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1 Introduction

1.1 The basic building blocks

Coincidence or not? Though the theory of stochastic processes is very much a theory of the
20th century, its first appearance through applications in insurance and finance shows some
remarkable similarities. In 1900, Bachelier (1900) wrote in his famous thesis: “Si, & ’égard
de plusieurs questions traitées dans cette étude, j’ai comparé les résultats de l’observation
a ceux de la théorie, ce n’était pas pour vérifier des formules établies pour les méthodes
mathématiques, mais pour montrer seulement que le marché, a son issu, obéit a une loi qui le
domine: la loi de la probabilité.” The title of Bachelier’s thesis is “Théorie de la Spéculation”,
the theory of speculation. The main point in the above extract is that Bachelier has shown
(“montrer”) that financial markets are dominated by the laws of probability. More precisely,
the erratic behaviour of stockmarket data were so much akin to the motion of small particles
suspended in a fluid that a link to a process studied later among others by Einstein and
Schmolukowski was obvious. The link between Brownian motion and finance was born. It
would take economists another 50 years to realize the importance of this link; today however,
nobody doubts the fundamental nature of this observation.

To fix ideas we choose some basic probability space (©,F,P) on which all stochastic
processes we introduce in this paper are defined. The first such process is defined as follows.

Definition 1.1 Standard Brownian motion W = (W;)s>0 is a real-valued stochastic process
which satisfies the following conditions:

(a) W starts at zero: Wo =0, a.s.,

(b) W has independent increments: for any partition 0 < top <t < --- < t, < 00 and any
k, the random variables (rvs) Wy, — Wiy, Wy, — Wy, ..., Wy, — Wy, _, are independent,

(¢) W has Gaussian increments: for any t > 0, Wy is normally distributed with mean 0 and
variance t, i.e. Wy ~ N(0,t), and

(d) W has a.s. continuous sample paths.

The conditions (b) and (c) are referred to as: W has stationary and independent increments,
moreover, the increments are normally distributed. Processes satisfying the stationary and
independent increment property, together with a mild sample path regularity condition, are
also referred to as Lévy processes, see Bertoin (1996). As we will see later, they play a crucial
role in insurance and finance models. The construction of a process satisfying (a)—(d), i.e.
proving existence of Brownian motion, is not trivial. A first systematic treatment actually
constructing W was given by Norbert Wiener. For a discussion of this, together with a
detailed analysis of further properties of W, see for instance Karatzas and Shreve (1988).
Though (d) above states that the sample paths of W are (a.s.) continuous, they show a most
erratic behaviour, as shown in the next result.

Proposition 1.2 Suppose W defined as above, then P-a.s., the sample paths of W are
nowhere differentiable. m]

A rather unpleasant consequence of this result is that W has unbounded variation on each
interval I, say, i.e.

Slip Z |Wtz (w) - Wti—l (w)| =0
i=1



for P—almost all w € 2, A being a possible partition A = {tg,...,¢,} of I and the sup
taken over all such partitions. Consequently, standard integration theory for functions with
bounded variation does not work, i.e. the symbol

/0 Y, (w) AV, (w) (1)

for some stochastic process (Y;) has no immediate meaning. Though at first, the news on W
is bad, there is some hope. Indeed the following result due to Paul Lévy will be the clue to
“defining” (1) in terms of It6 calculus.

Theorem 1.3 (W has finite quadratic variation)
Suppose W as above, but change in (¢) the normality assumption to:
(c¢") for all t, Wy ~ N'(0,0%t), o > 0. Then for n — oo,

n
2
Z |th - Wti—l |2 L—> UQt )

i=1
where {to,...,t,} is an arbitrary partition of [0,t] such that sup; |t; — ti—1| = 0 and where

2
« Lo denotes convergence in L2(2, F, P). Under a slight extra condition on the partitions
used, L?—convergence can be replaced by almost sure convergence. O

Whereas Proposition 1.2 was the “bad news”, Theorem 1.3 contains the “good news”. It
turns out to be the key to a new integration theory with respect to W, giving (1) a meaning
at least for so-called predictable integrands.

There are various ways to derive Brownian motion as a key building block of financial
time series modeling. First of all, just looking at some pictures of financial data reveals the
same erratic behaviour as is observed in simulated data from W, see Figure 1 below.

Moreover, W is only the first building block. Later in Section 3 we shall investigate
more carefully how more realistic models in finance come about. Before we move to the next
process, this time born out of insurance modeling considerations, we would like to indicate a
further reason why Brownian motion is a natural model-candidate for financial (stockmarket)
data. As we know, the normal distribution enters as a non—degenerate limit of normalized
partial sums of independent, identically distributed (iid) rvs. The latter is often described
(in a process context) as: the value Wy is obtained via a large “bombardment” of small,
independent shocks. If we interpret these shocks as small price changes (up, down) coming
from many individual trades, it should not surprise us that stockmarket and Brownian motion
should go hand in hand. A formal microeconomic approach to diffusion models for stock prices
which is based on this idea has been proposed by Follmer and Schweizer (1993) .

Around the same time as Bachelier was working on Brownian motion as a basic limit
model for financial data, in Sweden in 1903, Filip Lundberg published a remarkable thesis
(Lundberg (1903) ) providing a mathematical foundation to non-life insurance. In his model,
the key ingredients were the so—called premiums and claims. The latter he proposed to model
through a homogeneous Poisson process as defined below.

Definition 1.4 The stochastic counting process N = (N (t)); is a homogeneous Poisson pro-
cess with rate (intensity) A > 0 if:

(a) N(0) =0 a.s.,



Figure 1: Simulations of standard Brownian motion.

(b) N has stationary, independent increments, and

(¢) for all0 < s <t <oo:N(t)— N(s)~POIS(\(t —s)), i.e.

P(N(t) — N(s) = k) = e~ Nt=9) (A(tk;,s))k , keN. (2)

First of all, the above definition shows a remarkable similarity with Definition 1.1 of Brownian
motion. Both processes are Lévy processes. The key difference lies in the sample path
behaviour: Brownian motion has continuous sample paths, whereas the Poisson Process is a
as a counting process a jump process (for typical realizations, see Figure 2 below).

In insurance applications, N (t) stands for the number of claims in the time interval (0, ]
in a well defined portfolio. If we denote the claim arrival of the nth claim by S,,, then

N(t)=sup{n>1:5,<t}, t>0.

The inter—arrival times 71, T, = Sy — Sg—1, k = 2,3... are independent, identically ex-
ponentially distributed (EXP(A)) with finite mean EY; = 1/A. The latter property also
characterizes the homogeneous Poisson process, see for instance Resnick (1992) . The claim
size process (Xj)ren is at first assumed to be iid with distribution function (df) F (F(0) = 0)
and finite mean yu = EX;. The rv X}, denotes the claim size occurring at time S. In Section
2, various of the above conditions will be relaxed. As a consequence of the above, the total
claim amount up to time ¢ is given by S(t) = Efj:(? Xj. The latter rv is referred to as
compound Poisson rv. Though its df can be written down easily,

Gule) = P <2 = 3 e A ) a0, Q



N(t)

Figure 2: Simulations of homogeneous Poisson processes with intensity A = 1.

its precise calculation and indeed statistical estimation in practice form a key area of research
in insurance risk theory; see for instance Panjer and Willmot (1992) or the new Klugman,
Panjer, and Willmot (1988) and the references therein. The df F™* in (3) denotes the n—
fold convolution of F, F°* denotes Dirac measure in 0. Now besides the liability process
(S(t))t>0, an insurance company cashes premiums in order to compensate the losses. In the
above standard (so—called Cramér-Lundberg ) model, the premium process (P(t)): is assumed
to be linear (deterministic), i.e. P(t) = u + ct, where u > 0 stands for the initial capital and
¢ > 0 is the constant premium rate chosen in such a way that the company (or portfolio) has
a fair chance of “survival”. The following rv is crucial in this context: denote by 7 the ruin
time of the risk process

Ut)=u+ct—S(t), t>0. (4)
ILe.
r=inf{t >0:U(t) <0} (5)
(we always assume that inf ) = 0o). The associated ruin probabilities are defined as
Y(u,T)=P(r<T), T<o0. (6)

For U(u,00), the infinite horizon ruin probability, we write ¥(u). It is not difficult to show
that, under the so—called net—profit condition

c—Au>0, (7)

limy 00 ¥(u) = 0. Within the Cramér-Lundberg set—up, the condition (7) is always assumed,
it says that on the average we obtain a higher premium income than a claim loss. The basic



risk process (4) can now be rewritten as
U(t) =u+ (1 +9)Aut = S(t),

where Aut = ES(t) and ¥ = ¢/(Ap) — 1 > 0 is the so—called safety loading which guaran-
tees “survival”. In Figure 3, we have simulated some realizations of (4) for exponentially
distributed claims.

35

u(y)

Figure 3: Simulations of a Cramér—Lundberg risk process U with initial capital u = 15,
premium rate ¢ = 2.5, intensity A = 1 and exponentially distributed claims with mean p = 2.

Definition 1.5 The stochastic process (U(t)): defined in (4) with the net-profit condition (7)
is called the Cramér—Lundberg risk process.

The following result appears in the applied stochastic process literature under various guises
(see for instance Resnick (1992) or Embrechts, Kliippelberg and Mikosch (1997)). We stan-
dardly denote H = 1 — H for any df H concentrated on [0, c0).

Theorem 1.6 Given the Cramér—Lundberg model as above, then
[ee]
1-W(w)=(1-p) > p"F"™(w), u>0, (8)
n=0

where p = Au/c < 1 and the integrated tail df Fy is defined as

mm:%/jm)dy, £>0. (0)



The fact that the function ¥(u) in (8) also allows a compound df expression (like in (3))
has important analytic, as well as numerical consequences. The sum in (8) is of compound
geometric type. Of course, the compound Poisson process with drift as described in (4)
is not comprehensive and does not take into account, for example, the nonlinear premium
increase of the capital due to possible investment or inflation and dividend payments to
stockholders. However, processes of the form (4) are the basic building blocks of any Lévy
process Y (without Brownian component) in the sense that Y is the limit (with respect to
convergence on compact intervals) of a sequence Y (" of compound Poisson processes with
drift. The conditions underlying the Cramér—Lundberg model are clearly violated in practise.
For instance, claims may arrive in clusters. Already early on, actuaries introduced the so—
called notion of operational time. The claim—arrival process (N (t)); is often more realistically
modeled as an inhomogeneous Poisson process with intensity measure A(t), i.e. the process
still has independent increments, but for 0 < s < ¢, N(t) — N(s) ~ POIS(A(t) — A(s)). This
more realistic situation can be reduced to the homogeneous (standard) case via a time-change
N(t) = N(A~(t)). In the new, operational time scale, N is a homogeneous Poisson process.
For a discussion of this time transformation, see Bithlmann (1970) and Gerber (1979). More
recently, (operational) time considerations are entering stochastic modeling in finance, see e.g.
Clark (1973) or Guillaume et al. (1997) and Geman and Ané (1996). The latter papers are
mainly based on models coming from the tick—by—tick data world.

In the above discussion, we have seen that the two most important Lévy processes, Brown-
ian motion and the homogeneous Poisson process, appear right at the beginning of stochastic
modeling in finance (Bachelier) and insurance (Lundberg). It is remarkable that this devel-
opment took place well before Kolmogorov created his famous axiomatic theory in the early
thirties. Before we discuss in the next sections various generalizations ot the above basic
models relevant for insurance and finance, we want to make a little digression into the realm
of martingales.

