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Abstract

In this paper we study the hedging of derivatives in illiquid markets. More specifically

we consider a model where the implementation of a hedging strategy affects the price of

the underlying security. Following earlier work we characterize perfect hedging strategies

by a nonlinear version of the Black-Scholes PDE. The core of the paper consists of a

simulation study. We present numerical results on the impact of market illiquidity on

hedge cost and Greeks of derivatives. We go on and offer a new explanation of the smile

pattern of implied volatility related to the lack of market liquidity. Finally we present

simulations on the performance of different hedging strategies in illiquid markets.
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1 Introduction

In recent years market liquidity has become an issue of high concern in risk management. In

particular, risk managers realized that financial models which are based on the assumption

that an investor can trade large amounts of an asset without affecting its price (perfectly

liquid markets) may fail miserably in circumstances where market liquidity vanishes. This

calls for additional research, extending traditional financial models to markets which are not

perfectly liquid.

In the present paper we focus on the risk management for derivative securities via dy-

namic hedging. We study a model of an illiquid market where the implementation of a

dynamic hedging strategy has an impact on the price process of the underlying asset. In
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practice such a feedback effect could for instance arise, if the volume of trading committed

to dynamic hedging strategies is relatively large compared to the overall trading volume on

the underlying. Obviously, in this context we cannot rely on results from standard derivative

asset analysis, where it is always assumed that option hedgers are small investors. Our paper

builds on the analysis of Frey (2000). Frey considers a model where the asset price process

is driven by some exogenous source of randomness (in his case a standard Brownian motion)

and by the trading strategy of a representative agent who is hedging derivatives. He obtains

a formula for the impact of hedging on market volatility and characterizes perfect hedging

strategies by a non-linear version of the standard Black-Scholes partial differential equation

(PDE).

Here we complement the analysis of Frey (2000) and carry out an extensive simulation

study in order to better understand the implications of market illiquidity for derivative

asset analysis. In order to solve the nonlinear PDE numerically we implemented an efficient

numerical scheme, which is used to study for a number of different payoffs the properties

of hedge cost and greeks in our framework. We go on and offer a new explanation for the

famous smile and skew pattern of implied volatility, relating them to properties of market

liquidity. Essentially we show that in the context of our model we obtain volatility skews

if we assume that market liquidity dries out in a rapidly falling market, a quite plausible

assumption in our view. Finally we report results from a simulation study for the tracking

error for different hedging strategies in an illiquid market. This quantity measures the

difference between the payoff of a derivative and the terminal value of a selffinancing trading

strategy designed to replicate this derivative; it is therefore a useful quantity if we want to

assess the performance of different hedging strategies in an illiquid market.

The hedging of derivatives in markets which are not perfectly liquid has been the focus

of a number of recent studies. Here we mention only the contributions by Jarrow (1994),

Frey and Stremme (1997), Frey (1998), Sircar and Papanicolaou (1998), Schönbucher and

Wilmott (2000) and Baum (2001). The relation between market liquidity and the smile

pattern of implied volatility has previosly been addressed in Grossman and Zhou (1996)

and Platen and Schweizer (1998). Obviously, our paper builds on these contributions; the

relation of our results to earlier work will be discussed in the core of the paper.

The paper is organized as follows. In Section 2 we introduce our basic model. The

hedging of options and the relation between market liquidity and volatility skews is discussed

in Section 3. Numerical results are presented in Sections 4 and 5.

2 The model

In this Section, we introduce the economic model underlying our analysis. Our exposition

follows Frey (2000), and we sometimes refer to this paper for complementary information.

We are working in a stylized financial market with two traded assets: a riskless one

(typically a bond or a money market account), called the bond and a risky one (typically a

stock or stock index) referred to as the stock. We take the bond as numeraire. Moreover, we

assume that the market for the bond is perfectly liquid, meaning that investors can buy or

sell arbitrarily large quantities of this security without affecting its price. This reflects the

fact that money markets are usually far more liquid than the stock markets. As usual the

price of the stock, accounted in units of the numeraire, is modelled as a stochastic process

(St)t on some underlying filtered probability space (Ω,F , P ), (Ft)t.

We assume that there is a group of N agents hedging OTC derivatives on the stock. All

these contracts have a common maturity date T and a path-independent payoff. Each of the
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individual hedgers is relatively small compared to the market and thus acts as a price taker.

