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Abstract

We consider filtering problems that arise in Markovian factor models for the term structure
of interest rates and for credit risk. Investors are supposed to have only incomplete information
about the factors and so their current state has to be inferred/filtered from observable financial
quantities. Our main goal is the pricing of derivative instruments in the interest rate and credit
risk contexts, but also other applications are discussed.
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1 Introduction

Modern financial mathematics is mainly concerned with the pricing and hedging of derivative
securities, with portfolio optimization, and with risk management and the statistical analysis
of financial data. All these activities are based on mathematical models for the dynamics of
the underlying economic quantities such as security prices. These models need to capture the
complicated nonlinear dynamics of real asset prices while being at the same time parsimonious
and numerically tractable. Factor models have proven to be a useful tool for meeting these
conflicting objectives, since the quantities of interest can be expressed in terms of relatively few
factors. Moreover, with Markovian factor processes, Markov-process techniques can be fruitfully
employed. In most financial applications of factor models investors have only incomplete informa-
tion about the state of the factor process, essentially for the following reasons: first, some factors
are associated with economic quantities which are hard to observe precisely such as instanta-
neous interest rates, volatilities, or the asset value of a firm; second, abstract factors without
direct economic interpretation are often included in the specification of a model in order to in-
crease its flexibility. When applying the model, the current state of the factors therefore needs
to be inferred from observable quantities such as historical price data. Filtering is an elegant
and theoretically consistent way for doing this, which is why filtering techniques are increasingly
being used in all areas of financial mathematics.

In the present paper we concentrate on the application of filtering techniques in the context
of incomplete-information-models for interest-rate and credit risk that are of the type of jump-
diffusion models. Our main concern is the pricing of derivatives via martingale methods; hedging
and parameter estimation are touched upon occasionally.4 This focus is motivated by trends in
the current literature and by our own research interests over the last few years. We remark
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at this point that nonlinear filtering has been applied very successfully to pricing, hedging,
and parameter-estimation problems in marked-point-process models driven by an unobservable
volatility factor; see for instance [34], [33], [31], [60], [38], [20] or [19].

The outline of the paper is as follows: In Section 2 we give a brief introduction to arbitrage-
free models for the term-structure of interest rates with a particular emphasis on factor models.
This sets the scene for our discussion of term-structure models under incomplete information
in Section 3. Here we start with a general result which shows that arbitrage-free prices with
respect to the sub-filtration representing the information actually available to investors can be
computed by projection. In the remainder of Section 3 this principle is applied within specific
factor models for the term structure of interest rates and this leads to a number of interesting
filtering problems. Sections 4, 5 and 6 are devoted to an analysis of nonlinear filtering in dynamic
credit risk models: in Section 4 we give an overview of key modeling approaches and explain how
and where incomplete information enters; in Section 5 we discuss nonlinear filtering problems in
the context of firm-value models with noisily observed asset value; Section 6 deals with reduced-
form models. Section 7 summarizes the paper. Rather than aiming at a complete description
of available results, we will concentrate on a few illustrative models, many of them coming
from our own activity in the field. We assume throughout that the reader is familiar with
standard nonlinear filtering theory; a comprehensive modern account can be be found in the
recent monograph [2].

Throughout the paper we denote by (Gt) the global or full-information filtration, so that
all processes introduced will be (Gt) adapted; the information actually available to investors
is represented by the sub-filtration (Ft). Moreover, we generally adopt bold-face notation for
vectors and vector-valued stochastic processes.

2 The term structure of interest rates. Full information.

In this section we give a brief introduction to models for the term structure of interest rates;
details and further information can for instance be found in [6].

Bonds and interest rates. A zero-coupon bond or T -bond is a contract guaranteeing a unit
amount at a given future date T without intermediate payments; the price of such a contract
at a time t ≤ T is denoted by p(t, T ). The collection of bond prices p(t, T ), T ≥ t, completely
describes the term structure of interest rates, or, equivalently, the time-value of money at a given
point in time t. Various notions of interest rates can be defined from the family p(t, T ), T ≥ t.
An important example is the simple compounded interest rate for the future time period [T, S]
and contracted at t < T , denoted by L(t;T, S). This rate is given by

L(t;T, S) =
p(t, T )− p(t, S)
(S − T ) p(t, S)

=
1

S − T

[
p(t, T )
p(t, S)

− 1
]
. (1)

Assuming that, as a function of T , p(t, T ) is sufficiently regular, letting S ↓ T , one obtains the
instantaneous forward rate

f(t, T ) = lim
S↓T

L(t;T, S) = − ∂

∂T
log p(t, T ) (2)
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By its definition, f(t, T ) represents the rate, evaluated at t < T , for an instantaneous borrowing
at T . From (2), using the fact that p(T, T ) = 1, we also get the inverse relationship

p(t, T ) = exp
(
−

∫ T

t
f(t, u)du

)
, (3)

so that there is a one-to-one relationship between the family of bond prices p(t, T ), T ≥ t and
the family of forward rates f(t, T ), T ≥ t. The (instantaneous) short rate is finally defined by
rt := f(t, t).

Martingale pricing. As mentioned in the introduction, our main concern in this paper is the
pricing of derivatives via martingale methods. This methodology is based on a widely used eco-
nomic principle, namely the notion of absence of arbitrage. This principle basically states that,
in equilibrium, the prices of the assets on a given market have to be such that by investing in this
market it is not possible to make a sure profit without risk. According to the so-called first fun-
damental theorem of asset pricing the mathematical counterpart of this principle is the existence
of an equivalent martingale measure. This is a measure QN , equivalent to the physical/real-world
measure P , so that the prices of all the assets in a given market expressed in units of a given
reference asset (numeraire) N with price Nt > 0 are QN martingales with respect to a given
generic filtration (Ht) representing the information available to investors in the model. Formally,
the price of a non-dividend-paying traded asset (St)t≥0 thus satisfies for all t ≤ T

St

Nt
= EQN

(
ST

NT
| Ht

)
(4)

Under the popular martingale modeling approach relation (4) is used for constructing the price-
dynamics of the traded assets as follows: suppose that the value of a security5 at some given
future date T is given by a known HT -measurable random variable ΠT . A prime case in point
is a T bond where ΠT ≡ 1. Given a numeraire N , a candidate martingale measure QN and a
filtration (Ht), the price Πt of this security at t ≤ T is then defined to be

Πt = NtE
QN

(
ΠT

NT
| Ht

)
. (5)

Model parameters are determined by the requirement that the model-implied price Πt from (5)
should coincide with the price observed on the market; this goes under the label calibration to
market data. In a second step the price of non-traded derivatives is defined by the analogous
expression to (5). In this way it is automatically ensured that the resulting model is arbitrage-free
and that derivatives are priced consistently with the prices of traded assets. A frequently used
numeraire is the so-called money market account (locally risk free asset) that is the asset with
value Bt = B0 exp

( ∫ t
0 rsds

)
, r the short rate. The martingale measure corresponding to B as

numeraire is commonly denoted by Q.

Note that the real-world measure P does not enter in this approach, and in fact it is common
practice to set up a pricing model for derivatives without specifying the real-world dynamics of
security prices. A conceptual problem may however arise at this point, since the measure QN need
not be unique and since different martingale measures can lead to different prices for non-traded

5For simplicity we tacitly assume that the security does not generate any intermediate cash flows such as

dividend- or interest payments.
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derivatives. This problem is closely related to the so-called completeness of the market (see for
instance Chapter 8, 10 and 14 of [6]). Economic criteria for choosing one of these measures
do usually invoke the physical measure P and martingale modeling is no longer sufficient. In
practical applications of derivative pricing models this issue is largely neglected and the chosen
martingale measure is kept fixed, a praxis which is also adopted in the present paper.

Heath-Jarrow-Morton approach. We proceed now to derive dynamic models for the term
structure that do not allow for arbitrage opportunities. A recent such modeling approach is the
so-called Heath-Jarrow-Morton (HJM) approach [43]. Under this approach one models directly
the dynamics of the forward rates and derives from there the dynamics of bond prices and related
quantities. Here we restrict ourselves to Wiener driven models and assume that the forward rate
dynamics are of the form

df(t, T ) = α(t, T )dt+ σ(t, T )dWt, (6)

where Wt is a d-dimensional Wiener process on a given filtered probability space (Ω,G, (Gt), Q)
and α(·, T ), σ(·, T ) are adapted processes with values in R and Rd respectively. Note that (6)
may be interpreted as a system of infinite stochastic differential equations, one for each T .

The fact of having in principle infinitely many assets, given by the bonds of the various
maturities T , implies that with a model as in (6) one might introduce arbitrage into the market.
A simple way to preclude arbitrage opportunities is to specify the dynamics of the processes
f(·, T ) in such a way that the given measure Q is a martingale measure. It is well-known that
(modulo some integrability conditions) Q is a martingale measure if and only the if the so-called
HJM-drift condition is satisfied, that is the following relation between the drift α and the volatility
σ has to hold:

α(t, T ) = σ(t, T )
∫ T

t
σ′(t, u)du ; (7)

see e.g. [6] for details. Rewriting (6) in integral form, namely

f(t, T ) = f∗(0, T ) +
∫ t

0
α(s, T )ds+

∫ t

0
σ(s, T )dWs , (8)

one sees that, in the HJM setup, the inputs for a model defined under a martingale measure Q
are: i) the volatility structure σ(t, T ); ii) the initially observed forward rate curve f∗(0, T ). The
structure of the model is thus specified by specifying σ(t, T ).

Factor models. In the given setup the models are a-priori infinite-dimensional and one may
ask whether, by a judicious choice of the volatility structure σ(t, T ) in the HJM framework
(6), they may become equivalent to a model driven by a finite-dimensional factor process. The
question has a positive answer and a general account on this issue may be found in [5]. For the
filter application below we recall here a specific case from [14]. Take d = 1 and let

σ(t, T ) = g(rt) e−λ(T−t) with g(r) = σ0 |r|δ , (9)

where rt is the short rate and σ0, δ, λ are parameters to be determined from market prices. It
can be shown, see [14], that in this case the entire term structure can be expressed as driven by
two forward rate processes f(·, T1), f(·, T2) with maturities T1, T2 that may be chosen arbitrarily.
One has in fact

p(t, T ) = exp {−ᾱ0(t, T )− ᾱ1(t, T )f(t, T1)− ᾱ2(t, T )f(t, T2)} (10)
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for suitable functions ᾱi : [0, T ] → R; i = 0, 1, 2. Choosing T1 = t and T2 = τ > t arbitrary but
fixed so that f(t, T1) = rt, f(t, T2) = f(t, τ), one obtains (see always [14]) a Markovian system
for Xt := (rt, f(t, τ)) of the form

drt =
(
β0(t) + β1(t)rt + β2(t)f(t, τ)

)
dt+ g(rt)dWt

df(t, τ) =
(
γ0(t) + γ1(t)rt + γ2(t)f(t, τ)

)
dt+ g(rt)e−λ(τ−t)dWt

(11)

for suitable time functions βi(t), γi(t), i = 0, 1, 2. The two-dimensional Markovian factor process
(rt, f(t, τ)) drives now the entire term structure in the sense that

p(t, T ) = exp {−α0(t, T )− α1(t, T )rt − α2(t, T )f(t, τ)} (12)

for suitable functions αi(t, T ) that correspond to the ᾱi(t, T ) in (10) for T1 = t, T2 = τ .

