

∂x∂y
ρσX(x)σY (y) +

∫
R+

(f(t, l + z, x, y)− f(t, l, x, y))λL(x)ν(dz),364
365

where f is always evaluated at (t, l, x, y).366

Proof. The CL is a so-called payment-at-default claim (see for instance [25, Sec-367

tion 10.5]). Proposition 3.2 allows to express its payoff at τR in terms of contagion368

free quantities. Then we get that369

CVAt = EQ

[∫ T

t

δRvφ(s, L̃s, X̃s + γX(X̃s))e
−r(s−t)dHR

s | Gt

]
.(13)370

371

In equation (13) we can replace Gt with Ft ∨ Ht, where Ft is defined in (4), since372

these sigma fields coincide up to time τR. Then we get from Lemma 2.3 and [25,373

Theorem 10.19] that374

CVAt = δR(1−HR
t )EQ

[∫ T

t

vφ(s, L̃s, X̃s + γX(X̃s))λ
R(Ys)e

−
∫ s
t
(r+λR(Yu))duds | Ft

]
.

(14)

375

376

Note that the process (L̃, X̃, Y ) is Markovian with respect to the filtration F with377

generator L(L̃,X̃,Y ) as in (12). It follows that there is a function fCVA : [0, T ]×R+ ×378

R× R→ R+ such that379

CVAt = δR(1−HR
t )fCVA(t, L̃t, X̃t, Yt).380381

Then, by applying [14, Theorem 2.4] we get that fCVA is a classical solution of the382

backward PIDE (11). Finally note that on the event {τR > t}, 1−HR
t = 1 and also383

L̃t = Lt, X̃t = Xt, which implies (10).384

Example 3.4. In the numerical analysis we consider a special case of our setting.385

There the loss intensity λL is constant except for an upward jump at time τR that386

models price contagion. In this case we may identify the intensity λL and the intensity-387

factor process X (i.e. λL(·) is the identity function) and assume that388

λL(Xt) = Xt = x0(1 +HR
t γ), 0 ≤ t ≤ T,(15)389390
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for constants x0 > 0 and γ > 0. Here the parameter γ models the percentage change391

in the loss intensity at τR. We now calculate the credit value adjustment for this392

situation. Under (15) the process L̃ is a compound Poisson process with intensity x0,393

jump-size distribution ν(dz) and generator394

LL̃x0
f(t, l) = x0

∫
R+

(
f(t, l + z)− f(t, l)

)
ν(dz).395

396

For given x0 > 0, define the function (t, l) 7→ vφ(x0; t, l) as the solution of the backward397

integral equation398

∂vφ

∂t
(x0; t, l) + LL̃vφ(x0; t, l) = rvφ(x0; t, l), (t, l) ∈ [0, T )× R+,399

400

with terminal condition vφ(x0;T, l) = φ(l). Then, the post default value of the rein-
surance contract is given by3

V φτR = vφ(x0(1 + γ); τR, L̃τR).

With this we get that credit value adjustment satisfies CVAt = δR(1 −401

HR
t )fCVA(x0; t, L̃t, Yt), where the function (t, l, y) 7→ fCVA(x0; t, l, y) is the solution402

of the backward PIDE403

∂fCVA

∂t
(x0; t, l, y) + L(L̃,Y )

x0
fCVA(x0; t, l, y) + λR(y)vφ(x0(1 + γ); t, l)(16)404

= (λR(y) + r)fCVA(x0; t, l, y),405406

for every (t, l, y) ∈ [0, T )×R+ ×R with terminal condition fCVA(x0;T, l, y) = 0, and407

where for a generic continuous function f(l, y) which is C2 in y, the operator L(L̃,Y )
x0408

is given by409

L(L̃,Y )
x0

f(l, y)=
∂f

∂y
(l, y)bY (y)+

1

2

∂2f

∂y2
(l, y)(σY (y))2+ x0

∫
R+

(f(l + z, y)− f(l, y))ν(dz).410
411

Note that in this example the variable corresponding to loss intensity drops out of the412

equation (16) and therefore (A2) in Assumption 2.1 can be replaced by the simpler413

condition414

(A2’) There is some β > 0 such that σY (·) > β.415

4. Hedging of Reinsurance Counterparty Credit Risk. In this section we416

investigate how the insurance company can reduce the losses arising from the default417

of the reinsurer by a dynamically adjusted position in a credit default swap (CDS) on418