However, N is large, so that taken as a group the hedgers do have a significant impact on

prices. We model this by introducing a representative hedger, who replicates a derivative

contract on the stock with maturity date T and payoff h(ST ) using a dynamic trading

strategy in stock and bond. The function h represents the aggregated payoff of the contracts

which are replicated by the small traders. The trading strategy of the representative hedger

is given by a pair (αt, βt)t of adapted processes, with αt and βt denoting the number of

shares respectively the number of bonds in the portfolio at time t. We assume that the

representative hedger is a large trader, i.e. that the implementation of his hedging strategy

has a feedback effect on the price of the stock; this accounts for the fact that taken as a

group the hedgers do have an influence on prices. More precisely, in our model the stock

price rises (falls) if the representative hedger buys (sells) additional shares of the stock. This

is in line with economic intuition on the price impact of large trades; it is also supported

by empirical evidence on price impact of large block transactions as given for instance in

Holthausen and Leftwich (1987) or Kampovsky and Trautmann (2000).

We now turn to our model for the asset price dynamics in the presence of feedback effects.

Following Frey (2000) we refrain from fundamental economic modelling and introduce di-

rectly the asset price dynamics which result if the large trader chooses a given stock-trading

strategy (αt)t. In particular, form and size of the price-impact of our hedger’s trades are

not derived but exogenously imposed. Obviously this simplifies the analysis considerably.

Moreover, the primitives of our model are at least in principle observable which facilitates

the application of our results.

We need to impose some technical restrictions on the class of stock trading strategies

permissible for our trader. Throughout the paper we assume that

A1) The stockholdings (αt)t are left-continuous (i.e. αt = lim
s

<
→t

αs), and the right-continuous

process α+ with α+t = lim
s

>
→t

αs is a semimartingale.

A2) The downward-jumps of our strategy are bounded: ∆α+t := α+t − αt > −1/ρ for some

ρ > 0.

Most of the time we will work with trading strategies which are smooth functions of time

and stock-price such as hedging strategies for options in the standard Black-Scholes model.

For these strategies the above assumptions are always satisfied.

Our model can be viewed as a perturbation of the standard Black-Scholes model. The

size of this perturbation is controlled by a parameter ρ (the market liquidity parameter).

In fact, if ρ = 0 or if the representative hedger does not trade (i.e. αt ≡ 0), the asset price

simply follows a Black-Scholes model with some reference volatility σ. In the sequel we

denote the asset price process which results if the liquidity parameter takes a certain value

ρ and if the large trader uses a particular trading strategy α by St(ρ, α).

In the following assumption we describe the dynamics of St(ρ, α) by a stochastic differ-

ential equation (SDE).

A3) Given a Brownian motion W on (Ω,F , P, (Ft)t), two constants σ > 0 and ρ ≥ 0 and a

continuous function λ : R+ → R+ such that ρλ(S) ≤ ρ for all S ≥ 0. Suppose that

the large trader uses a stock-trading strategy (αt)t satisfying Assumptions A1 and A2.

Then the asset price process solves the following stochastic differential equation (SDE)

dSt = σSt−dWt + ρλ(St−)St−dα
+
t , (1)

where St− denotes the left limit lim
s

<
→t

St.
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We normalize λ by assuming that λ(S0) = 1. Note that 1/(ρλ(St−)St−) measures the depth

of the market at time t, i.e. the size of the change in the large trader’s stock position which

causes the price to move by one unit of account.

There are basically two different approaches for determining ρ and λ. On the one hand

statistical methods could be used. In fact, there are several empirical studies on the price

impact of large trades which yield estimates of ρ such as Holthausen and Leftwich (1987)

or Kampovsky and Trautmann (2000). On the other hand we might estimate ρ and λ from

observed option prices, very much in the spirit of the popular implied volatility models.

This approach, which is studied in more detail in Frey and Patie (2001), is based on the idea

that option traders have a good feeling for problems in the hedging of derivatives caused

by illiquidities in the market for the underlying, so that current derivative prices reflect the

market’s expectations about future liquidity.

3 Dynamic hedging of derivatives

3.1 Basic concepts revisited

In the sequel we discuss some modifications to basic notions in derivative asset analysis

necessary to account for the fact that our hedger is a large investor. Consider a trading

strategy ξ = (αt, βt)t satisfying Assumptions A1 and A2.

Value process: In defining the value of the large trader’s position we have to distinguish

between the paper value or mark to market value and the liquidation value of his position.

The mark to market value of his portfolio at time t is given by V M
t := αtSt(ρ, α)+βt, i.e. we

simply value the position using current market prices. The liquidation value of a portfolio

corresponds to the funds an investor obtains when actually selling his stockholdings. It is

difficult to determine liquidation values exactly as they depend on the liquidation strategy

chosen by the large trader. In the present paper we restrict ourselves to mark-to-market

values; for an analysis of liquidation values in the context of option hedging in illiquid

markets we refer to Schönbucher and Wilmott (2000) and in particular to Baum (2001).