An alternative way for constructing factor models is to specify a finite-dimensional Markovian
factor process X and to represent the term structure in the form p(t, T ) = F T (t,Xt) for a suitable
family of functions F T (t,x), T ≥ t. In this way one ensures a-priori that the whole term structure
evolves on a finite-dimensional manifold. A special case are the classical short-rate models where
X is identified with the short rate r itself (r is then modeled as a Markov process), so that bond
prices take the form p(t, T ) = F T (t, rt).

In order to exclude the possibility of arbitrage one has to impose appropriate conditions on
the family F T (t,x), T ≥ t. One way to proceed is to apply Itô’s formula to F T (t,Xt) and to
derive dynamics for p(t, T ) and, via (2), the corresponding dynamics of f(t, T ). On the forward-
rate dynamics one imposes the HJM drift condition, which leads to a PDE for F T (t,x), usually
called term structure equation. One context where this PDE becomes relatively easily solvable
by means of ordinary differential equations are the so-called affine term structure models. In the
next example we present a special case; we shall come back to this example in our discussion of
term structure models under incomplete information in Section 3.2 below.

Example 2.1 (Linear-Gaussian factor models). On (Ω,G, (Gt), Q) consider an N -dimensional
factor process X satisfying the linear-Gaussian dynamics

dXt = F Xtdt+DdWt (13)

with W an M -dimensional (M ≥ N) (Q, (Gt))-Wiener process and with F and D parametric
matrices such that D has full rank. It can be shown that in this case the term structure is
exponentially affine in Xt, i.e.

p(t, T ) = exp {A(t, T )−B(t, T )Xt} (14)

for deterministic functions A(·, T ) : [0, T ] → R and B(·, T ) : [0, T ] → RN . It follows from the
HJM drift condition that A(·, T ) and B(·, T ) have to satisfy the following system of ODEs

∂
∂tB(t, T ) + B(t, T )F + b(t) = 0

∂
∂tA(t, T ) + 1

2B(t, T )DD′B′(t, T )− a(t) = 0,
(15)

with terminal condition A(T, T ) = B(T, T ) = 0. Here b(t) is a parametric function which
has to be calibrated together with the matrices F and D; a(t) is defined via a(t) = f∗(0, t) +
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1
2

∫ t
0 βT (s, t)ds where β(t, T ) = B(t, T )DD′B′(t, T ) and where f∗(0, t) are the initially observed

forward rates. For further use note that the log-prices are of the form

Y T
t := log p(t, T ) = A(t, T )−B(t, T )Xt, (16)

so that log-prices are affine functions of the factors. From rt = f(t, t) and f(t, T ) = − ∂
∂T log p(t, T )

(see (2)) one immediately has that the short rate rt can be expressed as a linear combination of
the factors as-well. Applying Itô’s formula one then obtains the following dynamics type

drt =
(
α0

t + β0
tXt

)
dt+ σ0

tdWt

dY T
t =

(
αT

t + βT
t Xt

)
dt+ σT

t dWt

(17)

for suitable coefficients. For a general discussion about affine term-structure models we refer to
[24] or [6].

3 The term structure of interest rates. Incomplete information.

3.1 Pricing under incomplete information and nonlinear filtering

If the factor process X is observable, or equivalently, if we work under the global filtration (Gt),
bond prices can be obtained in the form p(t, T ;Xt) = F T (t,Xt). Moreover, in most cases of
interest the function F T can be computed explicitly. The picture changes if we assume that the
information available to investors corresponds to a sub-filtration Ft ⊂ Gt such that X is not (Ft)-
adapted. In the following lemma we show how to pass under the martingale pricing approach
from the full information prices p(t, T ;Xt) to arbitrage-free prices in the investor filtration (Ft);
the latter will be denoted by p̂(t, T ).

Lemma 3.1. Let N be a given numeraire that is adapted to the investor filtration (Ft) and choose
a corresponding martingale measure QN . Denote by p(t, T ;Xt) = NtE

QN (
1/NT | Gt

)
arbitrage-

free bond prices under full information, and by p̂(t, T ) := NtE
QN (

1/NT | Ft

)
the corresponding

arbitrage-free prices with respect to the investor filtration (Ft). Then one has that

p̂(t, T ) = EQN (
p(t, T ;Xt) | Ft

)
. (18)

In particular, if the savings account B is (Ft)-adapted, we obtain p̂(t, T ) = EQ(p(t, T ;Xt) | Ft).

Proof: By the very definition of a martingale, the fact that the bond prices at maturity T are
equal to 1 and the assumption that Nt ∈ Ft, for the first statement we have that

p̂(t, T ) = NtE
QN

( 1
NT

| Ft

)
= EQN

(
NtE

QN ( 1
NT

| Gt

)
| Ft

)
= EQN (

p(t, T ;Xt) | Ft

)
.

The second statement is then immediate.

Comments. The result can be extended to general FT -measurable claims and to credit-risky
securities in an obvious way. The lemma shows that in order to obtain arbitrage-free prices in
the investor filtration, one has to compute the conditional expectation in (18), which amounts
to solving a filtering problem. In abstract terms the solution of this filtering problem is given by
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the optional projection of the process (p(t, T ;Xt))t≤T on (Ft); the latter is usually denoted by
̂p(t, T ;Xt), which motivates the notation p̂(t, T ). Note moreover, that the conditional expectation

in (18) has to be computed with respect to the chosen martingale measure, so that martingale
pricing leads to filtering problems under the martingale measure QN (rather than the physical
measure P ).6 Suppose finally that for a certain maturity T̄ the price of the T̄ -bond is assumed
to be observable (in mathematical terms, (Ft)-adapted), and moreover equal to the model-value
(p(t, T̄ ;Xt))t≤T̄ . In that case we obviously have p̂(t, T̄ ) = p(t, T̄ ;Xt) so that the filtered model
is “automatically” calibrated to the observed bond price; we will encounter a specific example of
this in the next subsection.

In the rest of this section we describe some specific models. Rather than aiming at a complete
description of available results, we shall concentrate on a few illustrative examples that come
mostly from our own activities in this field.

3.2 Filtering in affine factor models

In this subsection we discuss the application of the pricing principle from Lemma 3.1 in the
context of the linear-Gaussian factor model of Example 2.1; our description is based on the
analysis of [41] and [40]. We consider two different scenarios with incomplete information about
the factor process X. In both cases investors observe (possibly with noise) a finite number
of yields y(t, Ti) = − 1

Ti−t log p(t, Ti), i = 1, · · · , n, or equivalently the logarithmic bond prices
Y i

t = log p(t, Ti), and in addition the short rate. In the first scenario the observations of the
yields and of the short rate are given by perturbed versions of the theoretical model values. In
the second case it is assumed that model values can be observed exactly; however, the factor
process X will be high-dimensional so that its current value Xt cannot be inferred from the
observed model values. Both scenarios lead to a linear filtering problem; we shall also mention
an extension to nonlinear filtering.

1. Filtering with observations given by perturbed model values. Recall the dynamics
of the factor process X, of the short-rate r and of the logarithmic bond-prices Y i from (17).
Here we assume that perturbed versions r̃ and Ỹ i are observable; these perturbed versions are
generated by adding independent Wiener-type observation noises vi

t, i = 0, · · · , n to the original
processes. The investor filtration is thus given by

Ft = σ
(
r̃s, Ỹ

i
s ; s ≤ t, i = 1, · · · , n

)
, (19)

where state process X and observations r̃, Ỹ 1, . . . , Ỹ n have the following dynamics (for t <
min{Ti : 1 ≤ i ≤ n})7

dXt = FXtdt+DdWt

dr̃t =
(
α0

t + β0
tXt

)
dt+ σ0

tdWt + dv0
t

dỸ i
t =

(
αi

t + βi
tXt

)
dt+ σi

tdWt + (Ti − t)dvi
t ; i = 1, · · · , n ;

(20)

6Filtering problems with respect to the physical measure will be discussed in Section 3.4 and 3.5 below.
7By adjusting appropriately the filter so that the log-prices of already matured bonds are not anymore taken

into account, we may let t go also beyond min{Ti : 1 ≤ i ≤ n}.
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the time-dependent volatility of the additional noise reflects the fact that bond-price volatility
converges to zero as time approaches the maturity date of the bond. Since for the given model
we are in the affine term structure context of (14), for the prices p̂(t, T ) we have that

p̂(t, T ) = E(p(t, T ; Xt) | Ft) = exp(A(t, T ))E
(
exp(−B(t, T )Xt) | Ft

)
, (21)

where the last term corresponds to the conditional moment generating function of Xt given Ft.
Since the filtering model in (20) is linear-Gaussian, the filter distribution is Gaussian as well so
that, denoting its conditional mean and covariance by mt and Σt respectively, from (21) one
obtains

p̂(t, T ) = exp
{
A(t, T )−B(t, T )mt +

1
2
B(t, T )ΣtB′(t, T )

}
(22)

For the given model the pricing under incomplete information can thus be accomplished by
solving the system of ODEs in (15) and the Kalman filter corresponding to (20).

Taking a financial point of view this simple model is not completely satisfactory for the
following two reasons: first, recall from Lemma 3.1 that formula (21) is justified if B is (Ft)-
adapted. In that case the short rate is strictly speaking (Ft)-adapted as-well (since rt = d

dt lnBt),
contradicting (19). However, a very small amount of observation noise for B (which, from a
practical point-of-view would still permit the use of Lemma 3.1) leads to a substantial observation
noise for the short rate rt = d

dt lnBt, so that the assumption that the short-rate cannot be observed
perfectly can be defended. Second, there is also the problem that, for maturities Ti corresponding
to liquid bonds, p̂(t, Ti) does in general not coincide with the observed values for these maturities
(recall the third point in the comments directly after Lemma 3.1). In the next paragraph we
discuss a variant of the model that overcomes these issues.

