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Abstract

This chapter is concerned with nonlinear Black-ScholesaBgns arising in cer-
tain option pricing models with a large trader and/or tratisa costs. In the first
part we give an overview of existing option pricing modelsghafrictions. While the
financial setup differs between models, it turns out thatamyrof these models deriva-
tive prices can be characterized by fully nonlinear versiohthe standard parabolic
Black-Scholes equation. In the second part of this chaptestudy a typical nonlinear
Black-Scholes equation using methods from Lie group aralyShe equation pos-
sesses a rich symmetry group. By introducing invariantal@es, invariant solutions
can therefore be characterized in terms of solutions taarglidifferential equations.
Finally, we discuss properties and applications of the&disos.

1. Introduction

Standard derivative pricing theory is based on the assumption of frickomiarkets. In
particular, it is assumed that there are no transaction costs and that atbirsvaresmall
relative to the market so that they can buy arbitrarily large quantities of tderlying
assets without affecting its price (perfectly liquid or elastic markets). Gilerscale of
hedging activities on many financial markets this is clearly unrealistic. Henoecant
years a number of models for studying the pricing and the hedging ofadiegvsecurities
in illiquid markets or in the presence of transaction costs have been degé|djpe finan-
cial framework that is being used differs substantially between modekdabtowever, as
shown below, in many of these models derivative prices can be charadtby fully non-
linear versions of the standard parabolic Black-Scholes equation; wesrémese nonlinear

We discuss the relevant literature in the body of this chapter.
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Black-Scholes equations have a very similar structure. This makes thestoag a useful
reference point for studying derivative asset analysis in illiquid markets

The nonlinear Black-Scholes equations derived in the literature contaamaampter
representing the size of the transaction costs or of the trader’s impact orattket. Usually
it is expected that the equations reduce to the linear Black-Scholes PDE piatfsisneter
becomes small; put differently, the nonlinear equations are considegpttasbationsof
the linear Black-Scholes equation. From an analytical point of view theasatiens can be
divided roughly into two classes: equations with regular perturbationggudtions with
singular perturbations. Equations of the latter type are fully nonlineartteard are so far
relatively few papers where equations with singular perturbations atteedtby analytical
methods. On the other hand, an analytical study of these nonlinear eguatakes it
possible to determine the scope of applications of different models repeesky fully
nonlinear partial differential equations (PDES).

In this chapter we therefore apply Lie group analysis to a typical nonliBésok-
Scholes equation. It turns out that the equation possesses a rich Lie 8yrgnoeip which
allows us to introduce invariant variables and to reduce the correspoRBiEg to ordinary
differential equations (ODES). It is even possible to find exact invasalutions to the en-
suing ODEs. We show that most of the exact solutions for a given nonkatgeation have
no counterpart in the linear Black-Scholes case; they intrinsically reflacnlinearity of
the equation. The last part of this chapter is devoted to applications. We mtoplerties
of solutions and discuss the sensitivity with respect to model parameterattioupar, we
show that some solutions approximate typical financial derivatives relatilosely.

This chapter is organized as follows: the overview of existing option priniogels
with limited market liquidity can be found in Section 2.; the analytic properties ofimear
Black-Scholes equations are studied in Section 3; applications are diddansSection 4.

2. llliquid Markets and Nonlinear Black-Scholes Equations

In order to motivate the subsequent analysis we present a brief syrafpgbree different
frameworks for modeling illiquid markets. We group them under the labglsdratic
transaction-cost modelseduced-form SDE-modeleaction-functioror equilibrium mod-

els In particular, we show that the value function of a certain type of sedfrfiing strate-
gies (so calledMarkovianstrategies) must be a solution of a fully nonlinear version of the
standard Black-Scholes equation. In all models there will be two assé&tg&;fage money-
market accounB which is perfectly liquid and a risky and illiquid ass&t(the stock),
modelled on some filtered probability spade, 7, {F;}, P). Without loss of generality,
we use the money market account as numeraire; h8ace 1, and interest rates can be
taken equal to zero.