Gains from trade and selffinancing strategies: As in standard derivative as-

set analysis the gains from trade from a stock-trading strategy (αt)t are given by Gt :=
∫ t

0 αsdSs(ρ, α); note however, that in our situation the stock price process S depends on the

chosen strategy. We call a strategy selffinancing if V M
t = V M

0 +Gt for all 0 ≤ t ≤ T . As usual

a stock-trading-strategy (αt)t satisfying Assumptions A1 and A2 and an initial investment

V0 define a unique selffinancing strategy (αt, βt)t in stock and bond. Hence when restricting

ourselves to selffinancing strategies we do not have to specify the amount of bonds in the

portfolio.

Tracking error: The tracking error of a selffinancing strategy designed to replicate a

derivative measures the the difference between the payoff of the derivative and the value

at maturity of the strategy; it is therefore an essential quantity if we want to assess the

performance of hedging strategies in markets which are not perfectly liquid. Consider some

derivative security with payoff h(ST ) and a selffinancing trading strategy with initial value

V0 and stock-trading-strategy (αt)t. Then eM
T , the tracking error with respect to mark to

market values of this strategy, is defined by

eM
T := h(ST (ρ, α))− V M

T = h(ST (ρ, α))−

(

V0 +

∫ T

0
αsdSs(ρ, α)

)

. (2)

A positive (negative) value of eM
T obviously indicates that the hedger made a loss (profit)

on his hedge.
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3.2 Asset price dynamics in the presence of a large trader

In this subsection we determine the dynamics of the asset price if the large trader’s stock-

trading strategy is given by a smooth function φ of time and the current stock price. We

make the following regularity assumptions on φ.

A4) The function φ : [0, T ]×R+ → R is of class C1,2([0, T ]×R+). Moreover, ρλ(S)SφS(t, S) <

1 for all (t, S) ∈ [0, T ]× R+.

We have

Proposition 3.1. Suppose that the large trader uses a stock-trading-strategy of the form

αt = φ(t, St) for a function φ satisfying Assumption A4 and that the stock price process

St = St(ρ, α) follows an Itô process of the form

dSt = v(t, St)StdWt + b(t, St)Stdt (3)

for two functions v and b. Then we have under Assumption A3

v(t, S) =
σ

1− ρλ(S)SφS(t, S)
and 1 (4)

b(t, S) =
ρ

1− ρλ(S)SφS(t, S)

(

φt(t, S) +
σ2S2φSS(t, S)

2(1− ρλ(S)SφS(t, S))2

)

.

The proof can be found in Frey (2000). Of particular relevance for our further analysis

is the feedback effect on the volatility of the stock price process: by the trading-activity of

the large investor the constant volatility σ is transformed into the time and price dependent

volatility v(t, S) in (4). Note that v(t, S) > σ if φS(t, S) > 0, i.e. if the trader uses a

positive feedback strategy which calls for additional buying if the stock price rises. This

property is typical for hedging strategies for derivatives with a convex terminal payoff such

as European call or put options; see for instance El Karoui, Jeanblanc-Picqué, and Shreve

(1998). On the other hand, if our trader uses a contrarian strategy, i.e. if φS(t, S) < 0, we

have v(t, S) < σ, i.e. the volatility is decreased. For a detailed discussion of the relation

between dynamic hedging and market volatility we refer the reader to Frey and Stremme

(1997) and the references given therein.

Proposition 3.1 also explains why in our context, where the large investor is a representa-

tive agent summarizing the trading behaviour of many small agents, it is natural to consider

strategies of the form αt = φ(t, St): if an individual hedger, say hedger n, believes that the

stock price follows a diffusion process, he will simply use the standard hedging strategy for

a small investor in a diffusion model. It is well known that the corresponding stockholdings

are given by some function ϕn(t, S) of time and current stock price. If all hedgers believe in

a diffusion model their aggregate stockholdings are then given by φ(t, S) :=
∑N

n=1 ϕn(t, S).

Proposition 3.1 now shows that the resulting price process is in fact a diffusion, so that the

assumption of a diffusion model made by the hedgers is consistent with the ensuing asset

price dynamics.