2. Filtering with exact observations of the theoretical prices. We assume now that
the dimension N of the factor process X is strictly larger than the number of traded bonds
with observable prices. This occurs for instance in the case when maturity-specific idiosyncratic
factors are being added (see the situations considered in [41], [40]). In this case there is no need
to add exogenous noise terms to justify a filtering setup, and the observation filtration is given
by

Ft = σ
(
rs, Y

i
s ; s ≤ t, i = 1, · · · , n

)
, (23)

where, in line with (16) and (17),

rt = a(t) + b(t)Xt and Y i
t = A(t, Ti)−B(t, Ti)Xt , i = 1, · · · , n . (24)

While still linear, this is a degenerate filtering problem. Adapting a procedure from [30] we
shall now reduce it to a non-degenerate problem via a change of coordinates. Recall that the
observations Yt := [rt, Y 1

t , · · · , Y n
t ] are affine functions of Xt,

Yt = µt +Mt Xt (25)

for an appropriate (n+ 1)-vector µt and some (n+ 1, N)-matrix Mt with N > n+ 1. Moreover,
our assumptions on the linear Gaussian factor model in Example 2.1 ensure that Mt has full
rank.
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Introduce now some (N − n − 1, N) matrix Lt such that the (N × N)-matrix
(

Lt

Mt

)
is

invertible; this is always possible as Mt was assumed to have full rank. Define the N − n − 1-
dimensional process

X̄t := LtXt (26)

and note that for appropriate matrices Φt and Ψt one has

Xt =
(

Lt

Mt

)−1 (
X̄t

Yt − µt

)
=: ΦtX̄t + Ψt (Yt − µt) . (27)

Using the linearity of the dynamics of X we can now derive a closed-form linear-Gaussian system
for the pair (X̄,Y). In fact, from (26), (13) and (27) it then follows

dX̄t = L̇tXtdt+ LtdXt =
(
L̇t + LtF

)
Xtdt+ LtDdWt

=
(
L̇t + LtF

)
ΦtX̄t +

(
L̇t + LtF

)
ΨtYt −

(
L̇t + LtF

)
Ψtµt + LtDdWt

=: αt X̄t + βt Yt + γt + δt dWt ,

(28)

where αt, βt, γt, δt are implicitly defined. Analogously, from (25), (13) and (27)

dYt = µ̇tdt+ ṀtXtdt+MtdXt =
[
µ̇t +

(
Ṁt +MtF

)
Xt

]
dt+MtDdWt

=
[
µ̇t −

(
Ṁt +MtF

)
Ψtµt

]
dt+

(
Ṁt +MtF

)
ΦtX̄tdt+

(
Ṁt +MtF

)
ΨtYtdt+MtDdWt

=: φt X̄t + ψt Yt + ρt + σt dWt ,
(29)

where, again, φt, ψt, ρt, σt are implicitly defined. We can now formulate a non-degenerate filtering
problem for the unobserved state variable process X̄t with observations Yt as follows

dX̄t = αt X̄t + βt Yt + γt + δt dWt

dYt = φt X̄t + ψt Yt + ρt + σt dWt

(30)

This system is of the linear, conditionally Gaussian type and it leads thus to a Gaussian condi-
tional (filter) distribution that we denote by πX̄t|Ft

= N
(
X̄t; m̄t, P̄t

)
, and where the mean m̄t

and covariance P̄t can be computed via the Kalman filter. We then have from Lemma 3.1 that

p̂(t, T ) = EQ (p(t, T ;Xt) | Ft) = EQ
(
p

(
t, T ;

(
ΦtX̄t + Ψt (Yt − µt)

))
| Ft

)
=

∫
p
(
t, T ; (Φtx̄ + Ψt (Yt − µt))

)
πX̄t|Ft

(dx̄).
(31)

Nonlinear extensions. The setup in the example of this subsection can be generalized in
various ways as is indicated by the following two dual setups. For the first setup one keeps the
linear-Gaussian dynamics (13) for the factors, but instead of (14) one considers an exponentially
quadratic term structure model of the form

p(t, T ) = exp
[
A(t, T )−B(t, T )Xt −X′

tC(t, T )Xt

]
(32)
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Notice that, for a linear-Gaussian factor model as in (13), more general exponentially polynomial
term structure models lead to arbitrage for a degree larger that two (see [29]) so that (32)
represents the most general nonlinear generalization of (14) that does not lead to arbitrage. For
the second setup one keeps the exponentially affine structure (14) but considers instead of (13)
a scalar square root process of the form

dXt = F (Xt − bt) dt+
√
XtDdWt . (33)

With these nonlinear extensions of the model the filtering problem with perturbed observations of
the state becomes nonlinear; it seems that a finite-dimensional filter does not exist. The second
(degenerate) filtering problem is even more challenging, since the solution-approach described
above does not extend to the nonlinear case.

3.3 Constructing term structure models via nonlinear filtering

In [48] the innovations approach to nonlinear filtering is used in order to construct a factor model
for bond prices; here we sketch a simplified version of the approach. The author studies a model
where the short rate dynamics under a martingale measure are of the form

drt = a(t, rt, Xt) dt+ b dWt (34)

with X a scalar finite-state Markov chain with state space {1, . . . ,K}. In [48] the process X is
assumed to be unobservable; the investor filtration is given by Ft = σ (rs ; s ≤ t), so that only
the short rate is observable. As before, the bond-pricing problem is approached via a two-step
procedure: first one determines the bond prices under full observation. Given the Markovianity
of the pair (r,X), these prices are of the form p(t, T ) = F T (t; rt, Xt) with the function F T (·) such
that the resulting prices do not allow for the possibility of arbitrage. According to Lemma 3.1,
bond prices under incomplete information are then given by

p̂(t, T ) = E
(
F T (t; rt, Xt) | Ft

)
=: πtF

T . (35)

Instead of first determining the filter distribution πXt|Ft
, in [48] the author determines directly

the dynamics of the filtered value πtF
T of the bond prices. Using Itô’s formula, she obtains first

the semimartingale representation of the full-information bond price F T (t; rt, Xt). From there,
following the innovations approach to nonlinear filtering, she then obtains directly the dynamics
of the filtered bond prices πtF

T decomposed into a finite variation part and a term driven by the
innovations process

W̄t =
1
b

(
rt −

∫ t

0
πs

(
a(s, rs, Xs)

)
ds

)
, where πs(a(s, rs, Xs)) :=

∫
a(s, rs, x)πXs|Fs

(dx).

Let pk
t = Q(Xt = k | Ft), 1 ≤ k ≤ K. Since p̂(t, T ) = πtF

T =
∑K

k=1 p
k
tF

T (t, rt; k), the ensuing
term structure model has a natural factor structure with factor given by pt := (p1

t , . . . , p
K
t ). The

dynamics of the factor vector p (which summarizes the conditional distribution πXt|Ft
) can be

computed via the Wonham filter (see [59] or [27]).

The idea of using nonlinear filtering for the construction of a term structure model is un-
doubtedly very elegant; a similar approach in the context of credit risk models is discussed in
the third example of Section 6.3 below. However, from a financial point of view the assumption
that investors observe only the short rate is somewhat problematic: bonds with certain promi-
nent maturities are usually liquidly traded, so that one would like to calibrate the model also to
bond-price information.
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3.4 Filtering of the market price of risk

Filtering in mathematical finance can be performed also for econometric- and risk-management
applications where it is usually most appropriate to study the filtering problem under the physical
measure. If in that case the observations include prices that are expressed as expectations under
a martingale measure, one ends up with a situation where one has to work simultaneously with
the physical measure and with a martingale measure. The obvious thing is then to express
everything under the same measure. Since the martingale measure serves mainly the purpose of
guaranteeing absence of arbitrage, it is most natural to express everything under the physical
measure.

As an example we start from the SDE-system (11) for the short rate and some instantaneous
forward rate, defined under a martingale measure Q so that absence of arbitrage is guaranteed.
To transform the system into an equivalent one under the physical measure P ∼ Q, we introduce
the integrable and adapted market price of risk process ψt that allows one to pass from Q to P
in the sense that, using now the symbol WQ

t to specify a Wiener process under Q, the process
Wt := WQ

t −
∫ t
0 ψsds is a Wiener process under P (Girsanov measure transformation). Using a

mean-reverting diffusion model for the evolution of ψt under P , the system (11) extends then to
the following system defined under the physical measure P

drt = [β0(t) + β1(t)rt + β2(t)f(t, τ) + g(rt)ψt] dt+ g(rt)dWt

df(t, τ) =
[
γ0(t) + γ1(t)rt + γ2(t)f(t, τ) + g(rt)e−λ(τ−t)ψt

]
dt+ g(rt)e−λ(τ−t)dWt

dψt = κ(ψ̄ − ψt)dt+ b | ψt |γ dWt

(36)

with the totality of the parameters given by the vector (σ0, δ, λ, κ, ψ̄, b, γ). A filter application in
this context can be found in [15]. There the unobserved state vector is Xt = [rt, f(t, τ), ψt], while
the observations are noisy observations of a finite number of given forward rates. For further
aspects in this context see [56] and [55]. Notice finally that by filtering the market price of risk,
this quantity (and hence also the corresponding martingale measure) continuously adapts to the
current market situation.

3.5 Parameter Estimation in Term-Structure Models

Market models are mostly specified as families of models that depend on certain parameters. The
parameters are usually identified by matching as best as possible the theoretical model prices
with the actually observed market prices. This goes under the name of calibration to the market.
Calibration leads to a form of point estimation that may however lead to unstable estimates and
without indication of their accuracy. In a filtering context one may instead consider a dynamic
parameter estimation as part of the filtering problem and such a dynamic estimation enhances
the possibility for the model to continuously adapt to the current market situation.

Two major approaches to this effect may be considered: i) combined filtering and parameter
estimation; ii) EM (expectation maximization) combined with filtering. In the approach via
combined filtering and parameter estimation one considers an extended state (Xt, θ) where θ
denotes the vector of parameters that are now considered as random variables according to the
Bayesian point of view and one determines recursively the joint conditional (filter) distribution
π(Xt,θ)|Ft

. An example for this approach is presented next.
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Combined filtering and parameter estimation with interest-rate observations ([4]).
As explained in Section 2, in the context of HJM-models with a volatility structure as in (9),
forward rates and bond prices follow a factor model with factor process X given by two in-
stantaneous rates. Instantaneous (continuously compounded) forward rates are a mathematical
abstraction and cannot be directly observed on the market (at most proxies are observable).
Simple (discretely compounded) rates such as the LIBOR rates on the other hand are regularly
quoted on interest markets so that they can be considered observable. The latter are related
to the bond prices via (1), which in turn are related to Xt via p(t, T ;Xt) = F T (t,Xt). Since
Xt = [rt, f(t, τ)] satisfies the diffusion model (11), by stochastic differentiation one can then
derive stochastic dynamics for the LIBOR rates. In this context in [4] a model is studied where
the observation filtration (Ft) is generated by noisy observations of LIBOR rates. More precisely,
by adding an independent observation noise to the LIBOR rates the authors in [4] obtain a non-
degenerate nonlinear filtering problem to estimate Xt = [rt, f(t, τ)] and the parameters (σ0, δ, λ)
of the volatility function σ(t, T ) in (9), i.e. to estimate the theoretical instantaneous rates, on
the basis of the observations of the LIBOR rates.