2.1. (Quadratic) Transaction-Cost Models

The predominant model in this class has been put forward by Cetinwldamd Protter
[7], [8]. In this model there is dundamentaktock price process® following geometric
Brownian motion,

dsp = uSYdt 4+ oSYaw; (1)
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for constantg: € R, o > 0 and a standard Brownian motié#. Thetransaction priceto
be paid at time for tradinga shares is

Si(a) =eSP, a€eR, p>0, 2)

wherep is a liquidity parameter.

Intuitively, in the model (2) a trader has to pay a spread whose size eelatithe
fundamental price equalS?(e”® — 1), so that the spread depends on the ameud
be traded. As shown in [7], this leads to transaction costs which are nicopad to the
quadratic variationof the stock trading strategy. In order to explain this statement in more
detail, we consider a self-financing trading stratégy, n;):>o giving the number of stocks
and the position in the money market for predictable stochastic procésaedn. The
valueof this strategy at time equalsV; = ®;S? + n,. Note thatV; is the so-calleghaper
valueof the position; under (2) the liquidation value of the strategy (the amount aEgno
the large trader receives if he actually liquidates his stock position) is typica¥igr than
V;. For a detailed discussion of this point we refer to Bank and Baum [1].

In order to motivate the form of the dynamics of the paper value we conaigienple
predictable strategy of the fori, (w) = >, ¢i(w)1(, +,.,1(t) for deterministic time points
0 =1ty < t1 < .... Then the self-financing condition tp reads

Me; — My — _((I)ti - (btifl) gti((pti - q)tiﬂ)
== ((I)ti - (I)ti—l) (Sg + Psg(q)ti - (I)ti—l)) +o0 (((I)ti - (I)ti—l)z) .

Note that in the last line we have used tla%ﬁa:()gt(a) = SP. Hence the change in the
value of the portfolio equals

Vie = Vi, = (I)tist()Hl - (I)ti—1S?i 0 — My

= (Pti(SgH — Sg) — ,OSg ((I)tL — (I)ti—l)2 + o0 ((‘I)tl — (I)ti_l)z) .

This suggests that for a continuous semi-martingaleith quadratic variatiof [®]; the
wealth dynamics of a self-financing strategy becomes

AV, = &,dS) — pS)d[®];. ©)

This is in fact true as is shown in Theorem A3 of [7]; see also [1]. Notettrelast term in

(3) represents the extra transaction cost due to the limited liquidity of the market.
Consider now aarkovian strategythat is a trading strategy of the forin = ¢(¢, S?)

for a smooth functior. In this caseb is a semi-martingale with quadratic variation given

by
t
[@]t:/ (¢s(s,59)08%)% ds
0
see for instance Chapter 2 of [29]. Combining this with (3) yields the followdyigamics

of V;
dV; = ¢(t, S9)dS? — pS? (¢s(t, 59)oS0)” dt. 4)

23ee for instance Chapter 2 of [29] for a definition of quadratic variation.
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Suppose now that and¢ are smooth functions such that, S?) gives the value of a
self-financing trading strategy with stock positiott, S). According to the b formula,
the processu(t, S?)):>0 has dynamics

1
du(t, 8?) = ug(t, SY)dS? + (ut(t, S9) + 502(5,?)%55(15, SS)) dt . (5)
By the uniqueness of semi-martingale decompositions it is immediate thal-tieems
in (4) and (5) have to coincide, so thatmust satisfy the equation; + %UQSQuSS +
pS302¢ps = 0. Moreover, we must have that= ug. The last relation givegs = usg, SO
that we obtain the following nonlinear PDE far

1
Ut + 50252%5'5 (1 + QpSuSs) =0. (6)

When pricing a derivative security with maturity dgteind payoffh(S7) for some function
h : [0,00) — R we have to add the terminal conditier{7’, S) = h(S), S > 0. For
instance, in case of a European call option with strike pfice> 0 we haveh(S) =
max{S — K, 0}.