3.3 Perfect replication of derivatives

We now study, if the representative hedger is able to replicate the payoff of derivative con-

tracts by dynamic trading despite the fact that his hedging activity does have an impact on

asset prices. We consider only the simplest case where the aggregated payoff is given by a

1The error for the drift term b(t, S) in Frey (2000) has been corrected.
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terminal-value claim, i.e. by a derivative with path-independent payoff h(ST ). However, it

should become clear how to extend our approach to path-dependent derivatives, whose price

in a diffusion model can be characterized by some linear parabolic PDE (under the usual

small-investor paradigm).

In the following proposition we obtain a characterization of a perfect hedging strategy

for the representative hedger in terms of a nonlinear Black-Scholes equation.

Proposition 3.2. Assume that there is a solution u ∈ C1,2([0, T ] × R+) of the following
nonlinear Black-Scholes terminal-value problem

ut(t, S) +
1

2

σ2

(1− ρλ(S)SuSS(t, S))2
S2uSS(t, S) = 0, u(T, S) = h(S) , (5)

whose space derivative uS(t, S) :=
∂

∂S
u(t, S) satisfies Assumption A4. Then the selffinancing

strategy with stock-trading-strategy αt = uS(t, St) and value process Vt = u(t, St), 0 ≤ t ≤ T

is a perfect replication strategy for the derivative with payoff h(ST ), i.e. the tracking-error

eM
T of this strategy is equal to zero.

Proof. If the large trader uses a stock-trading-strategy with αt = uS(t, St), the asset price

volatility equals:

σu(t, S) := σ/(1− ρλ(S)SuSS(t, S)) . (6)

Applying Itô’s formula to u we get

h(ST ) = u(T, ST ) = u(0, S0) +

∫ T

0
uS(t, St)dSt

+

∫ T

0
ut(t, St) +

1

2
uSS(t, St)σu

2(t, St)S
2
t dt ,

where S stands for S(ρ, α). Now note that the last integral on the right vanishes because of

(5). Hence we have the representation

h(ST (ρ, α)) = V0 +

∫ T

0
αtdSt(ρ, α)

which shows that the tracking-error eM
T = 0.

Comments

1) A characterization of option-replicating strategies for a large trader in terms of a nonlinear

PDE has previously been obtained in a number of papers including Frey (1998), Sircar and

Papanicolaou (1998) and Schönbucher and Wilmott (2000). We do not discuss existence and

uniqueness of solutions to the terminal value problem (5) in this paper.2

2) With reference to Proposition 3.2 we will call the solution u(t, S) hedge-cost of the claim

with payoff h(ST ). The pricing of derivatives in illiquid markets is discussed in Frey and

Patie (2001).

3) The nonlinear PDE (5) is closely related to the PDE-characterizing of superhedging

strategies in the uncertain volatility models of Avellaneda, Levy, and Paras (1995) and Lyons

2This very technical issue is dealt with in Frey (1998) in a slightly different context. The results of Frey

(1998) guarantee existence (for small ρ) and uniqueness for the terminal value problem (5) in case that λ ≡ 1;
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(1995). To see this relation more clearly we generalize (5) slightly and consider nonlinear

PDEs of the form

ut(t, S) +
1

2
(v(t, S, uSS))

2S2uSS(t, S) = 0 (7)

for some function v(t, S, q) which is increasing in q. The key feature of this PDE is of course

the dependence of the “volatility” v(t, S, q) on the second derivative of the solution. In the

models of Avellaneda et. al. and Lyons we have

v(t, S, q) = σ1{q≤0} + σ1{q>0} , (8)

where σ and σ represent a lower and upper a-priori bound on the otherwise unspecified

asset price volatility; in our case we have v(t, S, q) = σ/(1−ρλ(S)Sq). Note that in our case

v(t, S, q) increases gradually in q for q close to zero, whereas (8) is of “bang-bang-type”.

4) The economic relevance of Proposition 3.2 depends crucially on our interpretation of

the large trader as representative of many small hedgers. As shown in Baum (2001), if

we interprete the large trader as a single large agent who can use his power to move the

market strategically, other types of strategies should be considered. Baum showed that by

using so-called moderate hedging strategies (hedging strategies with continuous trajectories

of finite variation) the large trader can reduce his hedge cost and still keep his tracking error

arbitrarily small. In our view the practical relevance of this result is however be limited,

as the implementation of moderate strategies requires the ability to adjust the portfolio

very frequently, an assumption which is particularly problematic in the context of illiquid

markets. The discrepancy between our results and those of Baum highlights further the

difference between a market with many small hedgers or portfolio insurers and a single large

portfolio insurance firm, which was first pointed out by Donaldson and Uhlig (1993).