R. A CDS is a natural hedging instrument for credit risk since it makes a payment419

at τR, that is exactly when the counterparty risk loss arises. Moreover, there is a420

reasonably liquid market for CDSs on major reinsurane companies. Another option421

for managing counterparty risk would be a dynamically adjusted collateralization422

strategy as in [20]; however, one of the advantages of hedging with CDS contracts is423

that a strategy can be implemented unilaterally by I. In our setting there are several424

sources of randomness that do not correspond to traded assets, such as the loss process425

L or the loss intensity λL, and therefore perfect hedging is not possible. To deal with426

3Of course one could use other actuarial techniques such as Panjer recursion to compute vφ.
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the ensuing market incompleteness we resort to a quadratic hedging method. Precisely427

we will consider self financing strategies and minimize the quadratic hedging error at428

the maturity date.429

To proceed with a formal analysis of the hedging problem we need to discuss the430

dynamics of a self-financing CDS trading strategy. This issue is taken up next.431

4.1. Dynamics of a CDS trading strategy. We consider a CDS contract432

on R with fixed running spread premium ζ > 0 and with default payment given by433

the deterministic loss given default δCDS ∈ (0, 1] of R. To simplify the exposition434

we assume that the premium payments are made continuously. The cashflow stream435

associated to the CDS (from the viewpoint of I) is therefore given by436

(17) DR
t = δCDSHR

t − ζ
∫ t

0

(1−HR
u )du, 0 ≤ t ≤ T,437

where the first term refers to the payment at default and the second term is the438

premium payment. Note that (17) describes the cash-flows of a CDS contract with439

notional equal to one; holding m units of this contract is the same as holding one440

CDS contract with notional m.441

The present value of the future payments of the CDS is given by442

Λt := EQ

[∫ T

t

e−r(u−t)dDR
u |Gt

]
443

= EQ

[
δCDS

∫ T

t

e−r(u−t)dHR
u − ζ

∫ T

t

e−r(u−t)(1−HR
u )du|Gt

]
.444

445

Similarly as in Section 3, we characterize the process Λ in terms of the classical446

solution of a backward partial differential equation (PDE).447

Proposition 4.1. Under Assumptions 2.1 the process Λ is given by

Λt = (1−HR
t )g(t, Yt)

where g : [0, T ] × R → R is a classical solution (i.e. C1 in t and C2 in y) of the448

following backward PDE449

∂g

∂t
(t, y) + LY g(t, y) + (δCDSλR(y)− ζ) = (λR(y) + r)g(t, y), (t, y) ∈ [0, T )× R,

(18)

450
451

with terminal condition g(T, y) = 0. Here the operator LY is the generator of Y , that452

is453

LY f(y) =
∂f

∂y
(y)bY (y) +

1

2

∂2f

∂y2
(y)(σY (y))2.(19)454

455

Proof. Since MR in (1) is a G- martingale we have that456

Λt = EQ

[∫ T

t

e−r(u−t)(δCDSλR(Yu)− ζ)(1−HR
u )du|Gt

]
(20)457

458
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Using Fubini’s theorem, Lemma 2.3 and [25, Theorem 10.19] we get that the right459

hand side of (20) is equal to460

(1−HR
t )EQ

[∫ T

t

e−
∫ u
t
(r+λR(Ys))ds(δCDSλR(Yu)− ζ)du|Ft

]
(21)461

462

By Markovianity of the process Y with respect to filtration F, there exists a function463

g such that conditional expectation in (21) is equal to g(t, Yt). Denote by LY the464

generator of Y given by (19). Then it is easily seen that under Assumption 2.1, g is465

the classical solution of (18), see, e.g. [27, Theorem 8.2.1].466

Finally we define the discounted gains process of the CDS (the past cashflows and467

the present value of the future cashflows, both discounted back to time zero) by468

St = e−rtΛt +

∫ t

0

e−rudDR
u , 0 ≤ t ≤ T.(22)469

470

Note that St = EQ
[∫ T

0
e−rudDR

u |Gt
]

for every 0 ≤ t ≤ T . Therefore S is a square inte-

grable (G,Q)-martingale (S is even bounded as the cash flow stream DR is bounded).
Consider now a self-financing trading strategy ξ = (ξ0, ξ1), where ξ1t is the notional
of the CDS position at time t and where ξ0t is the cash position at time t. Then the
value of this strategy at time 0 ≤ t ≤ T equals Vt(ξ) = ξ1tΛt+ξ

0
t e
−rt, and the strategy

is self-financing if the discounted value Ṽt(ξ) = e−rtVt(ξ) satisfies

Ṽt(ξ) = V0(ξ) +

∫ t

0

ξ1sdSs , 0 ≤ t ≤ T .