Note that the original paper [7] goes further in the analysis of quadratis#ction cost
models. To begin with, a general framework is proposed that contaires (&ecial (but
typical) case. Moreover, conditions for absence of arbitrage fomargéclass of trading
strategies - containing Markovian trading strategies as special casgivemeand a notion
of approximative market completeness is studied.

2.2. Reduced-Form SDE Models

Under this modeling approach it is assumed that investoréagge tradersin the sense
that their trading activity affects equilibrium stock prices. More precigglien a liquidity
parametep > 0 and a semi-martingalé representing the stock trading strategy of a given
trader, it is assumed that the stock price satisfies the stochastic diffeegquation (SDE)

dSt = O'Stth + /)Std(bt . (7)

The intuitive interpretation is as follows: given that the investor buys (sstit&k QA P; >
0) the stock price is pushed (downward) upwarddsy_A®,; the strength of this price
impact depends on the paramegerNote that forp = 0 the asset price simply follows a
Black-Scholes model with reference volatility The model (7) and slight variants thereof
are studied among others in [11], [12], [18], [23], [28] or [14].

In the sequel we denote the asset price process which results if a Edgeudises a par-
ticular trading strategyp by S®. Suppose as before that the trading strategy is Markovian,
i.e. of the form®; = ¢(t, S;) for a smooth functio and thatp satisfies the constraint

1 —pS¢s(t,S) > 0forall (¢,95);

given a liquidity parametes, this last condition basically limits the permissible variations
in the stock trading strategy of the large trader. Applying tbedtmula to (7) shows that
S? is an 1B process with dynamics

dS¢ = v0(t, SP)SLAW, + b (¢, SP) SP dt
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with adjusted volatilitygiven by

g

1— pSés(t,8)’

see for instance [11] for a detailed derivation. Note that this adjustedlitgles increased
(decreased) relative to the reference volatilitif ¢gs > 0 (¢ps < 0).

In the model (7), a portfolio with stock trading strate§yand valuel” is termedself-
financing if satisfies the equatiodV; = ®;dS?. Note that the form of the strategy
affects the dynamics df; this feedback effeawill give rise to nonlinearities in the wealth
dynamics as we now show. Suppose that= (¢, S;) and®; = ¢(¢,S;) for smooth
functionsu and¢. As before, applying the dtformula to the procesg.(t, S,?))tzo yields
¢ = ug. Moreover,u must satisfy the relation, + 5 (v?)(t, 5)S?ugs = 0. Using (8) and
the relationps = ugs we thus obtain the following fully nonlinear PDE fa(t, S)

v(t,8) = (8)

1 o?

- 52 =0. 9
Ut ST pSusg ) USS (9)
Again, for pricing derivative securities a terminal condition corresjumtb the particular
payoff at hand needs to be added.

2.3. Equilibrium or Reaction-Function M odels

Here the model primitive is a smootkaction functiory that gives the equilibrium stock
price S; at timet as function of some fundamental valieand the stock position of a large
trader. A reaction function can be seen as reduced-form représantd an economic
equilibrium model, such as the models proposed in [13], [27] or [30]. ése¢imodels there
are two types of traders in the market: ordinary investors and a larggdnvé$fie overall
supply of the stock is normalized to one. The normalized stock demand of diveanyr
investors at time is modelled as a functiof(F, S;) wheres;, is the proposed price of the
stock. The normalized stock demand of the large investor is written theg@gmp > 0 is

a parameter that measures the size of the trader’s position relative to theufmél of the
stock. The equilibrium pricé, is then determined by the market clearing condition

D(F, S¢) +pPr=1. (10)

Under suitable assumptions dh equation (10) admits a unique solution. Hertecan
be expressed as a functignof F; and p®,, so thatS, = ¢ (F;, p®;). For instance we
have in [27] that)(f, a) = f exp(«); the model used in [13] and [32] leads to the reaction
functiony(f,a) = f/(1 — «). The reaction-function approach is also used in [19] and
in [10].