3.4 Market liquidity and smile patterns of implied volatility

It is well known that on equity markets out-of-the-money put options command much higher

implied volatilities than the out-of-the-money call options. Following Rubinstein (1985) this

phenomenon is usually termed the smile and skew pattern of implied volatility. There have

been a number of approaches seeking to explain this smile pattern of implied volatility. Most

studies postulate directly an asset price model with level-dependent or stochastic volatility

and/or jumps; see for instance Bakshi, Cao, and Chen (1997) or Embrechts, Frey, and Furrer

(2001) for a survey and references.

A number of studies have also explored the relation between volatility smiles and feedback

effects from dynamic hedging caused by a lack of market liquidity. Grossman and Zhou

(1996) study the impact of portfolio insurers on equilibrium asset prices; in their paper

portfolio insurers are utility maximizing agents facing the constraint that their terminal

wealth should lie above some exogenous threshold K. Grossman and Zhou find that for K

low enough option prices do in fact exhibit a volatility skew in equilibrium. In their view

“the volatility smile in the options market is evidence that the options market has priced

the equilibrium implications of portfolio insurance”. Platen and Schweizer (1998) consider

a setup which is very close to our model. However, in order to explain smiles these authors

have to choose an implausible parametrization of their model; translated in our context the

key assumption of Platen and Schweizer, which ensures that feedback effects from hedging

generate smiles, is the assumption of a negative liquidity parameter ρ.

In the present paper we offer an explanation of the smile pattern which is directly linked

to properties of market illiquidity. More specifically we show that we obtain skew patterns
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of implied volatilities in our model, if we assume that our liquidity profile λ(S) is decreasing

and λ(S) >> 1 for S much smaller than the current stock price S0 (remember that λ(S0) is

normalized to one); if we assume a more symmetric liquidity profile with minimum around

S0 we obtain smiles. These assumptions on λ are in line with market psychology and

experience from traders. In fact, it is common wisdom among equity traders that in a falling

market liquidity is generally lower (i.e. ρ is higher) than in a rising market; very large moves

in either direction tend to decrease liquidity and hence to increase ρ. A level-dependent

liquidity profile is a simple way to capture this phenomenon.

We use the following simple parametric model for the liquidity profile λ in our simula-

tions.

λ(S) = 1 + (S − S0)
2(a11{S≤S0} + a21{S>S0}) , (9)

where usually a1 > a2. A typical graph for λ is presented in Figure 1. Simulations presented
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Figure 1: Level-dependent liquidity profile λ(S) with a1 = 0.236, a2 = 0.0074 and S0 = 100.

in Section 4.3 show that it is in fact possible to generate smile and skew patterns of implied

volatility which resemble closely the patterns observed in real markets by this approach,

offering a new and interesting explanation for this phenomenon.

4 Hedge cost and Greeks: numerical results

In our context the impact of market illiquidity on the hedge cost of derivatives is reflected

by the nonlinearity of the generalized Black-Scholes equation (5). In order to gain a better

understanding of the implications of this nonlinearity for the properties of hedge cost and

Greeks we used numerical techniques to compute solutions of (5) for a number of payoffs. We

discuss the results in this section; the corresponding pictures can be found in Appendix A.

4.1 The numerical scheme

Obviously the nonlinear PDE (5) cannot be solved explicitly so that we have to resort to

techniques from numerical analysis. We chose the implicit scheme, which is an uncondition-

ally stable scheme, for the discretization of the partial derivatives in the PDE. In particular,
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at each discrete time t we use the unknown value of the solution at the next time step, to

approximate the spatial derivatives. In each time step we therefore have to solve a nonlinear

system which is done using the Newton method. Details of the methodology are available

in Frey and Patie (2001). Further, to avoid problems with volatilities tending to 0 or ∞ we

used the following smoothed version of our PDE

ut +
1

2
σ2S2max

{

α0,
1

1−min{α1, λ(S)SuSS}
uSS

}

= 0.

We take α0 = 0.02 and α1 = 0.85. In the following, all results are obtained from a grid

with 400 time steps and 1000 space steps. For the non linear case (ρ 6= 0), the tolerance of

the Newton method is set up at 5.10−4. This choice allows the convergence of the Newton

algorithm for a wide range of ρ.

4.2 Hedge cost and Greeks

Throughout Section 4.2 we always considered a constant liquidity profile (λ(S) ≡ 1) and

a reference volatility σ = 0.4. Also, in order to smoothen our solution, we replace the

terminal condition with the terminal condition corresponding to the Black-Scholes-price of

the derivative with time to maturity one week (typically 8% of the lifetime of the contract);

the time to maturity is adjusted accordingly.