Parameter estimation via the EM algorithm. The EM algorithm is based on the following:
let a given family of models, parameterized by θ, induce a family of probability measures P θ that
are assumed to be absolutely continuous with respect to a given reference measure P 0. Putting

Q(θ, θ′) := Eθ′

{
log

dP θ

dP θ′
| Ft

}
(37)

the algorithm iterates through the following two steps:

i) compute Q(θ, θ′) for θ′ given, θ arbitrary (expectation step)

ii) determine θ∗ = argmax
θ
Q(θ, θ′) and return to i) with θ′ = θ∗ (maximization step).

The algorithm stops as soon as the maximizing values in two successive iterations are sufficiently
close.

Since the EM algorithm is based on an absolutely continuous change of measure, the param-
eters entering the coefficient of the observation noise cannot be estimated via EM and have to
be estimated by other methods, e.g. on the basis of the empirical quadratic variation. The other
parameters can in principle be estimated via EM and the maximization step leads to solving
the system of equations obtained by putting ∂Q(θ,θ′)

∂θ = 0. The resulting system involves various
conditional expectations that can be computed on the basis of the filtering results (see e.g.[28]):
in continuous time, if the state and observation noises are independent, filtering alone suffices; if
they are not independent, also smoothing is required.

There exist other approaches as well, in particular in a discrete time setup. One of them is
based on the maximization of the innovations likelihood, which is in fact of the type of maximum
likelihood estimation. The parameter estimation approaches are mentioned here only in the
context of term structure models; they can however be easily carried over also to credit risk
models (see e.g. [30]).
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4 Nonlinear filtering in credit risk models

In this section we give a brief introduction to dynamic credit risk models and explain how
incomplete information and nonlinear filtering enter in credit risk modeling; a detailed discussion
of specific models is given in Sections 5 and 6 below.

4.1 Dynamic Credit Risk Models and Credit Derivatives

Dynamic credit risk models are concerned with the modeling of the default times in a given
portfolio of firms. In our discussion of credit risk models we use the following notation: the
firms under consideration are indexed by i ∈ {1, . . . ,m}; the random time τi > 0 denotes the
default time of firm i; the current default state of firm i is described by the default indicator
process Yt,i = 1{τi≤t}, jumping from zero to one at t = τi; the current default state of the
portfolio is described by Yt = (Yt,1, . . . , Yt,m); the default history up to time t is given by
FY

t := σ(Ys : s ≤ t). Since our focus is primarily on pricing problems, we model the dynamics
of the objects of interest directly under some risk-neutral measure Q. Throughout we therefore
work on a filtered probability space (Ω,G, (Gt), Q); as in the interest-rate part, (Gt) represents
the full-information filtration, so that all stochastic processes considered will be (Gt)-adapted.
Moreover, in line with most of the credit risk literature, we assume in this part of the paper that
default-free interest rates are deterministic and equal to r > 0.

A large part of the credit risk literature is concerned with the pricing of credit derivatives.
These are securities whose payoff is linked to default events in a given reference portfolio. In
abstract terms the payoff of a credit derivative is thus given by some FY

T -measurable random
variable H. Important examples include defaultable zero-coupon bonds and default payments.
The payoff of a defaultable zero coupon bond issued by firm i with maturity T and zero recovery
is given by H = 1{τi>T} = 1−YT,i; the price at t < T of this bond will be denoted by pi(t, T ). A
default payment of size δ on firm i with maturity T has a payoff of size δ directly at τi, provided
τi ≤ T . By combining zero coupon bonds and default payments other important products such
as Credit Default Swaps (CDSs) or corporate bonds with recovery payments can be constructed;
see Section 9.4 of [51] for further details. An important quantity in this context is the credit
spread of firm i, denoted ci(t, T ), t ≤ T ∧ τi. This quantity measures the difference in the
continuously compounded yields of a defaultable zero coupon bond issued by firm i and of the
corresponding default-free zero coupon bond (denoted here by p0(t, T )), and reflects thus the
market’s assessment of the likelihood of the default of firm i. Formally, ci(t, T ) is given by

ci(t, T ) := − 1
T − t

(log pi(t, T )− log p0(t, T )) . (38)

Existing dynamic credit risk models can be grouped into two classes: structural and reduced-
form models. Structural models originated from Black and Scholes [8], Merton [52], and Black
and Cox [7]. Important contributions to the literature on reduced-form models are [45], [49] [26]
and [9]; a more complete list of references can be found in the textbooks [3], [50], [51], among
others.

In structural models one starts by modeling the asset values Vi = (Vt,i)t≥0 of the firms
under consideration; usually Vi is modeled as a diffusion process. Given some default barrier
Ki = (Kt,i)t≥0, the default time τi is then defined to be the first passage time of Vi at the barrier
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Ki, i.e.
τi = inf{t ≥ 0: Vt,i ≤ Kt,i} . (39)

The default barrier is often interpreted as the value of the liabilities of the firm; with this inter-
pretation (39) states that, in line with economic intuition, default happens at the first time that
the asset value of a firm is too low to cover its liabilities. Note that the default time τi defined
in (39) is a predictable stopping time with respect to the global filtration (Gt) to which Vi and
Ki are adapted. It is well-documented that the fact that τi is (Gt)-predictable leads to very low
values for short-term credit spreads (in particular limh→0 ci(t, t+ h) = 0), contradicting most of
the available empirical evidence.

In reduced-form models on the other hand, the precise mechanism leading to default is left
unspecified; rather one models directly the law of the default times τi or of the associated default
indicator process Yi. Typically τi is modeled as a totally inaccessible stopping time with respect to
the global filtration (Gt), admitting a (Q, (Gt))-intensity λi (termed risk-neutral default intensity).
Formally, λi = (λt,i)t≥0 is a (Gt)-predictable process such that

Yt,i −
∫ t∧τi

0
λs,ids is a (Q, (Gt))-martingale. (40)

In reduced-form models dependence between defaults is often generated by assuming that the
default intensities do depend on a common factor process Xt ∈ Rd, i.e. λt,i = λi(Xt) for suitable
functions λi : Rd → (0,∞). The simplest construction is that of conditionally independent, doubly
stochastic default times. Here it is assumed that given FX

∞, the τi are conditionally independent
with

P (τi > t | FX
∞) = exp(−

∫ t

0
λi(Xs)ds), t > 0;

see for instance Section 9.6 of [51] for details.

4.2 Incomplete Information

In both modeling paradigms it makes sense to assume that investors have imperfect information
on some of the state variables of the models; this has given rise to a rich literature on credit risk
models under incomplete information.

In a structural model the natural state variables are given by the asset value Vi or the log-
asset value Xi and - with stochastic liabilities - by the liability-levels Ki of the firms under
consideration. It is difficult for investors in secondary markets to precisely assess the values
of these state variables for a number of reasons: accounting reports might be noisy; market-
and book-values can differ as intangible assets such as R&D (research and development)-results
or client-relationships are difficult to value; part of the liabilities are usually bank loans whose
precise terms are unknown to the public; and many more. Hence, starting with the seminal work
of Duffie and Lando [25], a growing literature studies models where investors have only noisy
information about Vi and/or Ki; the conditional distribution of the state variables given investor
information Ft is then computed by Bayesian updating or filtering arguments. Examples of this
line of research include [25], [53]; [39], [16] and [36]; some of these papers are discussed in more
detail in Section 5 below. Interestingly, it turns out that the distinction between structural and
reduced-form models is in fact a distinction between full and partial observability of asset values
and liabilities (see e.g. Jarrow and Protter [44]): in the models mentioned above the default time
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τi that is predictable with respect to the global filtration (Gt) becomes totally inaccessible with
respect to the investor filtration (Ft) and moreover admits an intensity. This leads furthermore
to a realistic behavior of short-term credit spreads, as is explained in Section 5.

In typical reduced-form models default intensities are assumed to depend on some Markovian
factor process X which here becomes the natural state variable process. In applications X is
usually not identified with observable quantities but treated as a latent process whose current
value must be inferred from observables such as prices or the default history. A theoretically
consistent way for doing this is to determine - via Bayesian updating or filtering arguments -
πXt|Ft

, the conditional distribution of Xt given investor information Ft. Reduced-form credit
risk models with incomplete information include the contributions by [57], [17] and [22] as well
as our own work [35] and [37]. The structure of the models [57], [17] and [22] is relatively similar:
default intensities are driven by an unobservable factor X; the default times are conditionally in-
dependent, doubly stochastic random times; the investor information (Ft) is given by the default
history of the portfolio, augmented by economic covariates. In [57], and [17] the unobservable
factors are modeled by a static random vector X which is termed frailty ; the conditional distri-
bution πX|Ft

is determined via Bayesian updating. In [22] the unobservable (scalar) factor X is
modeled as an Ornstein-Uhlenbeck process. This latter paper has an empirical focus: dynamic
Bayesian methodology is used in order to estimate the model-parameters from historical default
data; moreover, filtering is used in order to determine the conditional mean of Xt, given the his-
tory of defaults and covariates. This analysis provides strong evidence for the assertion that an
unobservable stochastic process driving default intensities (a so-called dynamic frailty) is needed
on top of observable covariates in order to explain the clustering of defaults in historical data, a
finding which strongly supports the use of filtering methodology in credit risk models.

Our own work [35] on filtering in reduced-form credit risk models extends these contributions
in a number of ways, at least from a methodological viewpoint. To begin with, we consider a
more general investor filtration that contains noisily observed prices on top of the default history
of the portfolio. Moreover, the problem of finding the conditional distribution of πXt|Ft

is studied
in a general jump-diffusion model for X and default indicator Y that includes most reduced-form
credit risk models from the literature and in particular the analysis of [57], [17] and [22] as special
case. Our discussion of reduced-form models with unobservable state variables in Section 6 is
therefore based mainly on [35] and the companion paper [37].