1.2 Some basic martingale theory

Ever since the appearance of Doob (1953), martingales have played a crucial role in probability,
so much that in many problems in applied probability the solution could be reduced to “spot
the martingale”. Below we only give the very basics of martingale theory. All the results, and
much more are to be found in the excellent texts Williams (1991), Rogers and Williams (1994,
1987), Karatzas and Shreve (1988), Kopp(1984) and Revuz and Yor (1994). A very readable
introduction to the use of martingale methods in insurance is Gerber (1979), for finance
Musiela and Rutkowski (1997) is to be recommended. Especially the notion of conditional
expectation E(X|G) of a random variable with respect to a oc—algebra G is crucial in all that
follows. Before we can introduce the fundamental notion of a martingale, we need to formalize
the concept of information (history).

Definition 1.7 A family F = (F;): of o—algebras on (Q, F) is called a filtration if Fy C F for
allt >0, and for all s < t, Fs C F; (i-e. F is increasing). A stochastic process (Xy)¢ is called
F-adapted if X; is Fy—measurable for all t > 0. The natural filtration (FiX)of a stochastic
process (Xi); is the smallest filtration such that X is adapted. If a stochastic process X is
considered, then if nothing else is mentioned, we use its natural filtration. A filtration is called
right—continuous if Fiy = NgstFs = F¢ for all t > 0.

Definition 1.8 An F-stopping time T is a random variable with values in [0, 0] such that



forallt >0, {T <t} € Fi. The o—algebra
Fr:={AeF:An{T <t} € F for all t > 0}
is called the stopped o—algebra with respect to T .

The usual interpretation of the natural filtration FX = (FX) is that F;X contains all the
information available in the rvs (X)s<¢.

Definition 1.9 A stochastic process M = (M) on the filtered probability space (Q, F,F, P)
is an F—martingale (—submartingale, —supermartingale, respectively) if

(a) M is F-adapted, integrable, and
(b) for all0 < s <t: E(M|Fs)=(>,<)Ms, P-a.s.

We simply say that M is a martingale (submartingale, supermartingale) if it is a martingale
(submartingale, supermartingale) with respect to the natural filtration.

The following two results are now key to many applications in insurance and finance.

Theorem 1.10 (Martingale stopping theorem)

Let M be an F-martingale (—submartingale,—supermartingale) and T an F-stopping time.
Assume that F is right continuous. Then also the stopped stochastic process (Mray : t > 0)
is an F-martingale (—submartingale, —supermartingale). Moreover, for all t > 0 E(M|Fr) =
(>, <) Mz o

Theorem 1.10 immediately implies the following important relation:
EMyae = (>,<) EMy . (10)

In various applications, one would like to replace T' A t in (10) by T'; this result is not true
in general, extra (uniform) integrability conditions have to be imposed. The next theorem
yields a precise formulation for the often used statement that “all martingales converge”.

Theorem 1.11 (Martingale convergence theorem)
Let M be an F-supermartingale such that sup;>o EM; < oo. If F is right continuous, then
My = lim¢_, oo My exists P—a.s., moreover E|My| < co. O

An immediate consequence of the above is that positive (or indeed negative) martingales
converge almost surely. A third important category of results are the so—called martingales
inequalities; we refer to the cited literature for examples of the latter.

For our purposes, the following martingales related to Brownian motion and the homoge-
neous Poisson process are important.

Proposition 1.12 (a) Suppose N is a homogeneous Poisson process with intensity X\ > 0,
then (N (t) — At): is a martingale.

(b) Consider the Cramér—Lundberg model from Definition 1.5. Let
0(r) = N(Ee™® — 1) —cr, (11)
for those r—values for which Ee™*' exists. Then
(M;.()): := (exp{—rU(t) — 0(r)t}); (12)

s a martingale. O



Together with the stopping theorem (Theorem 1.10) this result yields important information
on the probabilities of ruin ¥(u,T), see Section 2. The proof of (12) is fairly easy once we
know that (U(t)); is a (strong) Markov process: For 0 < s < t,

E(M,(t)|Fs) = E(exp{—rU(t) - 0(r)t}|Fs)

E(exp{—r(U(t) = U(s))} exp{=rU(s)}| F,)e """
E(exp{—r(U(t) — U(s))}|Fs) exp{—rU(s) - 0(r)t}

= B(exp{ry Y oy p1 XiHFs) exp{=rU(s) — A(Ee™ = 1)t + crs}
= exp{A\(Ee™* —1)(t — s)}exp{—rU(s) — A\(Ee™* — 1)t + crs}
=exp{—rU(s) — 0(r)s}

= M,(s).

(s
(s

In the Brownian case, the following results are easily obtained.
Proposition 1.13 Suppose W = (W), is standard Brownian motion, then
(a) W and (W2 —t); are martingales,

(b) for any p € R, 0 > 0, denote W, ,(t) = ut + oWy, then (W, (t)): is called Brownian
motion with drift u and variance 0. For each 3 € R, the following process

(exp{BW,..q (t) — (B + 0% 5% /2)t}): (13)

1s @ martingale associated to Brownian motion, called the Wald- or exponential martin-

gale.
i

For a nice discussion on how the latter result can be used for deriving properties on models
involving Brownian motion see for instance Harrison (1985) .

2 Stochastic processes in insurance

2.1 Some basic results

In Section 1.1 we introduced the Cramér-Lundberg model U(t) = u + ¢t — S(t), ¢t > 0;
see (4). In Proposition 1.12 we derived a whole family of associated exponential martingales
parametrised by those 7 € R for which mx (r) = Ee™™ is finite. One easily verifies that the
function 6(r) in (11) is strictly convex, #(0) = 0, '(0) = Ap — ¢ < 0 so that the situation
depicted in Figure 4 may occur.

This motivates the following

Definition 2.1 (Lundberg coefficient)
Suppose the claim size df F allows for a constant R > 0 to exist for which 8(R) = 0, then R
is called the Lundberg— ( or adjustment) coefficient of the risk process (U(t));.

Typical examples where R exists are the exponential and gamma distributions. However, R
does not exist for Pareto or lognormal distributions.



e(r)

Figure 4: Visualisation of the function 6(r) in (11).

Suppose now that the Lundberg coefficient R exists, then by Proposition 1.12, (Mg(t) =
exp{—RU(t)}): is a martingale. Since the ruin time 7 is a stopping time for U(t) we can
apply Theorem 1.10, hence for ¢ > 0:

E(exp{—RU (7 At)}) = E(exp{—RU(0)}) = e F* .
The left hand side can be bounded below by
E(exp{—~RU(r AD)};7 < t) = Elexp{-RU(T)};7 < t),

where, in general, we denote E(X; A) = [, X dP. Using monotone convergence (t — 0o) and
U(r) < 0 we obtain

e " > E(exp{—RU(7)}; 7 < 00) > P(1 < ).

Hence the following, so—called Cramér—Lundberg inequality is obtained for ruin in infinite
time:

U(u) < e Bu, (14)

In order to answer the important question on how sharp the estimate in (14) is, one has
to resort to more refined arguments. Using renewal theory results like Blackwell’s renewal
theorem (in the version of Smith’s key renewal theorem; see Resnick (1992)) one obtains:

Theorem 2.2 (The Cramér-Lundberg approximation)
Assume that the Lundberg coefficient R in Definition 2.1 exists and that

/ zef®F(z)dr < oo, (15)
0
then
—
lim ¥ Ru_ _ CT M . 1
Jim W (u)e Am'y (R) — ¢ (16)
O



The limit result (16) shows that the Lundberg inequality is (asymptotically) sharp. The
moment condition (15) is satisfied in all standard examples where R exists. For a discussion
on this, see Embrechts (1983). The asymptotic estimate (16) is called the Cramér-Lundberg
approzimation. A key question in risk theory is to what extend the results (14) and (16)
carry over to more general risk models. The important assumption in the Cramér—Lundberg
approximation is that the exponential moments of the claim size distribution exist for some
r > 0. This means that the right tail of F' decreases at least exponentially fast. However,
analysis of insurance and financial data typically indicates the presence of heavy tails; see
Embrechts, Kliippelberg, and Mikosch (1997). The main result on asymptotic ruin estimates
when the Lundberg coefficient does not exist is based on subexponentiality of F;. Notice that
o(u) := 1 — ¥(u) given in (8) is the df of the random geometric sum Sy = Ly + --- + Ly,
where (L;) is a sequence of iid rvs with common df F; and N is geometrically distributed
with parameter 1 — p, independent of (L;). Now if Fj is “long—tailed”, large observations of
L; may occur with high probability and it is not unreasonable to conjecture that the random
sum Sy is governed by just one summand. For that reason, it might be possible to relate the
tail behaviour of ¢ to that of F;. It turns out that the proper class for this purpose is the
class 8§ of subexponential distributions defined below.

Definition 2.3 A distribution G on [0, 00) with unbounded support belongs to the class 8 of
subexponential distributions if

(2%
lim 1 -G ()

im0 1—G(z) 2. (17)

To explain why 8 can be used to model large claims we reformulate (17) as follows. If (X;) are
iid rvs with df G € 8, then P(S,, > z) ~ P(M,, > z), x — oco. Here we mean by f(z) ~ g(z),
T — 00, that lim, , f(z)/g(z) =1, and M,, = max(X;,...,X,). The name subexponential
stems from the following property: if G € §, then the right tail of G decreases slower than
any exponential, i.e. lim, ., €°® G(x) = oo, for all € > 0. A detailed analysis of the class 8
and its application to insurance are given in Embrechts, Kliippelberg and Mikosch (1997).

Asymptotic ruin estimates involving the class 8 were proposed in Embrechts, Goldie,
and Veraverbeke (1979), where it is shown that the distribution of a random geometric sum
Ly + --- + Ly belongs to 8 if and only if L; € §, yielding the following result:

Theorem 2.4 In the Cramér—Lundberg model with F; € & and safety loading 9 > 0 one has

1

U (u) 3

F(u), u— . (18)

i
The main examples of claim size distributions where (18) holds are the Pareto, lognormal and
the heavy-tailed Weibull distributions.

2.2 Practical evaluation of U(u,T)

In the previous sections we discussed various expressions for the ruin probabilities ¥(u) =
U(u, 00) in the Cramér—Lundberg model. These results were either exact, see (8), in inequality
form (see (14)) or asymptotic for large initial capital u (see (16) and (18)). Alternative tech-
niques may lead to integral-differential equations, see Section 2.3.3 below, Fourier-type repre-
sentation and, for any of these, specific numerical techniques like the fast-Fourier-transform,

10



simulation, or recursive methods. The most widely used method in the latter category is the
so-called Panjer recursion which is based on a discretization of (8); see for instance Panjer and
Willmot (1992), p.171. One particular method for estimating ¥ (u,T) for finite T is based on
a so-called diffusion approximation. We include a discussion mainly because of its relevance
for the general theme of the paper rather than for its practical usefulness which is limited.
Often one can imbed a (classical) risk process in a sequence (U(™),, of risk processes and
hope for the existence of a reasonable weak limiting process Z, say. If the risk process U™ is
approximated by the limiting process Z, then, under some regularity conditions, the hitting
times (ruin probabilities) of Z should also approximate the hitting times (ruin probabilities)
of UM,

A Cramér-Lundberg risk process U is cadlag, i.e. it has sample paths which are right
continuous with left limits. (The word “cadlag” is an acronym from the French “continu &
droite, limites & gauche”). Stone (1963) extends the Skorokhod J;—metric for cadlag functions
on compact intervals to D = D[0, co), making D a Polish space. Hence, we can talk of weak
convergence in D.

Definition 2.5 A sequence (X(™),, of stochastic processes in D = D|0, 00) is said to converge
weakly in the Skorokhod Jy—topology to a stochastic process X if for every bounded continuous
functional f on D it follows that

lim E(f(X™)) = E(f(X)) .

n—oo
In this case one writes X™ = X, n — oo.