European Call

In Figure 2 we present results for a 3-months (T = 0.25) option with strike K = 100 for

different values of the market liquidity ranging from ρ = 0 up to ρ = 0.4. It is immediately

seen that the hedge-cost is increasing in the liquidity parameter ρ, a behaviour we observed

for all terminal payoffs considered.3 The increase is most pronounced for S ≈ K, which is

due to the fact that the increase in volatility caused by the feedback-effect from hedging is

most pronounced for those values of the stock.

In Figure 3 we plot the corresponding hedge ratios uS(t, S). We notice that the hedge

ratio is increasing in ρ for S < K, and decreasing in ρ for S > K, i.e. lower liquidity spreads

out the hedge ratio. This behavior is typical for convex payoffs like options. We observe

(Figure 4) that the gamma uSS(t, S) flattens out as ρ increases, moving the its peak more

and more to smaller values of S. Further, the maximum value of gamma is reduced.

Call spread

A call spread is the simplest example of a portfolio with long and short option positions

and hence with a terminal payoff which is neither convex nor concave. A call spread can

be created by buying one call option with strike K1 and selling another call with strike

K2 > K1, where it is assumed that both options have the same maturity T ; mathematically

the payoff is given by h(S) = (S−K1)
+− (S−K2)

+. For our simulations we took K1 = 100

and K2 = 110. The hedge cost u(t, S) is graphed in Figure 5. Again, the hedge cost is

increasing in ρ. The hedge ratio uS(t, S) has a bell shape with peak lying between the two

strikes (Figure 6). Inspection of Figure 7 shows that the sign of the gamma uSS(t, S) changes

as we move from strike K1 to K2. The maximum value of the gamma is smaller than for

the call, which is due to the fact that the nonlinearities tend to offset each other, since one

3Under some technical assumptions it is in fact possible to proof mathematically that solutions of (5) are

increasing in ρ using the maximum principle for viscosity solutions of nonlinear parabolic PDE’s; see Frey

and Patie (2001) for details.
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option is bought and one is sold. Finally, defining Γ+t = sup{(uSS(t, S))
+ : S > 0} and

Γ−t = sup{(uSS(t, S))
− : S > 0} we see that Γ+t is decreasing in ρ while Γ−t is increasing in

ρ. We observed this property for all payoff functions h we considered.

4.3 Generating realistic smile patterns

Next we want to show that by choosing an appropriate parametrization of the liquidity

profile λ(S) defined in (9) it is possible to generate smile patterns which resemble closely the

smile patterns observed in real data. To make this point we proceeded as follows. Define

C(t, S;K,σ, ρ, a1, a2) to be the solution of (5) with terminal condition h(S) = (S−K)+ and

parameters (σ, ρ, a1, a2). We took from Bakshi, Cao, and Chen (1997) values for average

implied volatilities of S&P 500 index options for five different levels of moneyness κ = S0/K

ranging from κ1 = 0.93 to κ5 = 1.07. We took σ = 0.174, which corresponds to the average

historical volatility of the S&P 500, and tried to determine values for ρ, a1 and a2 so that

the implied volatilities computed by inverting the Black-Scholes formula, using as input

the values C(0, 100; 100/κi, 0.174, ρ, a1, a2), i = 1, . . . , 5 (the hedge cost according to our

model), come close to the implied volatilities observed in the market. Figure 8 shows that

the skew pattern obtained in this way from our model and the skew pattern observed in the

market do indeed resemble each other closely; the parameters describing market liquidity

used to produce this plot are ρ = 0.017, a1 = 0.236 and a2 = 0.007. Note that a1 is much

bigger than a2, showing that we have to use a very asymmetric liquidity profile (see also

Figure 1) in order to reproduce the properties of quoted equity index option prices. This is

however quite plausible: our implied-volatility data comes from the period July to December

1990, and it is quite likely, that after the lessons learned during the stock market crash from

October 1987 option traders expected huge liquidity problems in a falling market. Figure 9

finally shows that the implied volatilities estimated from our model remain quite stable as

the time to maturity varies.

5 Tracking error simulation

In this part, we study the performance of various hedging strategies of the representative

hedger in a market which is not perfectly liquid. We focus on European call options. To

measure the performance of different strategies we use several statistics of the distribution of

the tracking error such as mean or Value at Risk (a high quantile). Recall from Section 3.1

that the tracking error measures the difference between the payoff of a derivative at maturity

and the terminal value of a selffinancing strategy designed to replicate the contract. As it

is not possible to compute explicitly the law of the stock price process resulting from a

particular trading strategy let alone the tracking error distribution, we must use simulation

techniques for our study.