Introducing incomplete information into credit portfolio models has interesting implications
for the dynamics of credit derivative prices and credit spreads (both in structural and in reduced-
form models), since the successive updating of the conditional distribution πX|Ft

in reaction
to incoming default observations generates so-called information-driven default contagion: the
news that some obligor has defaulted leads to an update in πXt|Ft

(dx) and hence to a jump in
the (Ft)-default intensity of the surviving firms, as will be explained in more detail below. In
the context of reduced-form models this was first pointed out by [57] and [17], whereas default
contagion in structural models is studied among others in [39]; empirical evidence for contagious
effects is provided for instance in [17]. Note that a similar phenomenon did not occur in our
discussion of interest-rate market models, essentially because there the investor information (Ft)
was generated by continuous (Wiener-driven) processes.
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5 Filtering in Structural Models

In this section we discuss structural credit risk models under incomplete information and some
of the ensuing nonlinear filtering problems.

5.1 The model of Duffie and Lando [25]

The setup. Recall that we work on a filtered probability space (Ω,G, (Gt), Q), Q the risk-
neutral measure and (Gt) the full-information filtration. Throughout this section we focus on
models for the default of a single firm, so that the index i giving the identity of the firm can be
omitted. We assume that the asset value V follows a geometric Brownian motion on this filtered
probability space with drift µ, volatility σ and initial value V0. Consider then as (scalar) state
variable

Xt := log Vt = X0 +
(
µ− 1

2
σ2

)
t+ σWt, (41)

W a Browninan motion on (Ω,G, (Gt), Q). In [25] the default barrier K is taken constant. The
default time is thus given by the stopping time

τ := inf {t ≥ 0: Vt < K} = inf {t ≥ 0: Xt < logK} . (42)

It is assumed that V is not directly observable. Rather, investors observe default; moreover,
they receive “noisy accounting reports” at deterministic times t1, t2, · · · , that is they observe
random variables Zi = Xti +Ui where (Ui)i∈N is a sequence of independent, normally distributed
random variables, independent of X (or V ). Formally, with Yt := 1{τ≤t}, the investor filtration
is

Ft := FY
t ∨ σ({Zi : ti ≤ t}) . (43)

The default barrier K and the initial asset value X0 are supposed to be known.

Survival probabilities, default intensity and credit spreads. By the Markov property of
V (or X) one has, for T ≥ t,

Q (τ > T | Gt) = 1{τ>t}Q

(
inf

s∈(t,T )
Vs > K | Gt

)
= 1{τ>t}Q

(
inf

s∈(t,T )
Vs > K | Vt

)
=: 1{τ>t}F̄τ (t, T, Vt) .

Note that for T ≥ t the mapping T 7→ F̄τ (t, T, v) gives the (risk-neutral) survival probabilities of
the firm under full information as of time t, given that Vt = v; F̄τ is easily computed using stan-
dard results on the first passage time of Brownian motion with drift. Using iterated conditional
expectations one gets for the survival probability in the investor filtration

Q (τ > T | Ft) = E (Q (τ > T | Gt) | Ft) = 1{τ>t}

∫ ∞

log K
F̄τ (t, T, ex)πXt|Ft

(dx) . (44)

Next turn to the (Q,Ft)−default intensity λt of τ . It can be shown that under some regularity
conditions one has

λt = lim
h↓0

1
h
Q{t < τ ≤ t+ h | Ft}, (45)
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provided this limit exists for all t ≥ 0 almost surely (see [10], [1] for details). Duffie and Lando
in [25] now show that such a λt exists and is given by

λt =
1
2
σ2 ∂

∂x
π(Xt ∈ dx | Ft)|x=log K , τ ≥ t,

where π(Xt ∈ dx | Ft) denotes the Lebesgue-density of the filter distribution πXt|Ft
(dx). (The

fact that the derivative of the conditional density exists at x = logK is part of their result.)

Finally we discuss bond prices and credit spreads in the Duffie-Lando model under incomplete
information. We get for the price of a defaultable zero-coupon bond with zero recovery, denoted
by p1(t, T ),

p1(t, T ) = 1{τ>t}e
−r(T−t)Q{τ > T | Ft} = 1{τ>t}e

−r(T−t)

∫ ∞

log K
F̄τ (t, T, ex)πXt|Ft

(dx) (46)

i.e. zero-coupon bond prices can be expressed as an average with respect to the filter distribution
πXt|Ft

(dx). The price of a default payment is also easily computed once the survival probability
in the investor filtration is at hand. These pricing results are of course special cases of the general
pricing principle from Lemma 3.1 in Section 3.

The credit spread c(t, T ) introduced in (38) satisfies on {τ > t} the following relation (since
r is assumed deterministic one has p0(t, T ) = e−r(T−t))

c(t, T ) =
−1
T − t

logQ(τ > T | Ft) . (47)

In particular, we get for T ↓ t that ∂
∂T c(t, T )|T=t = ∂

∂TQ{τ > T | Ft}|T=t = λt, where the second
equality follows from (45). This shows that the introduction of incomplete information typically
leads to non-vanishing short-term credit spreads.

Computing the filter distribution. We have seen that in order to determine risk sensitive
financial quantities such as defaultable bond prices or credit spreads, one needs to determine
the conditional distribution (filter distribution) πXt|Ft

(dx). In [25] this problem is tackled in
an elementary way, involving Bayes’ formula and properties of first passage time of Brownian
motion. We do not discuss the details here; in the next subsection we show how proper filtering
arguments can be used in order to determine (approximately) πXt|Ft

(dx).

5.2 The model of Frey & Schmidt [36]

In [36], the basic Duffie-Lando model is extended in essentially two directions. On the financial
side the paper introduces dividend payments and discusses the pricing of the firm’s equity under
incomplete information. On the mathematical side nonlinear filtering techniques and Markov-
chain approximations are employed in order to determine the conditional distribution of the
log-asset value Xt given the investor-information Ft.

Here we concentrate on the filtering part. The setup of the model under full information is as
in Subsection 5.1: the log-asset value X is given by the arithmetic Brownian motion (41) and, in
line with (42), the default time τ is the first passage time of X at the barrier logK.8 Investors
observe the default state of the firm; moreover, they receive pieces of economic information (news)

8Below we present a slightly simplified version of the model discussed in [36].
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related to the state of the company such as information given by analysts, articles in newspapers,
etc. It is assumed that this information is discrete, corresponding for instance to buy/hold/sell
recommendations or rating information. Formally, news events on the company are issued at (for
simplicity) deterministic time points tIn, n ≥ 1; the news obtained at tIn is denoted by In, which
takes values in the discrete state space {`1, . . . , `MI}. The conditional distribution of In given
GtIn

is denoted by

νI(`j |x) := Q(In = `j |XtIn
= x).

Summarizing, the information of secondary market investors at time t is given by the σ-field

Ft := FY
t ∨ σ

(
{In : tIn ≤ t}

)
. (48)

Filtering. In order to determine the conditional distribution πXt|Ft
with minimal technical

difficulties, the log-asset value process X is approximated by a finite-state discrete-time Markov
chain X∆ as follows: define for a given time discretization ∆ > 0 the grid {t∆k = k∆, k ∈ N}. Let
(X∆

k )k∈N be a discrete-time finite-state Markov chain with state space Ξ∆ = {m∆
1 , . . . ,m

∆
M∆}

and transition probabilities p∆
ij , 1 ≤ i, j ≤M∆, and define the induced process X∆ by X∆

t = X∆
k

for t ∈ [t∆k , t
∆
k+1). In [36] it is assumed that the chain (X∆

k )k∈N is close to the continuous log-
asset-value process X in the sense that X∆ converges in distribution to X as ∆ → 0; it is shown
that this implies that the conditional distribution πX∆

t |Ft
converges weakly to πXt|Ft

as ∆ → 0.

In the sequel we keep ∆ fixed and omit it from our notation. Obviously the conditional
distribution πX∆

tk
|Ftk

is summarized by the probability vector π(k) = (π1(k), . . . , πM∆(k)) with

πj(k) := Q
(
Xk = mj | Ftk

)
. It is possible to give explicit recursive updating rules for the

probability vector π(k). In fact, due to the discrete nature of the problem, this is fairly easy, as
is illustrated by the simple proof of Proposition 5.1 below. It will be convenient to formulate the
updating rule in terms of “unnormalized probabilities” σ(k) ∝ π(k) (∝ standing for proportional
to); the vector π(k) can then be obtained by normalization.

The initial filter distribution π(0) can be inferred from the (known) initial distribution of X0.
For k ≥ 1 we have the following updating rule.

Proposition 5.1. For k ≥ 1 and tk < τ , denote by N I
k := {n ∈ N : tk−1 < tIn ≤ tk} the set of

indices of news arrivals in the period (tk−1, tk]. Then, with the convention that
∏
∅ (the product

over the empty set) equals 1,

σj(k) = 1{mj>log K}

M∆∑
i=1

{
pij σi(k − 1)

∏
n∈NI

k

νI

(
In|mi

)}
, j = 1, . . . ,M∆. (49)

Proof. Given the new information arriving in (tk−1, tk], the updating rule (49) forms a linear
and in particular a positively homogeneous mapping Γ such that σ(k) = Γσ(k − 1). Hence it is
enough to show that π(k) ∝ Γπ(k − 1). In order to compute π(k) from π(k − 1) and the new
information in (tk−1, tk] we proceed in two steps. In Step 1 we compute (up to proportionality)
an auxiliary vector of probabilities π̃(k − 1) with

π̃i(k − 1) = Q
(
Xk−1 = mi | F−

k

)
, 1 ≤ i ≤M∆, (50)
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where F−
k := Ftk−1

∨ σ
(
{In : n ∈ N I

k}
)
. In filtering terminology this is a smoothing step as the

conditional distribution of Xk−1 is updated using the new information arriving in (tk−1, tk]. In
Step 2 we determine (again up to proportionality) π(k) from the auxiliary probability vector
π̃(k− 1) using the dynamics of (Xk) and the additional information that τ > tk. We begin with
Step 2. Since {τ > tk} = {τ > tk−1} ∩ {Xk > logK}, we get

Q (Xk = mj | Ftk) ∝ Q
(
Xk = mj , Xk > logK | F−

k

)
=

M∆∑
i=1

Q
(
Xk = mj , Xk > logK,Xk−1 = mi | F−

k

)
= 1{mj>log K}

M∆∑
i=1

pij π̃i(k − 1) . (51)

Next we turn to the smoothing step. Note that given Xk−1 = mi, the likelihood of the news
observed over (tk−1, tk] equals

∏
n∈NI

k
νI

(
In|mi

)
, and we obtain

π̃i(k − 1) ∝ πi(k − 1) ·
∏

n∈NI
k

νI

(
In|mi

)
.