The main ingredients for weak approximations in risk theory are a functional central limit
theorem in conjunction with the continuous mapping theorem. Suppose that (X}) is a se-
quence of iid rvs with mean g and finite variance o2. The famous Donsker invariance principle
then says that, on [0, 1],

[n]
1
Zn(-) ;:m;(xk—u);»w(,), n— oo.

, where W denotes standard Brownian motion. The process 1/(o+/n) fj:(?t) (X —p) is a

random time transformation of Z,, i.e.

LY - =z (M)

Moreover, N(nt)/n = AI, where I denotes the identity map. The composition mapping is
continuous, implying that

Zn, <N(:')> - axl/ﬁ kz (Xe =) = Wony £ VAW, - (19)

=1

The last equality in law follows from the scaling property of Brownian motion. Relation
(19) is the key to the diffusion approximation in risk theory, which was first introduced in
insurance mathematics by Iglehart (1969), see also Grandell (1991, Appendix A.4) for an

11



extensive discussion of the method. The diffusion approach yields approximations for ¥ (u,T")
as well as for ¥(u), namely

\I!(u,T)zP( (u+>\m93+\/XWs)<0>

inf
0<s<T

— Amﬁ‘T—l—u) —oudu ()\,m?T —u)
=N|—F— PN | ——— ] ,
( )T VAT

U(u) ~ P < ir>1£(u + A\pds + \/XWS) < 0) — e2m0u

where N denotes the df of a standard normal rv. The results in the above equalities can for
instance be found in Borodin and Salminen (1996). The latter approach is called diffusion
approximation since Brownian motion is a special diffusion process. One of the advantages
of the diffusion approximation is that it is applicable to more general models which derive
from the classical risk process. For these more general processes the classical methods from
renewal theory usually fail, and the diffusion approach is then one of the few tools that work.

Brownian motion has been studied for a long time and its usefulness in stochastic modeling
is well accepted. However, Gaussian processes and variables do not allow for large fluctuations
and may sometimes be inadequate for modeling high variability. For instance, the above
diffusion approximation does not apply when the observed data give rise to a heavy—tailed
claim size distribution such as Pareto with shape parameter 1 < a < 2, implying that the
variance o2 does not exist. This phenomenon very often arises in non-life insurance and in
particular in reinsurance; see Embrechts, Kliippelberg and Mikosch (1997). Both stable rv’s
and stable processes arise naturally as alternative modeling tools. The class of stable laws is
defined as follows:

Definition 2.6 A rv X is said to have a stable distribution, if for anyn > 2 there is a ¢, > 0
and a real number d,, such that

X1+"'+Xngch+dna (20)

where the X; are independent copies of X.

It turns out (Feller (1971)) that in (20) we have necessarily ¢, = n'/® for some a € (0,2].
The parameter « is called index of stability. The case a = 2 corresponds to the normal
distribution. Stable laws share many properties with the Gaussian distribution. In particular
we may think of the central limit theorem: only stable laws appear as weak limits of normalized
sums of iid rvs. The main difference between the normal distribution and non—Gaussian stable
distributions is the tail behaviour. The (upper) tails of the latter decrease like kz =%, © — oo,
for some constant k. The smaller the value of «, the slower the decay and the heavier the
tails.

We now introduce another class of Lévy processes which contains Brownian motion as a
special case.

Definition 2.7 A cadlag process Z is said to be an a—stable Lévy motion if the following
properties hold:

(a) Zo =0 a.s.,

(b) Z has independent, stationary increments, and
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(¢) For every t, Zy has an a—stable distribution.

Notice that 2-stable Lévy motion is Brownian motion. A stable Lévy motion with parameter
a < 2 exhibits jumps whose directions are governed by a so-called skewness parameter 3 €
[-1,1]. If | 8] = 1, the Lévy measure is concentrated on a half line and consequently there are
only jumps in one direction. Figure 5 depicts some simulations of a—stable Lévy motion.
The analogous powerful result to the Donsker invariance principle in the regime of heavy—

Z(1)

0.0 0.2 0.4 0.6 0.8 1.0

Figure 5: Simulations of 1.2-stable Lévy motion (8 =0) .

tailedness is a stable functional central limit theorem: Suppose that (X}) is a sequence of iid
rvs with finite mean g and such that

n

(Xk_u):>Y7 n— oo,

p(n) &=
where p(n) = n'/*L(n) for an appropriate slowly varying function L and Y has a stable
distribution with index 1 < a < 2 and skewness parameter |3] < 1. Then, for 0 <¢ <1,

1 (n-]

— Y Xp—pw)=2, n—o oo,

¢(n) ,;
where Z denotes a—stable Lévy motion with index a and skewness parameter 3. Moreover,
7 Ly, Following the same approach as in the Brownian diffusion approximation, it is
suggested to use the following approximations for the ruin probabilities when the variance of
the claim size distribution does not exist:

~ . 1/a
U(u,T)~ P <0S1£1£T(u+)\m95+)\ Zs) < 0) ,

U(u) ~ <1nf(u+)\m98+)\1/°‘Z < 0)
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wherea =a—1,a = |cos(7ra/2)| and F(l‘) = fooo e %“u* ! du denotes the Gamma, function,
see Furrer, Michna and Weron (1997) and Furrer (1998). In the latter reference an explicit
formula for the distribution of the infimum of an a—stable Lévy motion with linear drift is

derived in terms of the so—called Mittag-Leffler function E,(z) = > ° 2" /T'(1+on), o > 0.

2.3 Generalizations of the claim number process

One can think of various generalizations of the classical risk process in order to obtain a more
reasonable description of reality. Note that the homogeneous Poisson process is a stationary
process, implying that the size of the portfolio can not increase (or decrease). In addition,
fire and automobile insurance for instance ask for models allowing for risk fluctuations. As
already mentioned in Section 1, the simplest way to take size fluctuations into account is to
consider inhomogeneous Poisson processes with intensity measure A(¢). The purpose of this
section is mainly to discuss the choice of point processes describing such risk fluctuations.

2.3.1 Mixed Poisson processes

Definition 2.8 Let N be a homogeneous Poisson process with intensity 1 and A a random
variable with P(A > 0) = 1, independent of N. Then the process

N = NoA = (N(A),
is called a mized Poisson process. The random variable A is called structure variable.

A mixed Poisson process has stationary increments, however the independent increments
condition is violated. The stochastic variation of the claim number intensity can be interpreted
as random changes of the Poisson parameter from its expected value A. The most common
choice for the distribution of the structure variable A is certainly the gamma distribution
whose density function is given by

v—1 676:[

Ty " ’

We use the notation A ~ I'(v,d) to indicate that the random variable A has a gamma distri-
bution with density function given in (21).

z>0. (21)

Definition 2.9 A mized Poisson process N is called a megative binomial process or Pdlya
process if A ~ T(v,0).

We then have for a Pélya process N
P(N(t) =n) = P(N(At) = n)
:/ P(N(At) =n| A=) fa()) dA
0

:/oo e M (/\t,)n O =1 =07 gy
0 n: F(’Y)

(7)) )

i.e. N(t) has a negative binomial distribution. The corresponding risk model is also known as
the Pdélya—Eggenberger model. If one compares the total claim amount up to time ¢ for the

14



Poisson model, then for equal means the variance of the Pdélya model is bigger than in the
Poisson model. This phenomenon is referred to as over-dispersion and is often encountered
in real insurance data, see for instance Seal (1978) .

From a purely mathematical point of view, ruin calculations in the mixed Poisson case are
easily performed. The idea is to first condition on the outcome of A and then weight over ruin
probabilities computed in the Poisson case. Let ¥(u, \) be the infinite-time ruin probability
when N is a homogeneous Poisson process with intensity A. Observe that ¥(u,A) = 1 when
the net profit condition (7) is violated, i.e. when A > ¢/u. Thus we can write

c/u
¥ (u) :/0 W(u,0) dFL(0) + 1 — Fi(c/p), (22)

where Fj denotes the df of the structure variable A. It follows from (22) that ¥(u) >
F\(c¢/u) > 0 for all u. This implies that any insurer who does not constantly adjust his
premium rate ¢ according to the the risk fluctuations runs a large risk of being ruined.

Assume now that there exists ¢; < ¢/p such that Fy(¢1) = 1. Tt is natural to let £, be the
right endpoint of Fy, i.e. {; = sup{¢: FA(¢) < 1}. It follows from (8) that

L- W) = 3 paF (u),

where p,, = f[fl(l — lufc)(lp/c)™ dFy (). An extension of the Cramér-Lundberg approxi-
mation in the mixed Poisson case in general seems not possible; see Grandell (1997) for a
discussion on this. However, the situation is different in the regime of heavy tails, where the
following result can be derived, see Grandell (1997):

Theorem 2.10 Let {1 be the right endpoint of F\ and suppose that {1 < c/p and that Fy € 8.
Then

¥) ~ B (5 ) B, w0,

where $(A) = ¢/(Au) — 1. |

2.3.2 Cox processes

We shall now consider the case where the occurrence of claims is described by a Cox process
N. The first treatment of Cox processes in insurance mathematics originates from Ammeter
(1948). Cox processes seem to form a natural class to model risk and size fluctuations.

Definition 2.11 A stochastic process A = (A(t)): with P—a.s. A(0) = 0, A(t) < oo for
each t < oo and non—decreasing sample paths is called a random measure. If A has P-a.s.
continuous realizations, it is called diffuse.

Definition 2.12 Let A be a random measure and N a homogeneous Poisson process with
intensity A = 1, independent of A. The point process N = N o A is called Cox process or
doubly stochastic Poisson process.

Definition 2.12 is one of several equivalent definitions. Strictly speaking we only require that
N and N o A are equal in distribution. For this question and related measurability conditions
we refer to Grandell (1976).
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Now let A be a diffuse random measure with A(co) = oo a.s. and N be the corresponding
Cox process. As a generalization of (4) we obtain the risk process

N(t)
Ut) =u+ (L+9)pA®) = Y X, t>0.
k=0

Assume now that A has the representation A(t) = fot A(s) ds, where (A(t)): is called the

intensity process. If (A(t)): has right continuous and Riemann integrable trajectories, then the
corresponding Cox process is well defined (Grandell (1976)). The premium rate is then given
by ¢(t) = (1+9)uA(t), i-e. it is a stochastic process. The martingale approach to Cox models,
due to Bjork and Grandell (1988), is an extension of the basic martingale approach considered
in Proposition 1.12. See also Embrechts, Grandell and Schmidli (1993) for a discussion on
finite time ruin probabilities in the Cox case. Let N be a Cox process with intensity process
(A(t)). A suitable filtration F is given by F; = F2 v FV. It seems natural to try to find an
F-martingale as close as possible to the one used in Proposition 1.12. We therefore consider
the process

M, (t) = exp{—rU(t) — 6(r,t)}, t>0, (23)

where 0(r,t) = A(t)(Ee"*t — 1) — ret, i.e. we simply replace At by A(t). Then the following
proposition holds:

Proposition 2.13 The process (M, (t)): given in (23) is an F-martingale, where the filtration
F is given by Fy = FA v FV. o

A lower bound for the ruin probability ¥(u) is easily obtained in the same way as in Section
2.1, namely

M,.(0) =e "™ > E(M, (T At);T < t|Fp)
= E(M.(1);7 < t|Fo)
> E(exp —0(r,7); 7 < t|Fo)
> nggtexp{—G(r, s)} P(t < t|Fo) -

Taking expectations on both sides and using monotone convergence yields

P(r< o) <e ™E (igg exp{A(t)(Ee™* — 1) — rct})

=C(r)e ™,

say. Like in the Poisson case we would like to choose r as large as possible. This suggests the
following definition:

Definition 2.14 The Lundberg coefficient Rc in the Cox model is defined as

Re = sup {7“ ' E <§1§; exp{A(t)(Ee™ —1) — rct}> < oo} .
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Consider a Cox model where the intensity process is stationary with EA(t) = A and denote by
Rp the Lundberg coefficient in a classical risk model where the homogeneous Poisson process
N has intensity A. Let r > Rp, implying that 6(r) = A(Ee"*' — 1) — rc¢ > 0 and therefore

C(r) > il;E)E (exp{A(t)(Ee™™* — 1) —rct})

> sup exp {t()\(Ee’"X1 —-1) - rc)} =00,
t>0
where the second inequality follows from Jensen’s inequality. Hence R < Rp which means
that the stationary Cox case is “more dangerous” than the Poisson case. For a more detailed
discussion of this comparison we refer to Theorem 22, p95 and to Section 4.6 of Grandell
(1991).