4.2. Quadratic hedging. Next we formalize the quadratic criterion that is used471

to determine the optimal hedging strategy. We call a self-financing trading strategy472

ξ = (ξ0, ξ1) admissible if ξ0 is G-adapted and ξ1 is G-predictable and satisfies the473

integrability condition474

(23) EQ

[∫ T

0

(ξ1u)2d〈S〉u

]
<∞ .475

Here 〈S〉 denotes the predictable quadratic variation of the martingale S (the pre-476

dictable compensator of the pathwise quadratic variation [S] of S). Condition (23)477

ensures that the discounted value process V (ξ) is a right continuous and square inte-478

grable martingale. The hedging problem amounts to finding a self-financing admis-479

sible strategy ξ∗ with initial value V0(ξ∗) and CDS position ξ1,∗ that minimizes the480

quadratic hedging error481

EQ

(∫ T

0

e−rtδRV φt dHR
t −

(
V0(ξ) +

∫ T

0

ξ1t dSt

))2
 .(24)482

483

Such a strategy will be called Q-mean-variance minimizing.484

Remark 4.2. We continue with a few comments on the hedging criterion.485

1) Minimizing the quadratic hedging error with respect to the risk-neutral measure
Q, instead of the historical measure P, has a couple of advantages. First, the ensuing
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CDS position ξ1,∗ is time-consistent: the CDS strategy that minimizes the conditional
quadratic hedging error

EQ

(∫ T

t

e−rsδRV φs dHR
s −

(
Vt(ξ) +

∫ T

t

ξ1sdSs

))2 ∣∣∣ Gt


over the period [t, T ] is the restriction of ξ1,∗ to the interval [t, T ]. This is in general486

not true for a P-mean-variance minimizing strategy. Moreover, since the default487

and loss intensities under Q are typically higher than the corresponding P-intensities,488

more mass is put in expectation (24) on states where the counterparty-risk loss is large489

and the Q-mean-variance minimizing strategy will track the credit loss more closely490

in those states than a P-mean-variance-minimizing strategy; this adds an additional491

layer of prudence to our approach. Finally a Q-mean-variance-minimizing strategy is492

comparatively easy to determine and the solution has a clear economic interpretation.493

2) As an alternative to Q-mean-variance minimization one might consider risk494

minimization under Q as hedging criterion. The investment in the risky asset (the495

CDS in our setting) is the same for both approaches; the only difference is that in496

the mean-variance-hedging approach a self-financing strategy is followed until time497

T where the hedging error takes the form of a lump sum adjustment. In the risk498

minimization approach on the other hand the portfolio value is adjusted continuously499

at any 0 < t ≤ T . Note however that mean-variance hedging and risk minimization500

lead to different strategies if one works under the historical measure. For an in-depth501

discussion of these issues we refer to [28].502

To determine the Q-mean-variance minimizing strategy we first introduce the503

discounted gain process MCL associated with the credit loss. This process is given by504

MCL
t = EQ

[∫ T

0

e−rsd CLs |Gt

]
=

∫ t

0

e−rsd CLs +e−rt CVAt, 0 ≤ t ≤ T,(25)505

506

where CL represents the payment stream arising from the counterparty-risk loss, see507

equation (5). Recall that the payoff φ of the reinsurance contract is bounded by508

assumption. This implies that CL is bounded, so that MCL is a bounded and hence509

in particular a square integrable (G,Q)-martingale. Since the discounted gain process510

of the CDS in equation (22) is a square integrable (G,Q)-martingale, it is well known511

that the Q-mean-variance optimal strategy can be determined with the help of the512

Galtchouk-Kunita-Watanabe decomposition of MCL with respect to S. This result513

ensures the existence of a predictable process ξ1,∗ satisfying (23) and of a martingale514