Now we turn to the characterization of self-financing hedging strategiesaiction-
function models. Throughout we assume that the fundamental-valuesprbctllows
a geometric Brownian motion with volatility as in (1). Moreover, we assume that the
reaction function is of the formy(f,«) = fg(a) for some increasing function. This
holds for the specific examples introduced above and, more generaky)fanodel where
D(f,s) =U(f/s) for a strictly increasing functiotvV : (0, c0) — R with suitable range.
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Assuming as before that the normalized trading strategy of the large tradeths
form p¢(t, S) for a smooth functio, we get from 16’s formula that

dSy = g(po(t, St)) dFy + pFiga(po(t, St)) s (t, Se) dSe + b(t, St) dt (11)

(sinceS; = g(po(t, Si))Fy); the precise form ob(t, S;) is irrelevant for our purposes.
Assume now that

(1= pFigalpo(t, St))ps(t, St) >0 as; (12)

as before this can be viewed as an upper bound on the permissible variattitre large
trader’s strategy. Rearranging and integraﬁmgL pFiga(po(t, St))os(t, St))_1 over both
sides of equation (11) gives the following dynamicsSof

1

dsS; = o S;dW, + b(t, S;)dt ; (13)

again the precise form dfis irrelevant.
A similar reasoning as in the case of the reduced-form SDE models now tiiee
following PDE for the value function(t, S) of a self-financing strategy
1 2
w g (0 : - SPugs = 0. (14)
galpus
(1 = Pglpus) Suss)

In particular, forg(a) = exp(«) we haveg = g, and (14) reduces to equation (9); for
g(a) =1/(1 — @) asin [13], [32], we get the PDE

1 o%(1 — pug)?
-
2(1— pus — pSugs)

A thorough analysis of the dynamics of self-financing strategies in gkretaeaction-
function models via thé&¢6-Wentzell formulzan be found in [1].

2.4. Nonlinear Black-Scholes Equations
The nonlinear PDEs (6), (9), (14) and (15) are all of the form

U + 30'25211(pug, PSUSS)USS =0, (16)
wherewv(0,0) = 1. Sincep is often considered to be small, it is of interest to replace
with its first order Taylor approximation aroupd= 0. It is immediately seen that for the
equations (9) and (15) this linearization is givendfyug, pSuss) ~ 1+ pSugs; replacing
v(pug, pSugg) with this first order Taylor approximation in (9) and (15) thus immediately
leads to the PDE (6).

Note that (16) is a fully nonlinear equation in the sense that the coeffidigm bighest
derivative is a nonlinear function of this derivative. A similar featuretlbaobserved for the
limiting price in certain transaction cost models under a proper re-scalingrafdction cost
and trading frequency; see for instance [2] or [16]. Nonlinear PDEmcomplete markets
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obtained via exponential utility indifference hedging such as [3] or [24]he other hand
are quasi-linear equations in the sense that the highest derivativenters the equation
in a linear way, similar to the well-known reaction-diffusion equations arisinghiysics
or chemistry. From an analytical point of view the nonlinearities arising in basies are
quite different. In the latter quasi-linear case we have to do with a reguiturpation
of the classical Black-Scholes (BS) equation but in the case (14) we toaslo with a
singular perturbation, meaning, in particularly, that the highest deresatiincluded in the
perturbation [20]. In case of a regular perturbation it is typical to loglkafeepresentation
of a solutions to a quasi-linear equation in the form

N
u(S,t) = ups(S,t) + Y pur(S,t) + O(p"H1). (17)

n=1

For many forms of nonlinearities the uniform convergence as> 0 of the expansions
of type (17) can be established. If the perturbation is of the singular thpeasymptotic
expansion of the form (17) typically breaks down for soffje and someV > 0. It can as
well happens that the definition domain for the solutions of type (17) inclustejne point
or that it is empty. It is very important to obtain explicit solutions for such mobletause
in these case we can not hope to get good approximations for solutiongpagstons of
the type (17) in the whole region. This issue is taken up in the remainder oéeer.