Combining this with equation (51) gives the result.

5.3 Further related work

There is a rich literature on structural credit risk models under incomplete information; here we
briefly discuss some contributions which cannot be treated in detail for reasons of space.

The filtering model of Nakagawa [53]. In [53] the author considers a slightly generalized
version of the basic Duffie-Lando model (see Subsection 5.1). The main difference is that in
[53] the investor filtration is given by Ft = FY

t ∨ FZ
t , where the process Z has dynamics dZt =

a(Xt)dt+ dβt for a Brownian motion β independent of W (observations of the state in additive
Gaussian noise). The principal goal is to determine the form of the default intensity (λt)t≥0 with
respect to the investor filtration (Ft). Note that this is a non-standard filtering problem, as the
default time τ does not admit an intensity with respect to the global filtration (Gt). In order
to deal with this problem the author applies an equivalent change of measure, so that under
the new measure Q̃ the process Z is independent of X and Y . The (Q̃, (Ft))-intensity of τ can
be computed explicitly using results from [47] or [25]. The (Q, (Ft))-default intensity can then
be computed via a suitable Girsanov-theorem for point processes once an explicit martingale
representation of the density martingale Lt = EQ̃

(
dQ/dQ̃ | Ft

)
is at hand. In order to compute

this representation the author projects the density martingale L̃t = EQ̃
(
dQ/dQ̃ | Gt

)
(which is

easily computed via the usual Girsanov theorem) on the filtration (Ft) using arguments from the
innovations approach to nonlinear filtering.

Further work. In [39] a structural portfolio model is considered. In contrast to the papers dis-
cussed so-far, in the model of [39] the asset value is observable, whereas the liabilities are subject
to random shocks which cannot be observed. Bayesian updating is used in order to compute the
conditional distribution of the liabilities given the investor information. The author points out
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that in case that liability shocks are correlated across firms, the model leads to information-based
default contagion.

The authors in [16] study a Duffie-Lando-type model with Ft = FY
t ∨ FZ

t ; in their setup the
process Z solves an SDE driven by a Brownian motion β which is correlated with the Brownian
motion W driving the asset-value process. In this paper bond prices are computed via the hazard-
function approach to reduced-form credit risk models (see [9]). Finally, in [13] the authors study
models where only the sign of the firm’s cash flow is available. Both papers are mathematically
interesting. However, filtering arguments play only a minor role, so that we do not enter into a
deeper discussion.

6 Filtering in Reduced Form Models

This section is concerned with the pricing of credit derivatives in reduced-form portfolio credit
risk models under incomplete information; the presentation is largely based on our own papers
[35] and [37].

6.1 Pricing credit derivatives and nonlinear filtering

As in the previous section we work on a filtered probability space (Ω,G, (Gt), Q) where Q rep-
resents the risk neutral pricing measure and (Gt) the full-information filtration. Recall that the
default state of the portfolio under consideration is summarized by the default indicator process
Y = (Yt,1, . . . , Yt,m)t≥0 with Yt,i = 1{τi≤t}. We assume that there is some d-dimensional process
X (the state process) and functions λi : Rd → (0,∞) such that λi(Xt) is the (Q, (Gt))-default
intensity of firm i, or, equivalently, that Yt,i−

∫ τi∧t
0 λi(Xs) ds is a (Q, (Gt))-martingale. Moreover,

we assume that the pair of processes (Xt,Yt)t≥0 is jointly Markov. For concreteness one may
think of a model with conditionally independent, doubly stochastic default times where default
intensities are functions of some Markovian factor process X (see also the first example in Subsec-
tion 6.3 below). As in the previous sections we denote by (Ft) the information actually observable
to investors. Following [35] we assume that (Ft) contains the default history FY

t = σ(Ys : s ≤ t)
and observations of functions of X in additive Gaussian noise. Formally, Ft := FY

t ∨ FZ
t where

the l-dimensional process Z is given by

dZt = at(Xt,Yt)dt+ dβt , (52)

with βt = (βt,1, . . . , βt,l) an l-dimensional Brownian motion on (Ω,G, (Gt), Q), independent of X
and Y. In order to avoid technical difficulties, at(·) is assumed to be bounded. We shall see
below that Z can be interpreted as theoretical prices for traded credit derivatives, observed in
additive noise. Note that X is not (Ft)-adapted, due to the independence of X and β.

Pricing credit derivatives. Recall that a credit derivative is a security with FY
T -measurable

payoff H; specific examples include defaultable zero-coupon bonds or CDSs as introduced in
Section 4.1. In accordance with the general pricing principle from Lemma 3.1 we define the
theoretical or full-information price of a credit derivative by H̃t := E

(
e−r(T−t)H | Gt

)
, t ≤ T ,

where the constant r > 0 denotes the default-free short rate. By the assumed Markovianity of
the pair (X,Y), for typical credit derivatives the process H̃t is of the form H̃t = at(Xt,Yt) for
some functions at : Rd ×{0, 1}m → R with t ∈ [0, T ]. This is obvious, if the payoff is of the form
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H = h(YT ) as in the case of a defaultable zero-coupon bond; it holds true for most other credit
derivatives such as the default-payment introduced in Section 4.1 as-well. For non-traded credit
derivatives we define the investor price by Ht := E

(
e−r(T−t)H | Ft

)
. We get from Lemma 3.1 (or

by a direct application of iterated conditional expectations) that

Ht = E(at(Xt,Yt) | Ft) . (53)

Since Yt is observable, in order to compute Ht we thus need to determine the conditional distri-
bution πXt|Ft

, which amounts to solving a nonlinear filtering problem.

Now we come back to the economic interpretation of Z. Assume that investors have noisy
information about the theoretical price at(Xt,Yt) of l traded credit derivatives. In a discrete-
time framework it is natural to assume that the observed market quotes are of the form ztk =
atk(Xtk ,Ytk) + εk for time points tk = k∆ and an iid sequence (εk)k of independent noise-
variables ε1, . . . , εl with mean zero and finite variance. The noise variables model transmission
and observation errors as well as temporary deviations of market quotes from theoretical prices.
In continuous time one considers instead the cumulative observation process Z∆

t := ∆
∑

tk≤t ztk .
Then we have for ∆ small, using Donsker’s invariance principle,

Z∆
t =

∑
tk≤t

atk(Xtk ,Ytk)∆ + ∆
∑
tk≤t

εk ≈
∫ t

0
as(Xs,Ys)ds+ βt. (54)

Remark 6.1 (Default intensities and default contagion). It is well-known that default-intensities
with respect to sub-filtrations can be computed by projection (see for instance Chapter II of [10]).
Hence the risk-neutral (Ft)-default intensity of firm j is given by the left-continuous version of

λ̂t,j := E (λj(Xt) | Ft) =
∫

Rd

λj(x)πXt|Ft
(dx) , t ≤ τj , (55)

so that in order to compute this quantity we again need the conditional distribution πXt|Ft
(dx).

Relation (55) illustrates nicely the notion of information-based default contagion that was already
mentioned in Section 4.2: new default information such as the news that obligor i 6= j has
defaulted leads to an update in the conditional distribution πXt|Ft

(dx) and hence to a jump in
the (Ft)-default intensity of firm j. Note that this leads to a downward jump in the model value
(and hence an increase in the credit spread) of a zero-coupon bond issued by some non-defaulted
firm.

6.2 A general jump-diffusion model

Following [35] we next introduce a jump-diffusion model for the joint dynamics of X and Y. This
model is fairly general and includes most reduced-form models from the literature as special cases;
specific examples are discussed in the next subsection. We assume that the factor process X =
(Xt,1, . . . , Xt,d)t≥0 and the default indicator process Y solve the following SDE on (Ω,G, (Gt), Q)

Xt = X0 +
∫ t

0
b(Xs−)ds+

∫ t

0
σ(Xs−)dWs

+
∫ t

0

∫
E
KX(Xs−, u)N (ds, du), (56)

Yt,j = Y0,j +
∫ t

0

∫
E
(1− Ys−,j)KY

j (Xs−, u)N (ds, du), 1 ≤ j ≤ m. (57)
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Here W is a standard k-dimensional Brownian motion; drift b = (b1, . . . , bd) and dispersion matrix
σ = (σi,l), 1 ≤ i ≤ d, 1 ≤ l ≤ k are functions from SX to Rd and Rd×k respectively, SX ⊂ Rd is
the state space of X; N (ds, du) denotes a (Q, (Gt))-standard Poisson random measure on R+×E,
E some Euclidean space, with compensator measure FN (du)ds; W and N are independent; X0

is a random vector taking values in SX ⊂ Rd; Y0 is a given element of {0, 1}m. Moreover,
KY

j (x, u) ∈ {0, 1} for all x, u and all 1 ≤ j ≤ m, so that the solution of (57) is in fact of the form
Yt,j = 1{τj≤t}. Define the sets

DX
i (x) := {u ∈ E : KX

i (x, u) 6= 0} , 1 ≤ i ≤ d , (58)

DY
j (x) := {u ∈ E : KY

j (x, u) 6= 0} , 1 ≤ j ≤ m. (59)

By definition of DX
i , the process ∆Xt,i 6= 0 if and only of N ({t} × DX

i ) > 0; similarly, for a
non-defaulted firm j we have τj = t if and only if N ({t} ×DY

j ) > 0.

In addition to several regularity conditions ensuring the existence and uniqueness of a solution,
in [35] it is assumed that for all 1 ≤ j1 < j2 ≤ m and all x ∈ SX one has FN (DY

j1
(x)∩DY

j2
(x)) = 0 .

This assumption ensures that for j1 6= j2 the processes Yj1 and Yj2 have no common jumps so
that there are no joint defaults. Note however, that the model (56), (57) allows for common
jumps of X and Y. More precisely, there is a strictly positive probability that the factor process
X jumps at τj , if

FN
(
DY

j (Xτj−) ∩DX
i (Xτj−)

)
> 0 for some 1 ≤ i ≤ d . (60)

Note moreover, that by definition of the compensator of a Poisson random measure,

Yt,j −
∫ t

0
(1− Ys−,j)FN (DY

j (Xs−)) ds , t ≥ 0,

is a (Gt)-martingale, so that λj(Xt−) := FN (DY
j (Xt−)) is the (Gt)-default intensity of firm j.

6.3 Examples

Next we present a number of specific examples which show that a great variety of models are
covered by the system (56), (57).