A, null at time zero, which is strongly orthogonal to S (that is the product of the515

two martingales (StAt)0≤t≤T is also a martingale or, equivalently, the predictable516

quadratic covariation 〈S,A〉 vanishes) such that517

(26) MCL
t = MCL

0 +

∫ t

0

ξ1,∗u dSu +At, Q− a.s. 0 ≤ t ≤ T.518

Then the strategy ξ∗ with CDS position ξ1,∗ and initial value V0(ξ∗) = MCL
0 is519

admissible and Q-mean-variance minimizing. A detailed proof of this result can be520

found in [28]. Intuitively, decomposition (26) permits to decompose the payment521

stream CL into its attainable part given by
∫
ξ1,∗t dSt, and an unattainable part A522

corresponding to non-hedgeable risk.523
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Identifying ξ1,∗ entails taking the predictable covariation with respect to S on524

both sides of equation (26). Using orthogonality between A and S, we get that525

〈MCL, S〉t =

∫ t

0

ξ1,∗u d〈S〉u, 0 ≤ t ≤ T,526

where 〈MCL, S〉 denotes the predictable quadratic covariation between martingales527

MCL and S. This implies that ξ1,∗ can be identified as predictable version of the528

Radon Nikodym density d〈MCL,S〉
d〈S〉 . Notice that since MCL and S are square integrable529

martingales, the process ξ1,∗ obtained via this construction naturally satisfies the530

integrability condition (23). Computing the density d〈MCL,S〉
d〈S〉 is the key point in the531

proof of the following theorem where we determine the Q-mean-variance minimizing532

strategy.533

Theorem 4.3. The Q-mean-variance minimizing strategy is characterized by the534

initial value V0(ξ∗) = CVA0 and by the CDS position ξ1,∗t =
d〈MCL,S〉t/dt

d〈S〉t/dt
, for every535

0 ≤ t ≤ T , where536

d〈MCL, S〉t
dt

= δRe−2rt(1−HR
t−)

{
ρσX(Xt−)σY (Yt)

∂fCVA

∂x
(t, Lt−, Xt−, Yt)

∂g

∂y
(t, Yt)

(27)

537

+(σY (Yt))
2 ∂fCVA

∂y
(t, Lt−, Xt−, Yt)

∂g

∂y
(t, Yt)538

+λR(Yt)
(
δCDS−g(t, Yt)

)(
vφ(t, Lt−, Xt−+γX(Xt−))− fCVA(t, Lt−, Xt−, Yt)

)}
539
540

and541

d〈S〉t
dt

= e−2rt(1−HR
t−)

{
λR(Yt)(δ

CDS − g(t, Yt))
2 + (σY (Yt))

2

(
∂g

∂y
(t, Yt)

)2}
.

(28)

542
543

Proof. By definition MCL
0 = CVA0 which gives the initial value of the strategy.

In order to determine ξ1,∗ note that in our setting the processes 〈MCL, S〉 and 〈S〉
are absolutely continuous with respect to Lebesgue measure. This implies that Q-a.s.

d〈MCL, S〉t
d〈S〉t

=
d〈MCL,S〉t/dt

d〈S〉t/dt
, 0 ≤ t ≤ T.

To derive the processes d〈MCL,S〉s
ds and d〈S〉s

ds we compute the pathwise quadratic544

(co)variations [MCL, S], respectively [S], and we use that 〈MCL, S〉, respectively 〈S〉,545

is the predictable compensator of these processes. We recall that MR is the compen-546

sated martingale given in equation (1) and denote by m̃(dt,dz) the compensated jump547

measure m̃(dt, dz) = mL(dt,dz) − λL(Xt−)ν(dz). From the PIDE characterization548

of the CVA in Proposition 3.3 and the Itô formula, see Appendix A for the detailed549
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computations, we get that the martingale MCL in (25) is explicitly given by550

MCL
t = MCL

0 + δR
∫ t

0

e−rs(vφ(s, Ls−, Xs− + γX(Xs−))−fCVA(s, Ls−, Xs−, Ys))dM
R
s551

+ δR
∫ t

0

e−rs(1−HR
s−)σX(Xs−)

∂fCVA

∂x
(s, Ls−, Xs−, Ys)dW

1
s552

+ δR
∫ t

0

e−rs(1−HR
s−)ρ σY (Ys)

∂fCVA

∂y
(s, Ls−, Xs−, Ys)dW

1
s553

+ δR
∫ t

0

e−rs(1−HR
s−)σY (Ys)

∂fCVA

∂y
(s, Ls−, Xs−, Ys)

√
1− ρ2 dW 2

s554

+ δR
∫ t

0

e−rs(1−HR
s−)

∫
R+

(
fCVA(s, Ls−+z,Xs−, Ys)−fCVA(s, Ls−, Xs−, Ys)

)
m̃(ds,dz),555

556

In a similar way we obtain the martingale decomposition of the process S. It holds557

that for every 0 ≤ t ≤ T ,558

St = S0 +

∫ t

0

e−rs(δCDS − g(s, Ys))dM
R
s559

+

∫ t

0

e−rs(1−HR
s−)σY (Ys)