3. Invariant Solutionsfor a Nonlinear Black-Scholes Equation

We have seen in the previous section that the form of the equation (16)daltigr nonlin-
ear PDEs arising in pricing equations for derivatives in illiquid markets. @iige methods
to study properties of solutions to such type of fully nonlinear PDEs is theroiggganaly-
sis of these equations. This approach can be applied to all equations é&begl, he., to (6),
(9) and (15). The first results were achieved for the equation (98] la special family of
invariant solutions to the equation (9) was studied,; in particular, the explicitisns were
used as test case for various numerical methods. Later on the slightly rdasfiiimtion
(32) was studied in [5] where the complete family of invariant solutions wasriteed. The
symmetry groups of the equations (6) and (15) were found in [4] anlcci@tespondingly.

Our goal in this section is to investigate the nonlinear Black-Scholes equ8jiosiGg
analytical methods. Using the symmetry group and its invariants the PDE (Becaduced
in special cases to ODEs. In the present chapter we stlidhyariant solutions to equation
(9).

In the next paragraph 3.1. we provide a description of the Lie group méthappli-
cation to the differential equations. This short introduction can by no mesoiace any
study of classical books devoted to the method but it will allowed us to intedacessary
notations.

3.1. LieGroup Analysisof Differential Equations

In this paragraph we formulate all definitions for the case of one PDE ofrtdependent
and one dependent variables. It makes ideas transparent ancheas&sible for somebody
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who does not used this method before. On the other side these formulatiogereral
enough to study the equations of type (16). As a practical and easy tnotiod to this
theory one can take as well the book [33]. The most general formulatanmge found in
books cited below.

Let us introduce a two-dimensional spakeof independent variabless, t) € X and
a one-dimensional space of dependent variablesU. In our caseX is isomorphic to a
two-dimensional Euclidean spaRé andU to R. We consider the spadg,, endowed with
differential coordinategug, u;) which represent all the first derivatives of the variadblen
S andt. Analogously, we introduce the spabg,) endowed with differential coordinates
(uss,ust, ug) Which represent all the second order derivatives of the dependéeable
u on S andt. We can continue with this procedure and introduce spaces of théype
n > 2. As long we study an equation of the order two it will be sufficient to intredug,)
up to the orden = 2.

We denote byl an open subset of the Cartesian produttc X x U. The spacel/
is an underlying space with elements denoteddy) with z = (S,t) € X, u € U. We
denote an element of a vector field &h by

0 0 0
V—f(S,t,U)%+T(S,t,U)&+¢(S,t,U)%, (18)
where&(S,t,u),7(S,t,u) and ¢(S,t,u) are smooth functions of their argumentis,
Dif f(M). The operators (18) are called as wefinitesimal generators
The differential equation (16) is of the second order and to représisrgquation as an
algebraic relation on an appropriate space we introduce a second droenge 1/ (2) of
the spacé\/, i.e.,
M(z) =M x U(l) X U(Q) (19)

with a natural contact structure [15], [25]. We label the coordinatesdrjehbundle)/ (2)
byw = (S,t,u,us,Ut,uss,USt,’U,tt) S M(Q)
The corresponding vector fields ad(?) have the form
0

) 0
prPV = §(S,t,u)% + T(SJZU)& +¢(5,, u)%
Ut

0 0
S t
+0%(S g+ 9 (S, ) (20)
0 0 0
SS St tt

The vector fieldgr?V are called the second prolongation of the vector fiéfdsHere
the smooth function®)®(S,t,u), ¢'(S,t,u), ¢>%(S,t,u), ¢°*(S,t,u) and ¢*(S,t,u)

are uniquely defined by the functiogs$s, ¢, u), 7(S,t,u) and ¢(S,t,u) (18) using the
prolongation procedure (see [26], [25], [33], [15], [17]).