A very special class of Cox models are the Cox processes with an independent jump
intensity. Intuitively, an independent jump intensity is a jump process where the jump times
form a renewal process and where the value of the intensity between two successive jumps
may depend only on the distance between those two jumps. Although Cox processes with an
independent jump intensity are a special class of Cox models, they are still general enough
to obtain non—trivial models allowing for fairly explicit results in the ruin type setting. Cox
processes also appear as limiting processes of certain thinning procedures and therefore seem
to be natural point processes for modeling claim arrivals. If we consider claims which are
caused by “risk situations” or incidents, then each incident becomes a claim with probability
p independent of all other incidents. Under these assumptions, the claim number process
is the result of a thinning procedure of the incident number process. A rigorous treatment
of Cox models is to be found in Grandell (1991). The forthcoming book Rolski, Schmidli,
Schmidt, and Teugels (1999) gives a readable introduction to risk theory overall.

2.3.3 Renewal processes

In this section we let the occurrence of claims be described by a renewal process N. Denote
by T}, the interarrival times between two successive claims.

Definition 2.15 A point process on R is called a renewal process if the variables (Ty)r>1
are independent and if Ts, T3, ... have the same df G. N is called ordinary renewal process if
T1 also has df G.

We call N a stationary renewal process if G has finite mean 1/ X and if the df Go of Ty satisfies
Go(z) = X [ G(s)ds.

The first treatment of ruin problems when the occurence of claims is modelled by a renewal
process is due to Andersen (1957).

ORDINARY RENEWAL PROCESSES

Let N be an ordinary renewal process and assume that T}, has finite mean 1/\. N is not
stationary, and EN(t) # At unless T has an exponential distribution. We consider the
associated random walk S,, = 22:1 Y, (So = 0), where Y, = —cT}, + X;. We assume that
EY), = —c/A+ p <0, implying that the random walk S,, drifts to —oo. The safety loading ¢
is defined in a natural way as ¢ = ¢/(Au) — 1. Since ruin can occur only at renewal epochs,
we have that

U(u) =P (mT?XSn > u) .
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Denote by K the df of Yy, and let iz be the mean of Y}, i.e. g = —ud. Then
Ee’r‘Sn — (Ee’r‘Yk)n — (Ee—’r‘chEeer)n
~ n ~ n
= (4o f(-n) " = (k(-n) .

We assume that K(0) < 1 since K(0) = 1 implies ¥(u) = 0. The function k(—r) will be
important. Under the assumption that the appropriate exponential moments of X}, exist for
some r > 0, one can show that k(0) = 1, #'(0) = /i < 0 and that k is convex and continuous
on [0,74), Where 7o, denotes the abscissa of convergence of Ee"~*. Moreover, k(—r) — 0o
as r — ro. From this it follows that there exists a constant Rr > 0 such that l;:(—RR) =1.
Again Rp is called the Lundberg coefficient. Indeed, if T} is exponentially distributed, then
Rp coincides with the Lundberg coefficient from the classical model. The process (S,) is a
random walk and therefore has stationary and independent increments. This is exactly the
property we used in the classical case to construct a family of martingales and to prove the
Lundberg inequality (14). It is therefore not surprising that the derivation goes through in
the ordinary renewal setup:

Proposition 2.16 The discrete time process (M,.(n)), given by
efr(ufsn)
(k=n)

is a martingale with respect to the filtration F° given by F2 = o(Sy, : k < n).

M,(n) = n>0,

Let N, be the claim number causing ruin, i.e. N, = min{n : S, > u}. Then N, is a stopping
time and ¥(u) = P(N, < o0). Again N, A ng is a bounded F®-stopping time for ny < oo
and by the stopping theorem for martingales (Theorem 1.10) we obtain as before

U(u) <e ™ sup (lAc(—r)) .
n>0
The best choice of r is the Lundberg exponent Rpg, yielding
U(u) <e Bt 4 >0. (24)

Asymptotic estimates for U(u) as in the Cramér—Lundberg approximation can be derived by
means of renewal and random walk theory. Consider the rv A; = Sy, on {Np < oo}, where
No = min{k : S, > 0}. Define A(y) = P(A; < y,No < o0) and note that A(oco0) = P(Np <
00) = ¥(0). Thus A has a defective distribution. The defect 1 — A(o0) is the probability that
the random walk never becomes positive starting from 0. By separating the cases A; > u and
Ay < u we obtain

u
¥(w) = Aloo) — Alw) + [ $lu-p)dAw), w20, (25)
0
which is a defective renewal equation. By the so-called Esscher transform defined below one

can remove the defect provided the appropriate exponential moments exist. Assume that
there is a constant k such that

/ e™dA(y) =1.
0
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Then we get, by multiplying (25) with e**, a proper renewal equation and Smith’s key renewal
theorem again yields, for nonarithemtic A,

lim e™¥(u) = #(O@ .
U— 00 IifO ye“y dA(y)

Using random walk theory (see for instance Feller (1971)) one can show that kK = Rg, and we
obtain

1~ Afco) U — 00

Rp /0 " yefia dA(y) (26)

efRRu

U(u) ~

_ —Rpu
=Che 'r R

say. Since A is in general unknown, the constant Cy cannot be calculated explicitly. However,
it follows that Rp is the “right” exponent in (24) and this is undoubtedly the most important
consequence of (26). If the claim size distribution is such that F; € 8, then the following
proposition holds, see Embrechts and Veraverbeke (1982).

Proposition 2.17 If the claim size distribution is such that F; € S, then the ruin probability
in the ordinary renewal model satisfies

STATIONARY RENEWAL PROCESSES

Ruin type estimates for the stationary renewal model basically derive from the ordinary
situation. Indeed, by conditioning on the first claim epoch T} (with df Go) the process starts
anew with iid interarrival times (T}), hence we are then in the situation of the ordinary
renewal model. To make the above heuristic reasoning mathematically precise, denote by
U¥(u) the ruin probability of a stationary renewal model and by ¥(u) the ruin probability of
the ordinary model. Then a renewal argument yields

A

Su) == “F A ’ u—y)F
T~ (u) c/u F(y)dy+c/0‘1’( y)F(y)dy. (27)

Here, as before, F' denotes the claim size df. For a detailed derivation of (27) see Section 3.2
of Grandell (1991). From the ordinary renewal model we know that ¥(u) < e~ %z yielding

W <3 [ e MRy dy
0
_ A r —Rou
~ Rye (f(_RR) - 1) T

hence Lundberg’s inequality holds, but the constant may be greater than one. A Cramér—
Lundberg approximation follows from (27) by multiplying ¥*(u) by efz* and taking the limit
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as u — oo:

lim ef"r“¥S(y) = lim é/ efr (NG (y — y)eFrY F(y) dy

U—>00 u—o0 C 0

ZA—CO/ eV F(y) dy
¢ Jo

- % (R 1) =C.

where 0 < C' < 00; a result due to Thorin (1975) .

2.4 A general insurance risk model

To stress further why martingales play an important role in risk theory we consider the general
structure of a risk process

u+ P(t) — S(t),

where u denotes the initial capital, P the premium income up to time ¢ and S the liabilities
(claims). If for the moment we forget about the initial capital v and assume that S(t) is
a general stochastic process, then a natural way to construct the process P is to make the
difference

a “fair game” (i.e. a martingale) between the insurer and the insured. Delbaen and Haezen-
donck (1987) use this direct martingale approach for the construction of fairly general risk
models allowing for economic factors such as interest and inflation to be incorporated to the
classical Cramér-Lundberg model. Paulsen (1993) goes one step further and allows the eco-
nomic factors to be stochastic. Semimartingales coupled with integro—differential equations
lead in some cases to exact probabilities of ruin and in others to inequalities. Economic fac-
tors and their influence on ruin probabilities for the Brownian diffusion approximation of a
classical risk process are discussed by Sgrensen (1996) or Norberg (1997). In this section we
present a martingale approach based on the theory of piecewise deterministic Markov pro-
cesses (PDMPs). The class of PDMPs was introduced by Davis (1984) and further discussed
in Davis (1993) . To motivate the usage of PDMPs in risk theory consider the basic Cramér—
Lundberg model. Note that the state space of a classical risk process (U(t)); is R and that the
sample path behaviour of U has a deterministic inter-jump evolution along linear trajectories
with rate ¢ > 0. In the language of Davis (1984) one reformulates the latter as “(U(t)): follows
the integral curves of the vector field x = ¢9/0x”. Moreover, the hazard rate along integral
curves is A(z) = A and the Markov measure governing the stochastic evolution of the process
equals Q(dy,z) = dF(z — y). Dassios and Embrechts (1989) employ the PDMP framework
for solving insurance risk problems where borrowing money below a certain surplus barrier is
allowed. All these processes share the property that they are PDMPs for which ¢(t,y) will
denote the integral curve of a vector field y starting at y € R. The efficiency of PDMPs in
risk theory is strongly based on martingale methodology. For a general Markov process, the
martingale construction can effectively be obtained via the integration of the infinitesimal
generator along sample paths of the process.
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Definition 2.18 Let D(A) be the set of all measurable real functions on R with the property
that an operator A exists such that Af is almost surely Lebesgue integrable and

M/ = £(X,) — f(Xo) / AF(X,) ds

is a local Fy—martingale. We call A the extended generator of (X¢) and D(A) the domain of
the generator A.

When A corresponds to the infinitesimal generator of a PDMP (X;), then Davis (1984) gives
necessary and sufficient conditions for a function f to belong to D(A). However, for appli-
cations in risk theory, it turns out that the following condition from Dassios and Embrechts
(1989) suffices. Denote by S; the time of the ith claim.

Lemma 2.19 Let f : R = R be a measurable function satisfying

(i) for all x € R, the mapping t — f(P(t,x)) from [0,00) to R is absolutely continuous,

(ii) for allt >0, E (Zsigt |f(Xs;) — f(XSi—)|) < o0.

Then f € D(A) and the generator of the PDMP (X;) is given by
Af@) = xf@ 42 [ (=9 = @) dF).

Furthermore, (Mtf)t is a martingale. i

The idea now is to construct martingales via functions fy € D(A) satistying Afo = 0, implying
that fo(X:) — fo(Xo) is a martingale for bounded fp.

A RISK MODEL WITH INTEREST STRUCTURE

As a generalization of the classical model, assume that a company can borrow money if needed
(i.e. for a negative or low surplus) and gets interest for capital above a certain level A, say, the
amount of capital the company retains as a liquid reserve. The interest rates are assumed to
be constant and denoted by (3; for invested money and 32 for borrowed money. The associated
vector field becomes

Bilz—A)+0)ZL  A<u,

X = Ca% 0<z <A,
(Box + ) z<0.