Conditionally independent defaults. Consider a model with conditionally independent,
doubly-stochastic default times and assume that X follows a jump diffusion model of the form

dXt = b(Xt)dt+ σ(Xt)dWt + dJt, (61)

where J is an Rd-valued compound Poisson process with compensator measure FJ(dx)ds. A
popular model of this form is the affine jump-diffusion model of [23]. Such a model can be
included in the framework (56), (57) as follows. Take E = Rd × R, FN = FJ × ν, ν Lebesgue-
measure on R, and put

KY
j (x,u) = 1

{
[ Pj−1

i=1 λi(x),
Pj

i=1 λi(x)
]
}
(ud+1), 1 ≤ j ≤ m, and (62)

KX
i (x,u) = ui1{[−1,0)}(ud+1) , 1 ≤ i ≤ d . (63)

Note that KX and KY have been chosen so that FN (DX
i (x) ∩DY

j (x)) = 0 for all 1 ≤ i ≤ d, all
1 ≤ j ≤ m, and all x in SX.
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A Markov-chain model with infectious defaults. Next we consider models where the
state process jumps in reaction to default events. A simple example is provided by the following
generalization of the infectious-defaults model of [21]. Here X is taken as scalar and modeled
as a finite-state Markov chain with state space SX = {1, . . . ,K} ⊂ R; the default intensity of
firm j is given by λj(Xt) for increasing functions λj : SX → R+. At a default time τn, X
jumps upward by one unit with probability pξn (which may depend on the identity ξn of the nth
defaulting firm), and remains constant with probability 1− pξn (unless, of course, if Xτn− = K,
where X remains constant). If the system is in an “ignited state”, that is if Xt ≥ 2, Xt jumps to
Xt − 1 with intensity γ(Xt); these downward jumps occur independently of the default history.
An upward jump of X at a default can be viewed as manifestation of counterparty risk and/or
default contagion, as the default intensities of the remaining firms are increased. This leads to a
downward jump in the model value (and hence an increase in the credit spread) of a zero-coupon
bond issued by some non-defaulted firm. This model can be embedded in the framework (56),
(57) by a proper choice of FN , KX and KY; see [35] for details.

The information-based model of Frey, Schmidt and Gabih [37]. This model is of interest
in our context, since the dynamics of model values and of the state variable process are themselves
derived by filtering arguments. In [37] the framework of this section is slightly extended and three
different layers of information are considered: full information, so-called market information
(Gt), and finally information of secondary-market investors (Ft). Here the full-information setup
is an additional layer of information used for the construction of the model; we denote the
corresponding filtration by (G̃t). It is assumed that under full information the default times
are conditionally independent doubly stochastic random times, and that (G̃t)-default intensities
are driven by a finite-state Markov chain Ψ with state space {1, . . . ,K} and generator matrix
QΨ. The filtration Gt ⊂ G̃t represents the information used by the market in determining the
theoretical equilibrium prices of traded credit derivatives. In accordance with the definition of
H̃t in Section 6.1, the theoretical price of the traded credit derivatives is defined by H̃t,j =
E

(
exp(−r(T − t))Hj | Gt

)
, 1 ≤ j ≤ l. Define the vector pt of conditional-probabilities by

pt := (p1
t , . . . , p

K
t ) where pk

t := Q(Ψt = k | Gt), 1 ≤ k ≤ K . (64)

The process p = (pt)t≥0 is a natural state variable process for the model in the market filtra-
tion; p thus plays the role of the process X introduced in (56). The reasons are the following:
first, denoting the (G̃t)-default intensities by νi(Ψt), the (Gt)-default intensities are given by
λi(pt) :=

∑K
k=1 p

k
t νi(k). Moreover, note that by the (G̃t)-Markovianity of Ψ and Y, the condi-

tional expectation E
(
exp(−r(T − t))Hj | G̃t

)
is given by some function ãt,j(Ψt,Yt), at least for

Hj = hj(YT ). By iterated conditional expectations theoretical prices can therefore be expressed
as functions of t, pt and Yt as well:

H̃t,j = E(ãt,j(Ψt,Yt) | Gt) =
K∑

k=1

pk
t ãt,j(k,Yt) =: at,j(pt,Yt) , 1 ≤ j ≤ l. (65)

In particular, theoretical prices have a linear factor structure with factor process p.

In [37] it is assumed that Gt = FY
t ∨ FU

t , where the process U models in abstract form the
information aggregated in the equilibrium prices of traded securities. Mathematically, U is given
by Ut =

∫ t
0 µ(Ψs)ds + Bt, B a standard (G̃t)-Brownian motion independent of Ψ and Y . In a
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spirit similar to that of the Landen-model discussed in Section 3.3, the innovations approach
to nonlinear filtering is used in order to determine the dynamics of the process p, and with it
the dynamics of theoretical prices. We briefly sketch the main steps. Consider the (Gt)-adapted
processes

Mt,i := Yt,i −
∫ t∧τi

0
λi(ps) ds , 1 ≤ i ≤ m, and Wt := Ut −

∫ t

0
µ(ps) ds ,

where µ(pt) =
∑K

k=1 p
k
t µ(k). The processes M = (Mt,1, . . . ,Mt,d)t≥0 and W are the innovations

processes. In particular, it is well-known that M is a (Gt)-martingale and that W is (Gt)-Brownian
motion; moreover, as shown in [37], every (Gt) martingale can be represented as stochastic integral
wrt M and W .

For a generic process Γ denote by Γ̂ the optional projection of Γ with respect to the market
filtration (Gt). Consider now a generic (G̃t)-semimartingale with canonical decomposition of the
form

Jt = J0 +
∫ t

0
Asds+MJ

t ;

here A is some adapted right-continuous process, and MJ is an (G̃t)-martingale with [MJ , B] = 0
and [MJ , Yi] = 0 for all i. It is then shown in [37], that the optional projection Ĵt has the
representation

Ĵt = Ĵ0 +
∫ t

0
Âsds+

∫ t

0
γ>s dMs +

∫ t

0
αsdWs, (66)

where, with µt := µ(Ψt) and νt,j := νj(Ψt), the integrands γ and α are given by

αt = (Ĵµ)t − Ĵtµ̂t, and γt,j =
1

(ν̂j)t−

(
(Ĵνj)t− − (Ĵ)t−(ν̂j)t−

)
j = 1, . . . ,m. (67)

The proof of this result is based on standard arguments from the innovations approach to nonlin-
ear filtering. Consider now the semimartingales Jt,k = 1{Ψt=k}, 1 ≤ k ≤ K and note that pt = Ĵt.
Since the semimartingale decomposition of Jk is given by Jt,k = J0,k +

∫ t
0 Q

Ψ
Ψs,k ds + MJk

t , by
applying (66) to Jk one therefore obtains the following K-dimensional SDE for the process p:

dpk
t =

K∑
i=1

QΨ
i,k p

i
tdt+

m∑
i=1

γk
i (pt−) dMt,i + δk(pt−) dWt, 1 ≤ k ≤ K, (68)

with coefficients given by the functions

γk
j (p) = pk

( νj(k)∑K
n=1 νj(n)pn

− 1
)
, δk(p) = pk

(
µ(k)−

K∑
n=1

pnµ(n)
)

; (69)

see again[37] for details.

Similarly as in (52), in [37] the information set of secondary market investors is given by
Ft = FY

t ∨FZ
t for Zt =

∫ t
0 as(ps,Ys)ds+βt, β a Brownian motion independent of Y and U . By

an argument analogous to that leading to (53), the computation of prices for secondary-market
investors leads to the problem of finding πpt|Ft

so that the solution p of the filtering problem
with respect to the market information (Gt) becomes the state variable of the filtering problem

24



with respect to the investor filtration (Ft). The latter filtering problem is covered by our setup,
as the processes p and Y follow an SDE-system of the form (56) and (57). Note in particular
that at a default time the probability vector p is updated according to (68), so that there are
common jumps in the state variable p and the observation Y. In [37] the authors discuss also
the hedging of credit derivatives from the viewpoint of secondary-market investors. For this they
rely on the concept of risk-minimization with restricted information as introduced in [58]. It is
shown that the solution of the hedging problem again leads to the problem of finding πpt|Ft

.

While complicated at first sight, the model of [37] has a number of attractive features. To
begin with, by (65), the main numerical task is the evaluation of the functions ãj(t, k,y); as these
functions are computed in the simple full-information setup, computations become relatively easy
even for non-homogeneous models. Moreover, the model generates a rich set of price dynamics
with randomly fluctuating credit spreads and default contagion, and it has a natural factor
structure.

6.4 Filter equations

In the setup of Subsection 6.2, the determination of πXt|Ft
(dx) becomes an interesting nonlinear

filtering problem with observations of mixed type (generated by marked point processes and
diffusions) and with common jumps in the observation Y and the state process X. This is
problem is non-standard and merits a discussion in the context of the present survey.

Filtering problems with common jumps of the unobserved state process and of the observations
have previously been discussed in the literature. Initial results can be found in [42]; the papers
[46] and [12] are concerned with scalar observations described by a pure jump process. The recent
paper [19] on the other hand treats the filtering problem for a very general marked point process
model but without common jumps of the state- and the observation process. All these papers are
based on the innovations approach to nonlinear filtering. Assuming that investor information is
equal to the default history (FY

t ), [32] gives a simple filter algorithm for the affine jump-diffusion
model of [23] with conditionally independent doubly stochastic default times.

In line with [35], in the present paper we follow an alternative route which is based on ideas
from the reference probability approach and takes into account the particular structure of the
given general model. In this way we obtain new general recursive filter equations and, as a
byproduct, an explicit expression for the joint likelihood of state process and observations.9 In
the case that (X,Y) is a finite-state continuous-time Markov chain our filter equations give rise
to a finite-dimensional filter. We describe now in more detail some of the results from [35] and
present in particular the filter equations.

Preliminaries. Since the approach in [35] is based on ideas from the reference probability
approach, we first mention some preliminaries to this effect. For ease of notation and without loss
of generality in what follows we shall simply denote by at(Xt) the process with the components
at,1(Xt,Yt), · · · , at,l(Xt,Yt) from the drift of Z as introduced in (52). It will be convenient to
define the processes X, Y and Z on a product space (Ω,G, (Gt), R0) so that Z is independent of X
and Y. Denote by (Ω2,G2, (G2

t ), P 0,l) the l-dimensional Wiener space with coordinate process Z,
i.e. Zt(ω2) = ω2(t). Given some probability space (Ω1,G1, (G1

t ), P ) supporting a solution (X,Y)
9With common jumps of X and Y such an expression cannot be derived from standard filtering results in a

straightforward way, essentially because X and Y cannot be made independent by a change of measure.
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of the SDE-system (56), (57), let Ω := Ω1 ×Ω2, G = G1 ⊗ G2, Gt = G1
t ⊗ G2

t , R0 := P ⊗ P 0,l, and
put for ω = (ω1, ω2) ∈ Ω

Xt(ω) := Xt(ω1), Yt(ω) := Yt(ω1), and Zt(ω) := Zt(ω2).