∂g

∂y
(s, Ys)

(
ρdW 1

s +
√

1− ρ2dW 2
s

)
.560

561

Then the quadratic covariation of the two martingales MCL and S and for the562

quadratic variation of S is563

d[MCL, S]t = δRe−2rt(1−HR
t−)ρ σX(Xt−)σY (Yt)

∂fCVA

∂x
(t, Lt−, Xt−, Yt)

∂g

∂y
(t, Yt)dt564

+ δRe−2rt(1−HR
t−)(σY (Yt))

2 ∂f
CVA

∂y
(t, Lt−, Xt−, Yt)

∂g

∂y
(t, Yt)dt565

+ δRe−2rt
(
δCDS− g(t, Yt)

)(
vφ(t, Lt−, Xt−+ γX(Xt−))− fCVA(t, Lt−, Xt−, Yt)

)
dHR

t ,566

d[S]t = e−2rt(δCDS − g(t, Yt))
2dHR

t + e−2rt(1−HR
t−)(σY (Yt))

2

(
∂g

∂y
(t, Yt)

)2

dt.567
568

The predictable quadratic variation is then obtained by computing predictable569

compensators, which leads to (27) and (28) and implies the result.570

Special cases and interpretation. In order to understand the form of ξ1,∗

it is instructive to consider first the limiting case where σX = σY = 0 and where
λLt = Xt = x0(1 + HR

t γ) for some γ > 0 and λRt = λR(y0) > 0 for every 0 ≤ t ≤ T .
In that setting we can consider both x0 and y0 as parameters and get that

ξ1,∗t = (1−HR
t−)

δR
(
vφ(x0(1 + γ); t, Lt−)− fCVA(x0, y0; t, Lt−)

)
δCDS − g(t, y0)

, 0 ≤ t ≤ T.

It follows that the CDS strategy generates at τR a payment of size δR(vφ(x0(1 +571

γ); t, LτR) − fCVA(x0, y0; τR, LτR)), that is the strategy perfectly compensates the572

counterparty-risk loss at τR (hedging of jump risk). Note however, that the CDS573

position ξ1,∗t - and hence the premium payments - depends on the random quantity574

Lt, so that the quadratic hedging error (24) of the strategy is strictly positive.575
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For σY > 0 the strategy balances the hedging of jump risk and the hedging576

against fluctuations in the default intensity factor Y (hedging of spread risk). The577

optimal mean-variance strategy in the setting of Example 3.4 can be obtained by578

letting σX = 0. Using the special notation for this case we obtain that579

ξ1,∗t = (1−HR
t−)

δRλR(Yt)
(
δCDS − g(t, Yt)

)(
vφ(x0(1 + γ); t, Lt−)− fCVA(x0; t, Lt−, Yt)

)
λR(Yt)(δCDS − g(t, Yt))2 + (σY (Yt))2

(
∂g
∂y

(t, Yt)
)2580

+ (1−HR
t−)

δR(σY (Yt))
2 ∂fCVA

∂y
(x0; t, Lt−, Yt)

∂g
∂y

(t, Yt)

λR(Yt)(δCDS − g(t, Yt))2 + (σY (Yt))2
(
∂g
∂y

(t, Yt)
)2 .581

582

If σX(·), σY (·) and ρ are all strictly positive, then an additional cross term583

ρσXσY ∂fCVA

∂x
∂g
∂y appears in (27). It is intuitively clear that both partial derivatives584

are positive4, so that the CDS position ξ1,∗ is increased by this term. This is due to585

the fact that some of the risk caused by fluctuations in the non-traded loss intensity586

factor X can be hedged by increasing the position in the correlated CDS contract.587

5. Numerical Experiments. In this section we present results from numerical588

experiments that complement the theoretical analysis. In Section 5.1 we focus on589

the relative importance of dependence and pricing contagion for wrong way risk; in590

Section 5.2 we study Q-mean-variance-minimizing strategies and we compare their591

performance to that of a static strategy.592

Throughout our analysis we consider the following setup. We identify processes593

the X,Y and λL, λR, that is we assume that λL(·) and λR(·) are the identity functions.594