The integral curve corresponding to x is decreasing for z < —c¢/fB2. Whenever the process hits
the boundary —c¢/f32, the company will a.s. not be able ro repay its debts. So 7 := inf{t >
0: X; < —c¢/B2} will be called the ruin time. Above the liquid reserve level A the paths
are exponentially increasing. Between 0 and A their behaviour is as in the classical case and
below 0 the slopes of the paths are smaller. The model where A = oo was studied in Dassios
and Embrechts (1989). Using PDMP theory, one can show that for A € [0, co] one has

P(r < o0) = —&

f(o0)’
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where f is the solution of complicated integral—differential equations. Moreover, P(1 < 00) =
1 if and only if A = co and ¢ < Au. As a special case, consider exponentially distributed
claims with mean p. Then the function f above becomes

f(@) = [i(@)a 00) (2) + f2(2)Tj0,0) (%) + f3(2)[(—s0,0) (%) ,

where

z+c/fB2
fale) = K / R a1 gy
0
fa(x) = f5(0) + &T@ (1—e By,

B\ et zhe/fi-A
fi(z) = f2(A) + <_> eC/(Bl“)fé(A)/ s(A/B1)—1,—s/n ds,
¢ ¢/

for some constant K which can be calculated explicitly. Here R = 1/u — A\/c¢ denotes the
Lundberg coefficient for exponentially distributed claims in the Cramér-Lundberg model. As
a consequence of this result one obtains the following adjustement coefficient estimate:

0 r<1/p or(r=1/u and X< f3),
lim P(r<oc0)e™=¢ ¢ r=1/p and A =03,

U— 00
00 otherwise,

where

c= e (By/e) NPT UfL(A) ] fi(0).

An “extended” PDMP framework also allows to consider ruin type problems of the following
model

N(t)

Uw(t)=utct—> Yi+ W,
k=1

where u and ¢ are constants, N is a claim number process and W is standard Brownian
motion describing small perturbations around the risk process U, see Furrer and Schmidli
(1994). Finally, an interesting application of the PDMP-methodology to a health-insurance
problem is to be found in Davis (1993), p.107.

2.5 Remarks on the use of stochastic processes in insurance

The above sections have only highlighted some (definitely from a historical perspective the
most important) ways in which stochastic processes enter as key building blocks in the stochas-
tic modeling of insurance. Although it was not stated explicitly, it should be clear to the reader
that the models that have been treated so far refer mainly to non-life and re-insurance. A
very important field of applications, which increasingly sees stochastic modeling being used,
is life-insurance. One of the main reasons for this is the increasing convergence of insurance
and finance, both structually, i.e. at the company level, and at the level of products being
offered. Think for instance of the so-called equity-linked life products where the payment
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due at the end of the policy is partly contingent on the returns (performance) of an equity
portfolio. On the other hand even standard life products are increasingly being modeled by
finite-state Markov-processes. It is impossible for us to enter into some of the models in this
area in the course of this paper. We refer the interested reader to Wolthuis (1994) and Nor-
berg (1991, 1995), for a start. The forthcoming monographs Koller (1999) and Milbrodt and
Helbig (1999) give an excellent overview of stochastic processes in life-insurance mathematics.

3 Stochastic processes in finance

3.1 Pricing and hedging of derivatives: standard theory
3.1.1 Introduction

We start our discussion of stochastic processes in finance by a review of the standard approach
for the pricing of derivative securities such as options. Our exposition is based on Follmer
(1991) and Frey (1997) .

Modern derivative asset analysis has its origins in the seminal papers Black and Scholes
(1973) and Merton (1973). A few years later it was given an almost definitive conceptual
structure by Harrison and Kreps (1979) and Harrison and Pliska (1981). These papers show
that the natural mathematical framework for the analysis of derivative securities is provided
by the theory of martingales and stochastic integrals. The theory of stochastic integration
had been developed by probabilists long before its applicability to Finance was discovered,
starting with the fundamental work of It6 and culminating in the “general theory” of the
French School. A brief history of stochastic integration theory is provided in Protter (1992).

For our exposition we consider a market with two traded assets: a riskless asset B repre-
senting some bond or money market account and a risky asset which will be called the stock.
The price fluctuations of stock and bond will be described by some stochastic process S¢(w)
respectively B;(w) on our underlying probability space (2, F, P). For simplicity we assume
that By = 1 for all ¢ > 0. This assumption does not exclude nonzero interest rates from our
analysis, if we interprete S as forward price process of the stock, i.e. if we choose the bond
as numeraire.

To complete the description of our setup we have to specify the information that is available
to our financial decision makers at a particular point in time. As in Section 1.2 this is done
via a filtration (F;):; it is understood that at time ¢ agents have access to the information
contained in ;. We will always assume that our stock price is adapted and that its trajectories
follow cadlag sample paths.

Now imagine an investor such as an investment bank who considers selling a contingent
claim, i.e. a Fp-measurable random variable H. In this context H is interpreted as payoff
of some financial contract which occurs at the maturity date 7. Typically H is a derivative
asset, i.e. the value of H is determined by the realization of the price path of S. The most
popular examples are European call and put options with maturity date T" and exercise price
K, where H = (St — K)™ or H = (K — St)™, respectively. More complicated contracts
are also traded nowadays; as an example we mention the so-called average option where
H=1/T [ Seds — K)*.

The common feature of all these contracts is that the payoff H is unknown at ¢ = 0
and therefore constitutes a risk for the seller. Hence two questions arise for our investor:
How should he price the claim and how should he deal with the risk incurred by selling the
contract? The “modern” answer to these questions dates back to the seminal papers Black
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and Scholes (1973) and Merton (1973), where it was shown for the first time that under
certain assumptions the payoff of a derivative security can be replicated by a dynamic trading
strategy in the underlying asset, such that its risk can be eliminated. This concept of dynamic
hedging and not some particular pricing formula is actually the major contribution of these
papers.

3.1.2 A two-period example

We start by explaining this idea in a very simple two-period setting which represents for
instance one time step in the binomial model of Cox, Ross and Rubinstein (1979). Suppose
that the current price of S is given by Sy = 150 and that there are two possible “scenarios”
for the future stock price: the price of S at the terminal time T could be Sp = 180 (with
probability p > 0) or be equal to S = 120 (with probability 1 —p > 0). Consider a European
call option with payoff K = 140. We claim that a fair price of this option is given by Cy = 20,
and that this price is moreover independent of the probability p.

To justify this claim we construct a portfolio in stock and bond whose value at T equals
the price of our option: At ¢ =0 we buy (2/3) units of the stock and sell 80 bonds. At t =T
there are two possibilities for the value V7 of our portfolio.

e Sp =180: In that case Vp equals Vi = (2/3)180 — 80 = 40.
e St =120: In that case the option is worthless; moreover we have Vp = 0.

In either case the value of our portfolio at T' equals the payoff of the option. Hence the fair
price of the option should also equal the value of our portfolio at ¢ = 0 which is given by
Vo = (2/3)150 — 80 = 20. Otherwise either the buyer or the seller could make some riskless
profit. To construct the hedge portfolio in this simple two-period setting we have to consider
two linear equations: Denote by £ and 7 the number of stocks and bonds in our portfolio at
t = 0. For our portfolio to replicate the option we must have

€180+ 17 =40 and £120+7 =0, (28)

which leads to the above values of £ = 2/3 and n = —80.

Note that the probability p did not enter our argument; this probability mattered only in
so far as the requirements P(St = 180) > 0 and P(S7 = 120) =1 — p > 0 determine the set
of possible scenarios at t = T. Nonetheless it is still possible to compute the fair price of the
option as expected value of the terminal payoff under some “artificial” probability measure
@) which turns the investment in the stock into a fair game (a martingale). In our case such
a probability measure is unique and given by Q(St = 180) = Q(Sr = 120) = 0.5. If we now
compute the expected terminal value (under @) of the terminal payoff of our option we get

E® (St —140)" = (1/2)40 + (1/2)0 = 20. (29)

This is of course not a lucky coincidence and the general argument justifying (29) will be
given in the next section.

3.1.3 The general argument

We now extend the argument from the previous two-period example to a more realistic
continuous-time setting. Our basic assumption is that the process S admits an equivalent
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local martingale measure @), i.e. a probability measure Q ~ P such that S is a Q-local
martingale. We will comment on the economic meaning of this assumption below. From a
mathematical viewpoint this assumption ensures that S is a semimartingale under P such
that we may define stochastic integrals with respect to S. Recall that a semimartingale X is
an adapted cadlag process which can be decomposed as X; = Xog+ M;+ Ay, where M is a local
martingale and A is a process of finite variation. If A is predictable (e.g. left-continuous) such
a decomposition is unique. Semimartingales are natural stochastic integrators; a good treat-
ment of semimartingale theory and in particular of their role as natural stochastic integrators
is given in Protter (1992).

To replicate the payoff of a contingent claim we use a dynamic trading strategy (£, n) where
& gives the amount held in the risky asset at time ¢ and 1, gives the position in the bond.
Of course our position at ¢ should depend only on information available up to time ¢, that
is we require £ to be predictable and 7 to be adapted with respect to our filtration; £ should
moreover be locally bounded. We refer the reader to Chapter 4 of Protter (1992) for a formal
definition of predictable processes and mention only that every adapted and left-continuous
process is locally bounded and predictable. At time t the value of our hedge portfolio equals

Vi = ftSt + . (30)

As By = 1 the cumulated gains from trade of following this strategy up to time ¢ are measured
by the stochastic integral fot &sdSs. This is obvious for so-called simple predictable strategies
& of the form

n
ft = Z Ei(w)]‘(ThTi-}—l](t) ’
i=1
where 0 =Tp < T} < ... < Tp41 < o0 is a finite sequence of stopping times and where each &;

is Fr;-measurable and bounded. If we follow such a strategy the gains (or losses) from trade
up to time ¢ are given by

n t
> 6i(Stani = Stin) = [ €.,
=1 0

by definition of the stochastic integral for simple predictable processes. For general strate-
gies the modeling of the gains from trade as a stochastic integral can be justified by limit
arguments. The cumulative cost C; from following this strategy up to time ¢ is given by

t
@zm—%—/@wy (31)
0

It measures the cumulative in- or outflows to our strategy. The strategy will be called selffi-
nancing if the cumulative cost is zero, i.e. if

t
Vt:Vo+/§sts forall0<t<T. (32)

0
Suppose now that our contingent claim can be represented as a stochastic integral with respect

to S,ie. H=Hy+ fOT ¢HdS,. Then we may construct a dynamic hedging strategy for H as
follows. Define

t
& =&8 and n; = Hy + / efas, —¢ls,. (33)
0
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This strategy is selffinancing with value process V;¥ = Hy +f0t ¢HdS,. In particular VA = H.
Therefore, at any time ¢ < T we can replicate the claim by starting with an investment of
VI and following the above strategy. There are no further payments and hence no further
risk. This implies that at time ¢ the fair price of the claim should be equal to V2.

Harrison and Pliska (1981) showed how the fair price of the claim can be computed using
the concept of martingales. The stochastic integral fot ¢HdS, is a Q-local martingale and a
martingale under some uniform integrability assumptions. Hence

T
E® (/ ¢Hds, |]—'t> =0 forallt.
t

This yields the so-called risk-neutral pricing rule for the claim H
Hy =V =E°(H | F); (34)

in particular the fair price process H = (H;)o<¢<7 is a @-martingale. Harrison and Pliska
(1983) moreover showed that the market is complete, i.e. every @Q-integrable claim admits
a representation as stochastic integral with respect to S, if and only if there is only one
equivalent martingale measure for S.