5.1 Euler-Maruyama scheme

Recall that for a given trading strategy αt = φ(t, St) of the large trader the stock price process

follows a diffusion process with drift and volatility given in Proposition 3.1. We approximate

the continuous paths of the price diffusion process (3) using the Euler-Maruyama scheme

which is described briefly below (see also Kloeden and Platen (1992)). We evaluate the gain

process for different hedging strategies and determine the tracking error for each path. To

set up the scheme we choose a discretization step ∆t =
T
n
of the time interval [0, T ], n being

a positive integer, and simulate N trajectories (i = 1 . . . N) of the stock price process using
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the Euler-Maruyama scheme. We put Si
0 = S0, and for k = 0 . . . n− 1,

Si
(k+1)∆t

= Si
k∆t

+ v(k∆t, S
i
k∆t

)
(

W i
(k+1)∆t

−W i
k∆t

)

+ b(k∆t, S
i
k∆t

)∆t,

Thus to simulate one trajectory of {Si
t , 0 ≤ t ≤ T}, one has simply to simulate the family

(

W i
∆t
,W i

2∆t
−W i

∆t
, . . . ,W i

n∆t
−W i

(n−1)∆t

)

of independent centered Gaussian random variables with variance ∆t. For each simulated

trajectory
(

Si
k

)

k=0,... ,n
we estimate the tracking error defined in (2) as follows:

eM,i
T ≈ h(Si

T )−

(

V0 +

n−1
∑

k=0

φ
(

k∆t, S
i
k∆t

)

(

Si
(k+1)∆t

− Si
k∆t

)

)

,

where h(Si
T ) is the payoff of the derivative at maturity (h(S) = (S −K)+), V0 is the initial

value of the hedge-portfolio, and φ
(

k∆t, S
i
k∆t

)

is the hedge ratio. We recall that a positive

value for the tracking error means that the hedger has incurred a loss on his hedge.

5.2 Simulation results

We have studied two issues. First, we looked at the tracking-error distribution assuming

that the hedger used the hedging strategy derived in Section 3.3, in the sequel referred to

as nonlinear strategy. While a small tracking error is unavoidable as we are working with

a discretized version of a continuous-time trading strategy, according to Proposition 3.2 the

performance of this strategy and hence the shape of the tracking error distribution should

not change significantly if we alter the liquidity parameter ρ. Density plots for the tracking

error distribution for ρ = 0, ρ = 0.01 and ρ = 0.05 graphed in Figure 10 show that this is

the case, thus vindicating that it is in fact possible to deal with market illiquidities using

our nonlinear hedging strategies.

Moreover, we compared the performance of the nonlinear hedging strategy with the

standard Black-Scholes hedging strategy, assuming that the market is not perfectly liquid

(ρ = 0.02). In Figure 11 we plotted density estimates for the tracking error distributions

corresponding to both strategies. We see that the density-plot for the Black-Scholes strategy

is shifted to the right of the density plot for the nonlinear strategy, i.e. on average we have

a larger tracking error. More importantly, the distribution of the tracking error of the

Black-Scholes strategy seems to be more dispersed with a heavier right tail, indicating that

large losses on our hedges are more likely under the Black-Scholes strategy than under the

nonlinear strategy.

To quantify the properties of the distribution of the tracking-error corresponding to

different hedge strategies we report the mean, the Value at Risk at a confidence level of

99% (VaR99%) and the 99% expected shortfall (ES99%) of the empirical distribution of the

tracking-error simulations. These measures are widely used in market risk management;

they allow us to assess on the one hand the average performance of each approach and on

the other hand the size of extreme losses. As an estimate of VaR99%, we simply took the
[

99× N
100

]

largest value of the simulated values for eM
T . Mean and the ES99% are estimated

as follows:

eM
T :=

1

N

N
∑

i=1

eM,i
T , (10)

ES0.99
(

eM
T

)

:=

∑N
i=1 e

M,i
T 1

{eM,i
T >VaR0.99(eM

T )}
∑N

i=1 1{eM,i
T >VaR0.99(eM

T )}
. (11)
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Table 1 confirms that the performance of the nonlinear replicating strategy is very good;

if we look at the right tail of the tracking error density (rows (3),(4) of table 1) it seems that

the performance is slightly better for small values of ρ, which is probably due to numerical

effects. Table 2 shows that the tracking error average estimated with the Black-Scholes model

(both price and hedge ratio given by this model) in a market which is not perfectly liquid

is always positive for ρ > 0 and increasing in ρ. This is interesting from a risk management

point of view. Indeed, the financial interpretation is that, in presence of market illiquidities,

applying a Black-Scholes strategy to replicate derivatives leads to a loss for the derivative’s

hedger, which increases with the lack of liquidity. This feature is emphasized in the estimates

for the risk measures, see rows (3) and (4) of Table 2. An analytical expression for the form

of the tracking error, which confirms these observations, is for instance given in Frey (2000).