The default intensity follows a CIR process with the dynamics595

dYt = (0.05− Yt)dt+ 0.1
√
Yt(ρdW 1

t +
√

1− ρ2dW 2
t ), Y0 = 0.05;596597

this allows for an explicit formula for the price of the CDS, see, e.g. [18]. For the loss598

intensity we consider a jump diffusion of the form599

dXt = γXt− dHR
t + κ(100−Xt)dt+ σXtdW

1
t , X0 ∈ R+.600601

If we take κ = σ = 0 we recover the case of Example 3.4 where the loss intensity has602

a jump at default and is otherwise constant. Finally, we assume that claim sizes are603

Gamma(α, β) distributed. We consider a reinsurance contract of stop loss type with604

payoff φ(LT ) = [LT − 90]+, capped at 200, we set the interest rate to r = 0 and the605

loss-given-default of R and of the CDS to δR = δCDS = 1.606

Next we briefly discuss the methods used in the numerical analysis. The main607

task is to calculate the CVA in (10). Using the equivalent formulation in (14) we see608

that this amounts to evaluating the expectation609

EQ

[∫ T

t

vφ(s, L̃s, X̃s + γX̃s)Ys e
−

∫ s
t
Yududs | L̃t = l, X̃t = x, Yt = y

]
.610

611

We evaluate this term using Monte Carlo simulation. In general this is a nested Monte612

Carlo problem, as one needs also to compute the default free value of the reinsurance613

contract vφ(t, L̃t, X̃t + γX̃t), for every 0 ≤ t ≤ T . For the case where κ = σ = 0,614

4A higher loss intensity makes a large credit loss more likely, thereby increasing the CVA, and a
higher default intensity increases the value of the future CDS payments.
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L̃ follows a compound Poisson process and we may use Panjer recursion. For the615

general case, we mostly use a regression-based approach to reduce the computational616

cost (see, [21, Chapter 8.6]). The computation of the mean-variance minimizing617

hedging strategies involves computing derivatives of the functions fCVA and g. These618

are computed via a Monte Carlo approach, following [21, Chapter 7.2].619

5.1. CVA and wrong-way risk. In this section we analyse the impact of the620

pricing contagion and the correlation between the loss and the default intensities on621

the CVA by varying the parameters γ and ρ. We assume that σ = 0.2 and that claim622

sizes are Gamma(1,1) distributed.623

In Figure 1 we display the CVA at time 0 for different values of γ ∈ [0, 1] (left624

panel) and for different correlation levels ρ ∈ [0, 1] (right panel). In these plots we625

fixed κ = 0.5. We see that CVA0 increases in both ρ and γ, which is in line with (3).626

The effect of price contagion (i.e. variation in γ) is quite pronounced and dominates627

the effect of dependence between intensities (i.e. variation in ρ), and we conclude that628

it is very important to incorporate price contagion into the analysis of RCCR.629
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Fig. 1. Left: CVA0 for varying contagion parameter γ. Right: CVA0 for varying correlation ρ.

5.2. Performance of hedging strategies. We now compute the hedging630

strategies corresponding to different parameter choices and we compare their per-631

formance to that of a static strategy. Precisely we consider the three cases described632

in Table 1 below. Case 1 and Case 2 correspond to a loss intensity that stays con-633

stant with a single jump at time τR, where it increases by 20%. The parameters634

of the claims size distribution and the loss intensity are chosen in such a way that635

the expected contagion-free loss is the same (EQ
[
L̃
]

= 100). However in Case 1 the636

insurance company experiences small but frequent losses whereas in Case 2 there are637

infrequent but large losses. Intuitively we therefore expect hedging to be more difficult638

in the second case.639

In addition to the dynamic Q-mean-variance minimizing strategies from Theorem640

4.3 we considered two simpler strategies. First we considered a static CDS hedging641

strategy where the value of the CVA at t = 0 is invested in the CDS and where642

the position is not adjusted over time (in mathematical terms V0(ξ) = CVA0 and643

ξ1t = CVA0

ζ , 0 ≤ t ≤ τR ∧ T ). Moreover we considered a strategy labelled unhedged644
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X0 γ κ σ ρ α β
Case 1: 100 0.2 0 0 0 1 1
Case 2: 10 0.2 0 0 0 10 1
Case 3: 100 0 1 0.2 0.2 1 1

Table 1
Parameters used in the analysis of the hedging strategies. Recall that the claim sizes are

Gamma(α, β) distributed.