The assumption that S admits an equivalent (local) martingale measure needs of course
some economic justification, which is provided by the so-called “First Fundamental Theorem of
Asset Pricing”. This theorem, whose origins go back to the work of Harrison and Kreps (1979),
states that the existence of an equivalent martingale measure is “essentially equivalent” to
the absence of arbitrage opportunities. As a precise mathematical statement of this theorem
is relatively cumbersome, we refer the reader to Dalang, Morton and Willinger (1990) for an
analysis in discrete time and to the fundamental paper Delbaen and Schachermayer (1994)
for definitive results in continuous-time models.

3.1.4 Diffusion Models

Now we want to apply this general approach to cases where the stock price process S is given
by a diffusion. More precisely we assume that S is given by the solution to the following SDE

dSt = /,L(t, St)St dt + O'(t, St)St th , SO =, (35)

where W is a standard Brownian motion as in Definition 1.1 and p and o are sufficiently
smooth such that there is a unique solution to (35); o is moreover strictly positive. The model
(35) has the following intuitive interpretation: at a given point in time p(t,S;) describes the
instantaneous growth rate of the asset, while the volatility o(t, S;) measures the instantaneous
variance of the process log S. Hence o (t,S;) can be interpreted as (local) measure of the risk
incurred by investing one unit of the money market account into the stock. In case that o is a
constant independent of S; the SDE (35) can be solved explicitely; the solution is given by the
exponential martingale (13) from Proposition 1.13(b) with 8 = 1. In that case the stock price
process is referred to as classical Black-Scholes model or as geometric Brownian motion. This
model was first proposed by Samuelson (1965), who replaced Bachelier’s arithmetic Brownian
motion by geometric Brownian motion, the main argument in favour of this change being that
real stock prices cannot be negative because of the limited liability of shareholders.
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Fix some T > 0. To determine an equivalent martingale measure for the stock price
process (35) we define

T T
Gr = exp (— | wte.sosatespaw -5 [ [u(t,sa/o(t,st)]?dt) -

Under some integrability conditions we have E(Gr) = 1. In that case we may define a new
probability measure () on Fr by putting dQ/dP := Gr. According to Girsanov’s theorem the
process W2 := W, + fg[u(s, Ss)/o(s,Ss)]ds is a Brownian motion under @, see e.g. Section
3.5 of Karatzas and Shreve (1988) . Hence S solves under @ the SDE dS; = o(t, S;)S;dW
and is therefore a local @-martingale and a martingale under some integrability assumptions.

As the volatility function o (t, ) is strictly positive, market completeness follows from the
martingale representation theorem for Brownian motion, see e.g. Section 3.4 D of Karatzas
and Shreve (1988). This theorem ensures that for any @-integrable Fr measurable random
variable H the martingale H; = EQ(H | Fi), 0 <t <T, can be represented as a stochastic
integral, i.e. there is a predictable process ¥ such that H; = Hy + fot YHEAWE. If we now
define ¢ := /(o (s,Ss) Ss) we immediately get H = Hy + fOT ¢Hqs,.

Now there remains of course the task of computing price and hedging strategy. For the
purposes of this paper it is enough to consider claims whose payoff has the form H = g(Sr),
so-called terminal value claims. For the pricing of path-dependent options in the framework of
the classical Black-Scholes model see for instance Chapter 9 of Musiela and Rutkowski (1997)
and the references given therein. For path-independent derivatives the price and the hedge
portfolio can be computed by means of a parabolic partial differential equation. Denote by
h(t,z) the solution of the terminal value problem

0 1 0?

ah(t,:r) + 502(t,m)x2wh(t,x) =0, h(T,z)=g(x). (36)

By It6’s formula (see e.g. Karatzas and Shreve (1988)) we obtain from (36)
"o
g(St) = h(T, ST) = h(t,St) +/ ah(s,Ss)dSs.
t

Hence ¢ = B%h(t, S¢) and the fair price of the derivative is given by H; := h(¢,S;). In the
classical Black-Scholes model with constant volatility o the terminal value problem (36) can
be solved explicitely for g = (x — K)*. This yields the famous Black-Scholes formula for the
price Cps(t,z,0) of a European call option.

Cps(t,x) = aN(dy) — KN (d}),

where

it = In(z/K)+ (T —t)o?/2 B =d — T =D,
(T —t)o?

and where N denotes the distribution function of the one-dimensional standard normal distri-
bution. Alternatively one could derive the Black-Scholes formula using probabilistic methods
to compute the conditional expectation in (34). For an application of this approach in a more
general setting see for instance Musiela and Rutkowski (1997) or Frey and Sommer (1996).

Of course up to now we have only been able to present the very basics of modern derivative
pricing theory and had to omit many interesting topics. In particular we have to refer Bjork

27



(1997) or Musiela and Rutkowski (1997) for a treatment of models for interest rate derivatives
and to Myeni (1992) for a discussion of American-type derivatives. Excellent textbooks on
derivative pricing theory with a focus on continuous-time modeling include Duffie (1992),
Lamberton and Lapeyre (1996), Musiela and Rutkowski (1997) and the advanced Karatzas
(1997) or Karatzas and Shreve (1998). Moreover, we strongly recommend the excellent essays
in Runggaldier (1997). Taleb (1996) finally gives a trader’s account of dynamic hedging.

3.1.5 Discussion

Over the last 20 years this approach to pricing and hedging derivative securities turned out
very successful from a theoretical and from an applied point of view. One should bear in
mind however, that this elegant theory hinges on several crucial assumptions. Obviously, if
our hedging argument is to work for all claims the market must be complete. Moreover, in our
definition of the gains from trade we implicitely assumed that there are no market frictions
like taxes and transaction costs or constraints on the stockholdings £. The definition of the
gains from trade is reasonable only if our hedger is small relative to the size of the market,
meaning that the implementation of his hedging strategy does not affect the price process of
the stock.

This is of course a very stylized picture of real markets, which is why much of the re-
cent research in Finance has concentrated on relaxing these assumptions. The hedging of
derivatives under market frictions has mainly been studied in the framework of the classical
Black-Scholes model. Cvitanic (1997) gives an excellent and detailed introduction to the the-
ory of hedging under portfolio constraints. Davis, Panas, and Zariphopoulou (1993), Barles
and Soner (1998) or Cvitanic, Pham, and Touzi (1999) are representative examples of recent
work on option pricing with transaction costs. The pricing and hedging of options in markets
with a large trader is for instance studied by Jarrow (1994) or Frey and Stremme (1997) and
Frey (1998). Many of these papers employ techniques from stochastic control theory and
from the theory of nonlinear PDE’s. In particular the pricing PDE (36) is often replaced by
a nonlinear PDE where the volatility depends on the derivatives of the option price, see e.g.
Barles and Soner (1998) or Avellaneda, Levy and Paras (1995) .

Typically we enter the realm of incomplete markets whenever we want to use models for
asset price dynamics which are more “realistic” than the simple model (35). For instance the
simple model from Section 3.1.2 is incomplete if we allow for a third possible value for the
stock price at the terminal time T. Perhaps more importantly, markets are incomplete if we
consider asset price processes with random volatility or with jumps of varying size. There is in
fact a lot of statistical support for such models, as most empirical evidence suggests that the
classical Black-Scholes model does not describe the statistical properties of financial time series
very well. According to this model log-returns, i.e. differences of the form log S;y, — log Si,
are independent and identically normally distributed. The following Figure 6 shows daily log-
returns of the American S&P 500 stock index and simulated iid normal variates with variance
equal to the sample variance of the S&P 500 log-returns.

This picture makes two stylized facts immediately apparent, which are typical for most
financial time series.

e We see that large asset prize movements occur more frequently than in a model with
normally distributed increments. This feature is often referred to as excess curtosis or
fat tails; it is the main reason for considering asset price processes with jumps.

e There is evidence for wvolatility clusters, i.e. there seems to be a succession of periods
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Figure 6: Daily log-returns of the S&P 500 index (top picture) and simulated normal variates
with mean and variance equal to the sample mean and sample variance of the S&P 500
log-returns.

with high return variance and with low return variance. This observation motivates the
introduction of diffusion models for asset prices where volatility is itself stochastic.

Of course these findings have been confirmed by many rigorous statistical tests, see e.g. Pagan
(1996) for an extensive survey. In the remainder of this paper we will discuss some recent work
on derivative asset analysis in models with jumps and/or stochastic volatility; this will allow
us also to make contact with some approaches to derivative pricing in incomplete markets.

3.2 Some new models for asset prices
3.2.1 Stochastic volatility models

Most of the diffusion models that have been proposed in recent years as an extension to the
classical Black-Scholes model belong to the class of stochastic volatility models (SV-models).
In this class of models the volatility is modeled as a stochastic process whose innovations
are only imperfectly correlated to the asset price process. Our definition of a SV-model is as
follows.

Assumption 3.1 S follows a general stochastic volatility model, if it solves the SDE
dSt = St (Utth + ,Lttdt) (37)

for predictable processes or and py. We assume that oy > 0, fg 02ds < oo and that oy is not
adapted to the filtration generated by W .
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In economic terms this last assumption simply means that besides W there is a second source
of randomness, influencing the system. In most papers from the financial literature it is
assumed that the instantaneous variance v; = o follows a one-dimensional diffusion:

Assumption 3.2 S and v satisfy the SDE

dS; = Sy (v} 2dW ) + p(vy)dt) (38)
dvr = a(vy)dt + n (ve)dW,") + s (v)aw (39)
for Wy = (Wt(l), t(z)) a standard twodimensional Wiener process. We assume that the

coefficients are such that the vector SDE (38), (39) has a non-exploding and strictly positive
solution. Moreover, there is some 0 < a < b < 0o such that n2(v) > 0 for all v € (a,b).

The above class of volatility models contains among others the SV-models considered by
Wiggins (1987) , Hull and White (1987) or Heston (1993) as special cases. The function n;
models the instantaneous correlation of log.S and v. Most empirical studies have found that
at least on equity markets 7; is significantly negative, an observation which is termed the
leverage effect since Black (1976) .

SV-models can be obtained as diffusion limits of certain popular GARCH-models. This has
potentially important implications for parameter estimation and for derivative asset analysis
in these models. For a detailed analysis of “ARCH-models as diffusion approximation” and
related topics see Nelson (1990), Duan (1997) or the surveys Frey (1997) and Ghysels, Harvey,
and Renault (1996). Duffie and Protter (1992) give an in-depth discussion of results on weak
convergence of asset price processes and implications in Finance.

SV models are typically incomplete, meaning that there are derivatives which cannot be
replicated by dynamic hedging. As explained in Section 3.1 this is equivalent to the fact that
there are now many probability measures () ~ P such that the stock price process is a (local)
@-martingale. The next proposition characterizes the set of all equivalent local martingale
measures for the stock price process defined in Assumption 3.2. For similar results and a
proof see e.g. Hofmann, Platen and Schweizer (1992) and the references given therein.

Proposition 3.3 a) Under Assumption 3.2 a probability measure Q@ equivalent to P on Fr
is a local martingale measure for S on Fr if and only if there is a progressively measurable
process v = (Vt)o<t<T With fo I/S2d8 < oo P- a.s. such that the following holds: The local
martingale (Gt)o<i<T with

G, = exp ( / (o) AW D + / aw® - L / (o) Vo)) 47 ds> (40)

satisfies E(Gr) =1 and Gr = dQ/dP on Fr.
b) Suppose that Q is an equivalent local martingale measure corresponding to some process
v. Then S and v solve the following SDE under Q

dS; = Silvg|'2aw M, (41)
dve = a(ve) = m () u(v)) [V + 1o (v)vedt + (o) AW + ma(0)dW?, (42)
where W is a two-dimensional standard Brownian motion under Q. O

In the financial literature the process v is usually referred to as market price of volatility risk
process. Proposition 3.3 shows that there is a one to one correspondance between market
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price of volatility risk processes v satisfying some regularity conditions and equivalent (local)
martingale measures. In particular market incompleteness is equivalent to nonuniqueness of
the market price of risk process.