There are two reasons why a hedging strategy based on the nonlinear PDE performs

better than a standard Black-Scholes strategy, namely a different shape of the hedge ratio

on the one hand and a higher initial investment C(0, S0; ρ) > C(0, S0; 0) = CBS(0, S0) on

the other. Table 3 shows that the nonlinear strategy performs better than the Black-Scholes

strategy with initial investment V0 = C(0, S0; ρ) stemming from the nonlinear PDE. This

shows that the difference in the initial investment alone is clearly not sufficient to explain

the performance difference of the two strategies.

ρ 0 0.01 0.02 0.05

eM
T –0.08 –0.08 –0.08 –0.07

VaR0.99
(

eM
T

)

0.67 0.7 0.73 0.83

ES0.99
(

eM
T

)

0.84 0.89 0.93 1.07

eM
T /V0 1.8% 1.5% 1.4% 1.%

Table 1: Successively mean, VaR99%, ES99% and average relative value of the tracking error

for the nonlinear hedging strategy used to replicate an European call option for different value

of ρ (T = 0.5 , K = 100, S0 = 100, 5000 simulations with n = 240 portfolio rebalancings).

ρ 0 0.01 0.02 0.05

eM
T –0.08 0.24 0.51 2.15

V aR0.99
(

eM
T

)

0.67 1.44 2.37 26.06

ES0.99
(

eM
T

)

0.84 1.7 2.88 40.9

eM
T /V0 1.8% 4.2% 8.9% 37.4%

Table 2: Successively mean, VaR99%, ES99% and average relative value of the tracking error

for the Black-Scholes strategy used to replicate an European call option in a market which is

not perfectly liquid (T = 0.5 , K = 100, S0 = 100, 2500 simulations with n = 240 portfolio

rebalancings).
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ρ 0 0.01 0.02 0.05

eM
T –0.08 0.04 0.12 1.15

VaR0.99
(

eM
T

)

0.67 1.24 1.98 25.06

ES0.99
(

eM
T

)

0.84 0.85 2.49 39.9

eM
T /V0 1.8% 1% 1.9% 17%

Table 3: Successively mean, VaR99%, ES99% and average relative value of the tracking error

for the Black-Scholes strategy, starting with the hedge-cost given by the nonlinear PDE, used

to replicate an European call option in a market which is not perfectly liquid (T = 0.5 ,

K = 100, S0 = 100, 2500 simulations with n = 240 portfolio rebalancings).
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Figure 2: Hedge cost u(S, T ) of a European call for various values of ρ (Strike = 100, σ = 0.2,

T − t = 0.25).
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Figure 3: Hedge ratio uS(S, T ) for an European call for various values of ρ (Strike = 100,

σ = 0.2, T − t = 0.25).
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Figure 4: Gamma uSS(S, T ) for an European call for various values of ρ (Strike = 100,

σ = 0.2, T − t = 0.25).
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Figure 5: Hedge cost u(S, T ) for a call spread for various values of ρ (Strike 1 = 100, Strike

2 = 110, σ = 0.4, T − t = 0.25).
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Figure 6: Hedge ratio uS(S, T ) for a call spread for various values of ρ (Strike 1 = 100, Strike

2 = 110, σ = 0.4, T − t = 0.25).
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Figure 7: Gamma uSS(S, T ) for call spread for various values of ρ (Strike 1 = 100, Strike 2

= 110, σ = 0.4, T − t = 0.25).
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Figure 8: Average implied volatilities for S&P 500 options computed from market prices of

traded options using the Black-Scholes model (straight line) compared to implied volatilities

computed from solutions of the nonlinear PDE (5) (dotted line). For the nonlinear PDE the

following parameter values were used: ρ = 0.017, a1 = 0.236, a2 = 0.0074, σ = 17.47%.
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Figure 9: Implied volatilities computed from the nonlinear PDE (5) for different time to

maturity (3 months, 6 months, 9 months). The parameters are as in Figure 8.
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Figure 10: Tracking error density in an illiquid market using the nonlinear strategy for

various values of ρ (N = 5000, n = 240, T = 0.5 years).
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Figure 11: Tracking error density in an illiquid market using the nonlinear strategy (straight

line) and the standard Black-Scholes strategy (dotted line) (ρ = 0.02, N = 5000, n = 240,

T = 0.5 years).
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