CVA, where the amount CVA0 is invested in the bank account and where one does645

not invest in the CDS at all (V0(ξ) = CVA0 and ξ1t ≡ 0). In order to measure the646

performance of a hedging strategy we consider the value of the hedged CVA position,647

which is given by648

et := CVAt−
(

CVA0 +

∫ t

0

ξ1sdSs

)
, 0 ≤ t ≤ T .(29)649

650

In the sequel we refer to the process (et)0≤t≤T in (29) as the tracking error. Note651

that a positive value of eT corresponds to a loss for the insurance company. In652

our experiments we assume that the hedging portfolio is re-balanced approximately653

every two weeks. More frequent re-balancing is not practically feasible for insurance654

companies as the total claim amount is hard to evaluate.655

In Figure 2 we use the parameter set corresponding to Case 1. The plot displays656

2000 trajectories of the tracking error, first for ξ1 = 0 (unhedged CVA), second for657

the static CDS strategy ξ1 = CVA0 /ζ and third for the dynamic Q-mean-variance658

minimizing strategy ξ1 = ξ1,∗ from Theorem 4.3.659

From Figure 2 it is evident that for all three strategies the tracking error jumps660

at τR, but the form of the jumps is very different. In the unhedged-CVA case the661

jump is always upwards and the size of the jump is equal to the replacement cost662

for the reinsurance contract. In this case a default of R is relatively expensive: the663

maximum loss that the insurance company incurs is around EUR 40, which is roughly664

three times the initial value of the reinsurance contract (A numerical computation in665

this example gave V φ0 ≈ 11.89). In the middle panel we give the tracking error for666

the static CDS hedging strategy. We observe either a loss (under-hedging) or a profit667

(over-hedging). The maximum loss (and profit) is around EUR 20 which implies668

that static hedging is an improvement over the unhedged CVA , but the tracking669

error still shows a high variability. The dynamic mean-variance minimizing strategy670

on the other hand significantly reduces the variability of the tracking error as it is671

clearly displayed in the lower panel. We conclude that this strategy out-performs672

the other hedging approaches by a large margin. The difference in the performance673

of the hedging strategies is illustrated further in Figure 3 where we plot the density674

of the tracking error eT conditional on {τR < T}. For a good hedging strategy the675

density of the tracking error should be concentrated around zero with a small mass in676

the tails. This is the case for the mean-variance minimizing strategy. The densities677

for the two other strategies have much larger mass in the tails. The shape of these678

densities is identical, but that corresponding to the static CDS strategy is shifted to679

the left, which results in a lower value of EQ
[
e2T
]
. The value of the L2-norm of eT680

for all three strategies is given in Table 2.681

In order to explain the superior performance of the dynamic strategy we plot in682

Figure 4 two trajectories ξ1,∗· (ω) of the optimal strategy. The solid line corresponds683
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Fig. 2. Performance of various hedging strategies for the parameters in Case 1: the upper
panel corresponds to no hedging, the middle panel to static hedging and the lower panel to dynamic
mean-variance hedging.

Strategy EQ
[
e2T
]

No hedging 22.65
Static CDS hedging 4.54
Dynamic mean-variance minimizing 0.62

Table 2
L2-norm of the tracking error eT in Case 1.

to a trajectory of the claim amount process with a large loss, the dashed line to a684

trajectory with small loss. We compare these strategies to the static hedging strategy685

which is constant over time (grey line). We see that the optimal hedge ratio is quite686

sensitive with respect to the evolution of the underlying loss process.687

In Case 2 we consider the situation where claims arrive less frequently but have688

on average a higher size. In this case hedging is more difficult, but the mean-variance689

minimizing strategy still outperforms the other approaches, as is clearly seen from690
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Fig. 3. Densities the tracking error eT given default in Case 1.
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Fig. 4. Optimal strategies for two scenarios with a large loss and a low loss respectively and
the constant strategy for the parameter in Case 1.

Figure 5. Moreover, for the mean-variance minimizing strategy the L2-norm of the691

tracking error is considerably smaller than for the other strategies, see Table 3 for692

details. In Case 3 we consider the situation where the loss and the default intensities693

are correlated but there is no pricing contagion (γ = 0), that is the loss intensity does694

not jump at time τR. Here the wrong way risk arises from correlation only. As the695

effect of price contagion dominates the correlation effect, the L2-norm of the tracking696

This manuscript is for review purposes only.