3.2.2 Models with discontinuous price paths

Real markets exhibit from time to time very large price movements over short time peri-
ods. Even if we allow for stochastic volatility these price movements are only very difficult
to reconcile with the assumption that asset prices follow diffusion models with continuous
trajectories. Moreover, in an interesting empirical study Bakshi, Cao and Chen (1997) have
shown that in order to explain observed option prices one should allow for both, stochastic
volatility and the possibility of occasional jumps.

A rather general jump-diffusion model has been proposed by Colwell and Elliot (1993).
They assume the following dynamics for the stock price S:

dSt = u(t, Se=)dt + o(t, Se—)dWy + / v(t, Si—,y)(u(dt, dy) — H(dy)dt) . (43)
R
Here W is standard Brownian motion and g is a random measure with deterministic com-

pensator v = H(dy)dt, which is assumed to be independent of W. We can alternatively write
model (43) as follows.

Sy = Sp +/0 (s, Ss—)ds +/0 o(s,Ss—)dWs (44)
N t _
+ 3 (s Sem V) - / / (5, Sey) H (dy)ds) (45)

As the compensator v is deterministic, Z; = E?L‘l Y; is a compound Poisson process with
intensity A = [, 1H(dy). The stopping times 7; denote the successive jump-times of N. The
distribution of the Y; is given by H = \~'dH. This notation makes the similarities to the
models studied in Chapter 2 apparent. It follows from general results on SDE’s driven by
random measures that S is a Markov process.

Most jump-diffusion models from the financial literature are special cases of (44). If we
take p(t,z) = wu(t)z, o(t,z) = o(t)r and y(t,z,y) = y(t)z for deterministic functions u,
o and vy with y(t) > —1 for all ¢ we obtain the models of Merton (1976) or Mercurio and
Runggaldier (1993). Bakshi, Cao and Cheng (1997) consider a model where (¢, z,y) = zy,
and where 14 Y is lognormally distributed; they allow moreover for stochastic volatility. In
all these models the assumption that v(¢,z,y) > —1 a.s. is made to ensure that the asset
price process is strictly positive.

Jump-diffusion models of the form (43) are typically incomplete as there are many dif-
ferent equivalent martingale measures. Intuitively speaking this is due to the fact that by
an equivalent change of measure we may change the drift, the jump-size distribution and the
jump-intensity of the process; there are typically many different combinations of these pa-
rameters and hence many different equivalent probability measures that turn S into a (local)
martingale. Colwell and Elliot (1993) determine the class of equivalent martingale measures
for the model (43) that preserve the Markov property.

Eberlein and Keller (1995) introduce another class of discontinuous stochastic processes
for asset prices. Their analysis is motivated by statistical considerations which show that the
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hyperbolic distribution (see e.g. Barndorff-Nielsen and Halgreen (1977) ) yields an excellent
fit to the distribution of log-returns for various stocks. The hyperbolic distribution is infinitely
divisible and generates therefore a Lévy process, the so-called hyperbolic Lévy motion. The
Lévy-Khinthine representation of this process shows that the hyperbolic Lévy motion is a
quadratic pure jump process, i.e. orthogonal (in the sense of quadratic variation) to all con-
tinuous semimartingales. We refer the interested reader to Eberlein and Keller (1995) for
further information.

3.3 Pricing and hedging of derivatives in incomplete markets

As we have just seen, if we move on from the classical Black-Scholes models to more realistic
models with jumps and stochastic volatility we usually end up with an incomplete market
where perfect hedging strategies for derivatives do not exist. Hence a conceptual problem
arises: how should we value contingent claims, and how should we manage the risk we incur
by selling the claim? Of course, there is now no longer a unique answer to these questions.
However, in recent years a number of interesting concepts for the risk-managements of deriva-
tives in incomplete markets have been developed, and we are now going to survey two such
approaches.

3.3.1 Superreplication

If the precise duplication of a contingent claim is not feasible one might try to find a super-
replicating strategy, i.e. the “cheapest” selffinancing strategy with terminal value no smaller
than the payoff of the contingent claim. This concept has been developed first by El Karoui
and Quenez (1995). To explain their results we have to give some definitions first.

Definition 3.4 Consider a contingent claim H with nonnegative payoff. An adapted, non-
negative cadlag process H with HT = H is called an admissible price for sellers, sz 1s the
value process of some trading strateqy with nonincreasing cost process C'. An admissible price
process for sellers H* will be called the ask price for H, if Hf < H, for any other admissible
price for sellers H and for all t € [0,T].

This definition deserves a comment. Suppose that an investor sells at time ¢t < T the claim
H at an admissible selling price Eft. By following the corresponding portfolio strategy he can
then completely eliminate the risk incurred by selling the claim and moreover he earns the
nonnegative amount —(Cr — C;). Hence he will certainly agree to sell the claim for the price
H;. The following is an example for an admissible price process for sellers in the case of a
European call option. Define

H =S,6=1for0<t<T and Hy = (Sy — K)T, & =0. (46)

The cost process is then given by C; = 0 for t < T and Cr = (Sp — K)* — S7.

It is a priori not clear that an ask-price for a contingent claim exists. Here we have the
following result, which was proved in increasing generality by Delbaen (1992), El Karoui and
Quenez (1995), Kramkov (1996), and Follmer and Kabanov (1998).

Theorem 3.5 Assume that the set Q of equivalent local martingale measures for the asset
price process S is nonempty. Then the ask price exists for every contingent claim H with
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nonnegative payoff; it is given by

H} =esssup EQ(H|F;). 47)
QeQ

O

It is easily seen that the ask price cannot be smaller than H*. In fact, we have for every
admissible price process for sellers H

T T
H=Hr=H,; +/ fsts — (CT — Ct) < H; + / fsts . (48)
t t

Fix some @) € Q. The stochastic integral fot £5dS, is a nonnegative local martingale and hence
a supermartingale. Taking expectations on both sides of (48) we get

T
E9(H|F;) < Hy + E° (/ fsd5s|ft> < H;.
¢

Hence we must have H, > esssup{E?(H|F;), Q € Q}. The difficult part in the proof of
Theorem 3.5 is to show that the process H* can be represented as the sum of a stochastic
integral w.r.t. S and an adapted nonincreasing process.

At a first glance superreplication seems to be a very attractive concept for the pricing
and the hedging of derivatives in incomplete markets. Unfortunately, in applications it often
leads to results which are not very satisfactory. Consider for instance the SV-model which
was introduced in Assumption 3.2, and assume that — as in most models from the financial
literature — 72(v) > 0 for all v > 0. By well-known results on one-dimensional diffusions this
implies that the range of v is unbounded. For this class of models Frey and Sin (1999) have
shown that under some minor technical conditions we have

ess sup EQ((Sp — K)*|F) =S, forallt < T,K > 0;
QeQ

see also Cvitanic, Pham, and Touzi (1997) for related results. In light of Theorem 3.5 we
can therefore conclude that the ask price process and the corresponding hedge portfolio are
given by (46); in other words the cheapest superreplicating strategy for a call option is to
buy the stock. Similar results have been obtained for the other new model classes introduced
in Section 3.2; see Bellamy and Jeanblanc (1997) for an analysis of superhedging in jump-
diffusion models and Eberlein and Jacod (1997) for results in the context of discontinuous
Lévy processes.

In spite of these disappointing results there are good financial reasons to study superhedg-
ing strategies. For instance, these strategies appear as building blocks in the quantile hedging
approach of Follmer and Leukert (1998). These authors relax the condition that the terminal
value of the hedging strategy should almost surely be no smaller than the payoff of the claim
under consideration; instead they focus on the cheapest hedging strategy with nonnegative
value process which superreplicates the claim with a given success probability. We refer the
reader to their paper for further details.

There are other situations where the superhedging approach yields very interesting and
relevant results. Several authors have applied the concept of superhedging to the problem of
hedging a derivative in the Black-Scholes model but with certain constraints on the hedging
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portfolio, see for instance Cvitanic (1997). Many papers address the problem of superhedging
in stochastic volatility models with known a-priori bounds on the volatility. These bounds are
usually interpreted as confidence interval for the range of future volatility. In this situation
the ask-price of a call-option is given by the Black-Scholes price of the option corresponding
to the upper volatility bound. For details on this work see the papers by El Karoui, Jeanblanc
and Shreve (1998), Avellaneda, Levy and Paras (1995), Lyons (1995) or Frey (1998).

3.3.2 Mean-variance hedging

In the theory of mean-variance hedging which subsumes the so-called (local) risk-minimization
and variance-minimization approaches one wants to find a trading strategy that reduces the
actual risk of a derivative position to some “intrinsic component.” While the computation of
the strategy usually involves the computation of “prices” for contingent claims, the emphasis
of this theory is not on the valuation of derivatives but on the reduction of risk.

We now explain these approaches in more detail. We restrict ourselves to trading strategies
with square-integrable cost- and value processes. In the theory of (local) risk-minimization the
conditional variance of C' under the “real-world” probability measure P is used as a measure
for the risk of a strategy. For a given claim H one tries to determine a strategy (£, nf) with
terminal value equal to H that minimizes at each time ¢ the remaining risk

R; = EX((Cr — Cy)?*|F). (49)

Here the minimization is over all admissible continuations of (£*,n*) after ¢ with terminal
value equal to H. Follmer and Sondermann (1986) have studied existence and uniqueness
of such a strategy if the stock price process is a P-martingale. In that case existence and
uniqueness of such a strategy follows from the well-known Kunita- Watanabe decomposition of
the P-martingale H; = E¥(H|F;) with respect to the P-martingale S. This decomposition
result implies that the martingale H; can be decomposed as

t
H, = H, +/ eHas, + LE (50)
0

where L is a martingale orthogonal to S, i.e. the product SL is again a martingale. A proof
of this result can be found in all major textbooks on stochastic analysis. The risk-minimizing
strategy (¢ft,1n%) is then given by

¢fo=¢l pB .= H, — ¢fS,, and hence C; = L.

Note that the risk-minimizing strategy is no longer selffinancing as the cost process does
not necessarily vanish; however, the strategy is mean selffinancing, i.e. the cost process is a
P-martingale with E(Cr) = 0.

In the variance-minimization approach one seeks to determine a selffinancing strategy
(¢, nV) which minimizes the L?-norm of the hedging error, i.e. the expression

E (H — (Vo + /T §SVdSS)> )

If S is a P-martingale a unique solution solution exists; it can again be described in terms
of the Kunita-Watanabe decomposition (50). We now put ¢V := ¢#, V; := Hy and nV :=
Hy + fot £YdSs — & S;, which is typically not equal to n¥.
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Let us now turn to the general situation where S is only a semimartingale under P.
Here the risk-minimization approach and the variance-minimization approach lead to different
solutions also for the stockholdings £ of the optimal strategy.