Note that this implies that under R0, Z is l-dimensional Brownian motion, independent of X and
Y. Introduce then a Girsanov-type measure transformation of the form dR

dR0 |Ft
= Lt with

Lt = Lt(ω1, ω2) = exp
{∫ t

0

(
as(Xs(ω1))

)′
dZs(ω2)−

1
2

∫ t

0
‖as(Xs(ω1))‖2 ds

}
(70)

and note that L is indeed a R0-martingale at(·) was assumed to be bounded. Under R, the
process Z has the original dynamics (52), while the law of X and Y remains unchanged.

In the sequel we discuss how to obtain the filter distribution πXt|Ft
in weak form, that is

we want to compute for a generic bounded and continuous function h : Rd → R the conditional
expectation

πth := E(h(Xt) | Ft) =
∫

Rd

h(x)πXt|Ft
(dx) . (71)

The well-known Kallianpur-Striebel formula gives

πth =
ER0

(h(Xt)Lt | Ft)
ER0(Lt | Ft)

, (72)

so that, to compute πth, it suffices to compute the numerator on the right-hand side in (72).
Recalling that Ft = FY

t ∨ FZ
t , we reduce next the conditioning on Ft to a conditioning on

FY
t . Using the Fubini theorem and the product-structure of (Ω,F , (Ft), R0) we get with Lt =

Lt(ω1, ω2) as introduced in (70)

ER0
(h(Xt)Lt | FY

t ∨ FZ
t )(ω) = EP (h(Xt)Lt(·, ω2) | FY

t )(ω1) . (73)

In order to compute πth we thus have to evaluate the conditional expectation on the right hand
side of (73). Note that this involves only the first component (Ω1,G1, (G1

t ), P ) of the underlying
probability space and hence only the joint law of X and Y; expectations with respect to that law
will be simply denoted by E (instead of EP ).

To derive the filter between default times we have to modify the kernel KX(·) in the dynamics
(56) for X because, conditional on not having jumps in Y, certain jumps in X cannot occur.
More precisely, we shall consider the following kernel, which here is slightly generalized wrt the
corresponding definition in Section 6.2 by making it explicitly dependent also on y, namely

K̄X(x,y, u) :=

{
0, if u ∈ D̄Y(x,y) :=

⋃
{j : yj=0}D

Y
j (x,y) ,

KX(x, u) else.
(74)

We shall denote by X̄t the process corresponding to K̄X(·) and by Ȳt the process in (57) obtained
when replacing Xt by X̄t there. The law of (X̄t, Ȳt) with initial condition (X̄0 = x, Ȳ0 = y)
will be denoted by P̄(x,y) and the corresponding expectation by Ē(x,y).

Given these preliminaries the filtering results now take the form of a recursion over the
successive default times Tn, 1 ≤ n ≤ m. Since in the generic interval [Tn−1, Tn) only the new
price information (Zs)s≥Tn−1 matters, in the sequel we use the lighter notation

Zn
s := Zs+Tn−1 and an

s (·) := as+Tn−1(·) . (75)
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Filtering between defaults. The main result here is the following (see [35])

Theorem 6.2. Given two successive default times Tn−1, Tn, we have for t ∈ [Tn−1, Tn)

πth ∝
∫

Rd

πTn−1(dx) Ē(x,YTn−1
)

(
h

(
X̄t−Tn−1

)
Ln

t−Tn−1
exp

{
−

∫ t−Tn−1

0
λ̄(X̄s,YTn−1)ds

})
(76)

where Ē(x,y) is the expectation as introduced above, πTn−1(dx) is the filter distribution at t = Tn−1

and the process Ln = (Lv
t )t≥0 is defined by

Ln
t = exp

{∫ t

0
(an

s )′(X̄s) dZn
s −

1
2

∫ t

0

∥∥an
s (X̄s)

∥∥2
ds

}
.

Filtering at a default time. By (72) and (73) at a generic default time one has

πTnh ∝ E(h(XTn)LTn | FY
Tn

) .

Notice now that, due to the possibility of common jumps between X and Y, the expressions
E(h(XTn)LTn | FY

Tn
) and E(h(XT−

n
)LTn | FY

Tn
) do not necessarily coincide. We shall therefore

proceed along two steps. In Step 1 we show that one can obtain the conditional expectation
E(h(XTn)LTn | FY

Tn
) once one is able to compute E(g(XT−

n
)LTn | FY

Tn
) for a generic function

g(·). In this step we use the joint distribution of the jumps ∆XTn and ∆YTn and hence the
particular structure of the given model. In Step 2 we then compute the latter of those two
quantities via Bayesian updating.

Step 1 (Reduction to the filter distribution of XTn−
). Here one can show (see [35])

Proposition 6.3. We have the relation

E(h(XTn)LTn | FY
Tn

) = E(g(XT−
n
, ξn)LTn | FY

Tn
),

where ξn is the identity of the firm defaulting at Tn, and where the function g is given by

g(x, j) =


FN

(
DY

j (x)
)−1

∫
DY

j (x)
h
(
x +KX(x, u)

)
FN (du) , if FN

(
DY

j (x)
)
> 0 ,

h(x) , else.
(77)

Step 2 (Updating of the conditional distribution of XT−
n

). Here we have

Theorem 6.4. Given the information that a default has actually occurred at t = Tn and given
the identity ξn of the defaulting firm, for a generic function g : Rd → R we have

E
(
g(XT−

n
)LTn | FY

Tn

)
∝

∫
Rd

πTn−1(dx) Ē(x,YTn−1
)

(
g(X̄Tn−Tn−1)

× Ln
Tn−Tn−1

· λξn

(
X̄Tn−Tn−1 ,YTn−1

)
exp

{
−
∫ Tn−Tn−1

0
λ̄(X̄s,YTn−1) ds

}
.
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Filter equations for finite-state Markov chains We show here how the general filter equa-
tions specialize for the case when (X,Y) form a finite state Markov chain thereby also showing
how these equations allow the computations to be performed explicitly.

We assume w.l.o.g. that the state space of (X,Y) is {1, . . . ,K} × {0, 1}m so that X can be
considered as scalar. Denote the transition intensities of (X,Y) by q(k,y; k̃, ỹ). In line with our
general framework we restrict the transition intensities so that default is an absorbing state and
so that there are no simultaneous defaults. Hence, denoting the current state by (k,y), there are
three possible transitions of (X,Y). First there may be a transition from (k,y) to (h,y), h 6= k;
this transition occurs with intensity q̄y

k,h := q(k,y;h,y). Second, there may be a ‘contagious
default’, i.e. for i ∈ {1, . . . ,m} with yi = 0 and h 6= k there may be a transition from (k,y)
to (h,yi), where yi is obtained from y by flipping the ith coordinate. Third we may have a
‘pure default’, i.e. a transition from (k,y) to (k,yi). In particular, the default intensity of a
non-defaulted firm i is equal to λi(k,y) =

∑K
h=1 q(k,y;h,yi). This Markov chain model can be

included in the general framework of (56), (57) by a specific choice of KX and KY; see [35] for
details.

In this finite-state Markov case the filter distribution can be summarized by theK-dimensional
process πt = (π1

t , . . . , π
K
t ) with πi

t := P (Xt = i | Ft). Obviously, it suffices to compute an un-
normalized version of πt. Put for h ∈ {1, . . . ,K}

σh
t [n,y] :=

K∑
i=1

Ē(i,y)

(
1{X̄t=h}L

n
t exp

{
−

∫ t

0
λ̄(X̄s,y) ds

})
πTn−1({i}), (78)

so that σt[n,y]g =
∑K

h=1 σ
h
t [n,y]g(h). We have the following Zakai-equation for σt (see [35])

Proposition 6.5. Between default times the process σt = σt[n,y] solves the SDE

dσi
t =

( K∑
k=1

q̄y
k,iσ

k
t − λ̄(i,y)σi

t

)
dt+ σi

t (an
t )′(i) dZn

t , 1 ≤ i ≤ K , (79)

with initial condition σi
0 = πTn−1({i}).

At a default time Tn the filter distribution is updated as follows. Compute first

P
(
XTn−

= i | FTn

)
:=

λξn(i,YTn−1)σ
i
Tn−Tn−1

[n,YTn−1 ]∑K
k=1 λξn(k,YTn−1)σk

Tn−Tn−1
[n,YTn−1 ]

(ξn the identity of the defaulting firm) and then

πi
Tn

:=πTn({i}) =
∑
h 6=i

P
(
XT−

n
= h | FTn

) q
(
h,YTn−1 ; i,YTn

)∑K
j=1 q

(
h,YTn−1 ; j,YTn

)
+ P

(
XT−

n
= i | FTn

) q
(
i,YTn−1 ; i,YTn

)∑K
j=1 q

(
i,YTn−1 ; j,YTn

) , 1 ≤ i ≤ K .

(80)

The computability of these expressions hinges upon the solvability of the SDE in (79); various
considerations to this effect are given in [35].
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Further results. In [35] a number of additional results can be found. To begin with, a novel
filter-approximation result is established; this justifies the use of the Markov-chain-filter as a
computational tool for general state variable processes. Moreover, it is shown how to adapt
particle filters such as the algorithm of [18] to models with joint jumps of X and Y. This is
important from a computational point of view: while Markov chain approximations are an effec-
tive tool for models where X is 2–3 dimensional, computations become prohibitively expensive
in higher dimensions. Suitable particle filters on the other hand are a viable numerical scheme
for moderate dimensions of the state process; see for instance [11] for an elaboration of this point
in the context of standard nonlinear filtering problems.

7 Summary

We have discussed stochastic filtering problems that arise in the context of incomplete-information
models for the term structure of interest rates and credit risk. The models considered were
Markovian factor models. At the level of investors in secondary markets, the precise values of
these factors are difficult to assess for a number of reasons, and so they have to be treated as
latent factors to be filtered on the basis of the actual market information.

The main objective has been the pricing of derivative instruments. Other problems, includ-
ing parameter estimation/calibration, have been touched upon only briefly. We have typically
followed a two-step procedure: in the first step we determined the quantities of interest under
full information as functions of the factors; in the second step we then derived their values un-
der the actual market information by projecting the full information values on the subfiltration
representing the market information. This is where filtering came in. In order to rule out the
possibility of arbitrage, prices are expressed as expectations under a martingale/pricing measure.
For pricing problems the filtering problems were therefore formulated directly under a martingale
measure; for other purposes the real world/physical measure were found to be more appropriate.
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