CVA AND HEDGING OF RCCR 23

error for all strategies is considerably smaller than in Case 1 and Case 2. However,697

Figure 6 and Table 4 confirm the relative performance of the strategies for this case698

as well. In the general version of the model with price contagion and correlation699

the qualitative results on the behaviour of the tracking error are similar to the ones700

described so far; we omit the details.701

Summarizing, our results show that dynamic CDS trading strategies have the702

potential to significantly reduce reinsurance counterparty risk, both compared to a703

static hedging strategy and to the case where the insurance company does not hedge704

at all.705

Strategy EQ
[
e2T
]

No hedging 39.78
Static CDS hedging 17.82
Dynamic mean-variance minimizing 2.17

Table 3
L2-norm of the tracking error in Case 2.
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Fig. 5. Densities the tracking error at terminal time given default in Case 2.

EQ
[
e2T
]

No hedging 12.75
Static CDS hedging 4.57
Dynamic mean-variance minimizing 0.97

Table 4
L2-norm of the tracking error in Case 3.
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−20 0 20 40

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Densities of the tracking error given default: Case 3

portfolio value at terminal time

no hedging
static hedging
dynamic hedging

Fig. 6. Densities the tracking error at terminal time given default in Case 3.
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Appendix A. The martingales MCL and S. In the sequel we provide
detailed computations for the dynamics of the martingale MCL. We start with the
martingale MCL. For every 0 ≤ t ≤ T we have that

MCL
t =

∫ t

0

e−rsvφ(s, L̃s− , X̃s− +γX(X̃s−))dHR
s + e−rtδR(1−HR

t )fCVA(t, L̃t, X̃t, Yt),

so that713

dMCL
t = e−rt(vφ(t, L̃t− , X̃t− + γX(X̃t−)− fCVA(t, L̃t− , X̃t− , Yt))dH

R
t714

− re−rt(1−HR
t−)fCV A(t, L̃t−, X̃t, Yt)dt+ e−rt(1−HR

t−)dfCVA(t, L̃t, X̃t, Yt) .715716
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Recall that by Proposition 3.3, fCVA is a smooth solutions of the PIDE (11), therefore717

it has the necessary regularity to apply the Itô formula. This gives718

dfCVA(t, L̃t, X̃t, Yt) =719 (
∂fCVA

∂x
(t, L̃t−, X̃t, Yt)σ

X(X̃t) +
∂fCVA

∂y
(t, L̃t−, X̃t, Yt)σ

Y (Yt)ρ

)
dW 1

t720

+
∂fCVA

∂y
(t, L̃t−, X̃t, Yt)σ

Y (Yt)
√

1− ρ2dW 2
t721

+

∫
R+

(
fCVA(t, L̃t− + z, X̃t, Yt)− fCVA(t, L̃t−, X̃t, Yt)

)
mL(ds,dz)722

+

(
∂fCVA

∂t
(t, L̃t−, X̃t, Yt) + bX(X̃t)

∂fCVA

∂x
(t, L̃t−, X̃t, Yt)723

+ bY (Yt)
∂fCVA

∂y
(t, L̃t−, X̃t, Yt) +

1

2
(σX(X̃t))

2 ∂
2fCVA

∂x2
(t, L̃t−, X̃t, Yt)724

+
1

2
(σY (Yt))

2 ∂
2fCVA

∂y2
(t, L̃t−, X̃t, Yt) + ρσX(X̃t)σ

Y (Yt)
∂2fCVA

∂x∂y
(t, L̃t−, X̃t, Yt)

)
dt.725

726

Now using the fact that fCVA solves equation (11) we get that MCL satisfies equation727

(6). Similar computations can be performed for the martingale S, we omit the details.728

REFERENCES729

[1] H. Albrecher, J. Beirlant, and J. Teugels, Reinsurance: Actuarial and Statistical Aspects,730
Wiley, 2017.731

[2] C. Bernard and M. Ludkovski, Impact of counterparty risk on the reinsurance market, North732
American Actuarial Journal, 16 (2012), pp. 87–111.733

[3] F. Biagini, C. Botero, and I. Schreiber, Risk-minimization for life insurance liabilities with734
dependent mortality risk, Mathematical Finance, 27 (2017), pp. 505–533.735

[4] T. Bielecki and M. Rutkowski, Credit Risk: Modeling, Valuation and Hedging, Springer736
Science & Business Media, 2004.737

[5] L. Bo and C. Ceci, Locally risk-minimizing hedging of counterparty risk for portfolio of credit738
derivatives, Applied Mathematics & Optimization, (2019), pp. 1–52.739

[6] N. Bodoff, Reinsurance credit risk: A market-consistent paradigm for quantifying the cost740
of risk, Variance Advancing the Science of Risk, Casualty Actuarial Society, 7 (2013),741
pp. 11–28.742
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