As shown by Schweizer (1991) for semimartingales a globally risk-minimizing strategy
does not always exist. He therefore introduces a criterion of local risk-minimization. Roughly
speaking a strategy (¢7,n%) is locally risk-minimizing if it minimizes the remaining risk over
all strategies that “deviate” from (£%,nft) only over a sufficiently short time period. Schweizer
(1991) shows that under some technical conditions a strategy is locally risk-minimizing if and
only if the associated cost process is a martingale orthogonal to the martingale part of S. To
compute such a strategy we have to find a decomposition of our claim H of the following form

T
H:H0+/ ¢Hds, + LY, (51)
0

where L is a P-martingale orthogonal to the martingale part of S under P. The local
risk-minimizing strategy is then defined via ¢ := ¢ and C® := L¥. In particular the
strategy is still mean-selffinancing. In case that S is a P-martingale the decomposition (51)
reduces to the Kunita-Watanabe decomposition of the P-martingale H with respect to S. If
S is only a semimartingale the decomposition (51) is usually referred to as Féllmer-Schweizer
decomposition.

The main tool for the computation of the Follmer-Schweizer decomposition is the min-
imal martingale measure Q* introduced in Follmer and Schweizer (1991). In particular,
Fo6llmer and Schweizer show that for continuous asset price processes the decomposition (51)
is uniquely determined. It exists under some integrability assumptions and is then given by
the Kunita-Watanabe decomposition of the Q* martingale H; = E® (H|F;) with respect
to the *-martingale S. Using this approach locally risk-minimizing strategies in various
kinds of stochastic volatility models have been computed; see e.g. Follmer and Schweizer
(1991), Hofmann, Platen and Schweizer (1992), Di Masi, Kabanov and Runggaldier (1994) or
Frey (1997). Colwell and Elliott (1993) apply the concept of local risk-minimization to the
jump-diffusion model introduced in Section 3.2.2.

The key point in ensuring existence of a variance-minimizing hedging strategy is the closed-
ness in L2(P) of the following set of random variables

T
G = {/ &dSs “admissible”} .
0

If this set is closed a variance-minimizing strategy for a contingent claim H can — at least
theoretically — be computed as orthogonal projection of H onto G. Unfortunately, the
analysis of the closedness of GG is rather technical and we refer the reader to Delbaen et.al.
(1997) for details on this issue. For continuous processes some easier proofs and more concrete
examples are given in Pham, Rheinlénder and Schweizer (1998).

4 On the interplay between finance and insurance

Historically the fields of finance and insurance have developed separately, unified mainly by
the common use of the theory of stochastic processes as principal tool of analysis. However,
caused by developments in the financial sector such as the inreasing collaboration between
insurance companies and banks (all-finance) or the emergence of finance-related insurance
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products, the interplay between finance and insurance has recently become a “hot topic,”
and we believe that a lot of important future research in finance and insurance will combine
ideas from both fields. It seems therefore a good idea to conclude this survey with a brief
discussion of some recent developments in this area. For a related discussion see also the
paper Embrechts (1996).

4.1 Methodological differences

To prepare the ground for our discussion we now summarize the preceding chapters and point
out the main differences between the classical actuarial and financial approaches to dealing
with financial risk as presented in the preceding parts of the paper.

In modern derivative asset analysis one aims at “hedging away” financial risks by dynamic
trading. Prices are determined by the funds needed to finance this hedge. Consequently, the
distribution under the real world probability measure of some financial risk (e.g. the payoff
of a derivative) is not used for pricing this risk; instead prices are computed using some
“artificial” martingale measure whose existence is intimately related to the economic notion
of no-arbitrage.

The standard actuarial approach to dealing with financial risks is fundamentally different.
Insurance companies are ready to bear some of the financial risks (claims) of an insured in
exchange for a premium that equals the expected value of the claim plus some risk premium
or loading. This loading is computed via actuarial premium principles; see e.g. Goovaerts,
De Vylder, and Haezendonck (1984) for a detailed discussion. While the insurance company
might pass on a part of this risk to a reinsurer, it can typically not “hedge away” the risks in
its portfolio by dynamic trading. Consequently, the computation of insurance premiums, ruin
probabilities or necessary reserves is done using the real distribution of the claims; martingales
enter the analysis only as an — albeit very important — technical tool.

The difference between the actuarial and the financial approach to financial risk manage-
ment is also highlighted by the following quote from Jensen and Nielsen (1996).

Theories and models dealing with price formation in financal markets are divided
into (at least) two markedly different types. One type of models is attempting to
explain levels of asset prices, risk premiums etc. in an absolute manner in terms
of the so-called fundamentals. A crucial model of this type includes the well-
known rational expectation model equating stock prices to the discounted value
of expected future dividends. Another type of models has a more modest scope,
namely to explain in a relative manner some asset prices in terms of other, given
and observable prices.

It is clear from the preceding discussion that derivative pricing theory adheres to the latter
approach, whereas actuarial models come closer to an absolute pricing theory.

A second difference between the standard models in the two fields concerns the class of
stochastic processes used. Insurance risk-processes like the Cramér-Lundberg-model have dis-
continuous sample paths which are of finite variation; whereas most standard finance models
use diffusion processes with continuous trajectories to describe asset price fluctuations. How-
ever, we have seen in Section 3.2.2 that certain “new” models for asset prices resemble closely
actuarial risk processes.

In summary, from a methodological viewpoint the two fields seem to be relatively far
apart. However, if we look at recent developments it is very likely that in the future the gap
between both disciplines will become much smaller than it appears to be now.
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4.2 Financial pricing of insurance

The fundamental papers on this topic are due to Sondermann (1991) and in particular to
Delbaen and Haezendonck (1989b). We now explain the “martingale approach to premium
calculation in an arbitrage-free-market” proposed in the latter paper.

Delbaen and Haezendonck start from the underlying risk process X; that represents the
total claim amount of a fixed portfolio of insurance contracts that has been paid out up to
time ¢t. X; is modeled as a compound Poisson process as in Section 1.1, i.e. we have X; =
Zﬁi‘l Y; for iid random variables (Y;);cy, and N is a standard Poisson process independent
of the Y;. Delbaen and Haezendonck assume that at every point in time ¢ the insurance
company can sell the remaining claim payments Xt — X; of this portfolio over the period
(t, T for some premium p;. Necessarily such a premium must be a predictable process. Hence
the underlying price process S; (the value of the portfolio of claims at time ¢) has the form

St =pe+ Xy

Now comes the crucial point that marks the departure from usual insurance pricing principles.
Delbaen and Haezendonck argue that

The possibility of buying and selling at time ¢ represents the possibility of “take—
over” of this policy. This liquidity of the market should imply that there are no
arbitrage opportunities and hence by the Harrison-Kreps theory (Harrison and
Kreps (1979)) there should be a risk neutral probability distribution @ such that
{S; : 0 <t <T}is a @-martingale.

The next step in the pricing of insurance contracts by no—arbitrage arguments is the selection
of an appropriate measure (. Delbaen and Haezendonck are interested in all those measures ()
that lead to linear premiums of the form p; = p@(T — t) for the underlying risk-process X
itself and for all excess—of-loss reinsurance contracts with payoff

Nt

CK:Z(YZ'_K)+-

i=1

The number p® — which depends of course on the particular excess—of-loss contract under
consideration — is then called a premium density. It can be shown that this implies that
under ) the process S must again be a compound Poisson process, possibly with different
loss-distribution x® and loss-intensity A?. A premium density p® then takes on the form

p? = B9(51) = B (V) B2 (1) =3 [ yuay).
0

Delbaen and Haezendonck show that we may obtain any claim-size distribution u% which
is equivalent to the original claim size distribution p and every intensity A% > 0 in this
way. In particular, they show how certain well-known premium principles can be obtained
by an appropriate choice of A? and p®. Here a word of warning is in order: while we
may justify a particular premium principle for X by choosing () appropriately (say @ =
Q*), our no—arbitrage pricing approach will not necessarily yield the same premium principle
simultaneously for all insurance derivatives like our excess of loss contracts Ck: the expected
value

* Nl * o0 *
B9 (Z(Yi—m*) =2 [ =11 ()

i=1
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need not correspond to the same premium principle. On the other hand there are typically
several measures leading to the same premium density for X. A critical statement concerning
actuarial premium principles is to be found in Venter (1991).

Delbaen and Haezendonck derive their results directly; see also Embrechts and Meister
(1997). Alternatively one might use Girsanov-type theorems on equivalent change-of-measure
for marked point processes as presented among others in Brémaud (1981).

4.3 Insurance derivatives

An area closely related to the pricing of insurance contracts by no-arbitrage arguments is
the valuation of insurance derivatives. The payoff of such derivatives is (partially) linked
to the losses of some predetermined insurance portfolio or to some standardized loss index.
Examples include the PCS—options traded on the Chicago Board of Trade or certain so—called
CAT-bonds (catastrophe bonds) issued by individual (re-)insurance companies. Insurance
companies use these instruments in order to pass on some of their risk to the capital markets;
for certain investors on the other hand these derivatives might be interesting tools to further
diversify their investment risks. For more institutional details about these derivatives see e.g.
Canter, Cole, and Sandor (1996).

A stylized mathematical description of an insurance derivative could be as follows. Let
X be a risk-process of the form X; = 25\21 Y; representing the underlying loss index. Then
the payoff of a typical insurance derivative is given by some function F' (Xr); for instance we
have in the case of a PCS-option

F(X7)=(Xp—K)" — (Xp — Ky)"  for some 0 < K; < K.

To explain the main problem arising in the pricing of such contracts let us assume as in Section
4.2 that X is a compound Poisson process, and that at every point in time ¢ the remaining
risk X7 — X; can be bought or sold for the price p*(T — t). Arbitrage pricing theory now
only tells us that — after discounting — every viable price process for our derivative must be
of the form

Hy = E° (F(Xr)| Fi) ,

where Q ~ P and EQ (X7 | F) = Xy + p*(T —t) for all t. As soon as the claim sizes Y are
variable — certainly the relevant case if we are talking about insurance against catastrophic
events — there are many measures with this property, even if we stick to the assumption
that X is compound Poisson under (). In fact, under some technical conditions every new
intensity A2 > 0 and every claim-size distribution u? equivalent to the distribution u of the
Y; under P would be in order, provided that

A@ /0 Ty Ry = (52)

Equation (52) leaves plenty of choice as soon as the support of p has at least two elements.
Hence the pricing of insurance derivatives leads to a pricing problem in incomplete markets,
and one might apply one of the concepts introduced in Section 3.3; we think that the risk—
minimization approach is particularly well suited here.

We refer the reader to Embrechts and Meister (1997) for a detailed discussion of the
methodological questions related to the pricing of insurance derivatives and for a more com-
plete list of the relevant literature. Schmock (1998) contains an interesting discussion of some
statistical issues arising in the area.
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4.4 Actuarial methods in Finance

So far we have dealt mainly with the application of financial pricing techniques to insurance
problems. However, actuarial concepts are also of increasing relevance for finance problems.
We have seen that realistic models for asset price processes are typically incomplete. In addi-
tion, the results mentioned in Section 3.3.1 have shown that in many incomplete market mod-
els the concept of superhedging does not lead to satisfactory answers for the risk-management
of derivatives. Consequently, interesting approaches to this problem must involve some sort
of risk-sharing between buyer and seller; in particular the seller has to bear a part of the
“remaining risk.” Moreover, participants in derivative markets are faced with a large amount
of credit risk, and it would be illusory to believe that all this risk can be hedged away. We
refer the reader to the survey Lando (1997) for more information on financial models for credit
risky securities.

Actuarial concepts for risk-management might prove helpful in dealing with these “un-
hedgeable” risks. To mention an example where such concepts are already applied, the RAC-
(risk adjusted capital) approach in insurance has become popular among investment banks as
a tool for the determination of risk capital and capital allocations. It is no coincidence that
Swiss Bank Cooperation (now UBS) called its new credit risk management system ACRA
which stands for Actuarial Credit Risk Accounting.
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