Remark 3.1. In the very simplified way we can present the idea behind this prolongation
procedure as follows. We introduce some equivalence relation on tloe gfissmooth
functions defined on some open subsekofLet a pointz belong to this open subset. We
call the functions equivalent in the pointf all their derivatives up to the order coincide
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in the pointz € X. We call this equivalence class attached to the point-jet. It means at
the same time as we introduced jets we introduced on the space a natural stntdare
and prolonged our space By,,), n > 1.

Because of the very special form of the equation (9) we will use in atindu calcu-
lations the exact form of the coefficienté(S, t, u) and¢>°(S, t,u) only. The coefficient
(S, t,u) can be defined by the formula

(S, t,u) = dp + urdy — uss — usurby — Ty — (ug)7u, (21)

and the coefficient>(S, t,u) by the expression

¢%%(S,t,u) = pgs + 2usdsu + Ussu
+ (us)*Puu — 2ussés — uséss — 2(usg)*Esu
— Bususséy — (us)*€uu — 2usiTs — UsTSS

— 2uguTsy — (Urugs + 2usus:) Ty — (uS)QutTuua

(22)

where the subscripts Iy 7, ¢ denote corresponding partial derivatives. If we would study
equation of the type (16) then we would need as well the form of the cieeffie® (S, ¢, u)
which has a similar structure to the listed above.

Remark 3.2. The jet bundleM @ is an example of a locally trivial smooth vector bundle
(M® 7, X) wherer is a smooth map — X andX is the base space (see [21]).

In the jet bundlel/(2) equation (16) is equivalent to the relation
Aw) =0, we M®, (23)
where we denote bx\ the following function
A(S t, u, ug, ug, uss, USt, Ugt) = Up + %UQSQU(puS, pSuss)uss. (24)
We identify the algebraic relation (23) with its solution manifdld defined by
La = {we MP|A(w) =0} c MO, (25)

Let us consider an action of a Lie-point group on our differential #qnand its solu-
tions. We define a symmetry grodp, of equation (23) by

Ga = {g e Dif(MP)| g: La — La}, (26)

consequently we are interested in a subgrouDiﬁJf(M(2)) which is compatible with the
structure ofLA.

We follow as usual the idea of Sophus Lie [22]: instead to determine directiyrgli-
cated structure of the Lie-point symmetry graGipp, we first determine the corresponding
symmetry Lie algebrdif f (M) c Dif f(M®?) and then use the main Lie theorem
to obtainG A and its invariants.
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The symmetry algebr®i f f » (M ) of the second order differential equation (23) can
be found as a solution to the determining equations

pr@V(A) = 0 (mod(A = 0)), (27)

the expressiomod(A = 0) means that the equation (27) should be satisfied on the solution
manifold L o only.

If the infinitesimal generatorsr(2V € Dif f (M%) exist then they have the struc-
ture of type (20) and form a Lie algebif f (M ?)). All of these infinitesimal gen-
erators are uniquely defined as prolongations of operators of the 1g)e (t is well
known [22], [26], [25] that the prolongation procedure presemesLie algebraic struc-
ture and we can take into account for further studies the algBbyfg A (M) only. The
algebraDi f f » (M?) has the same algebraic structurelag f  (M).

The symmetry algebr®i f f » (M) defines by the Lie equations the corresponding sym-
metry groupG a of the equation (23)(see [22], [26], [25]). The Lie group of tramsfations
G a (M) acting on the spack/ induce in unique manner the transformations\éft) which
form a group denoted b§ A .

To find the global form of point transformations for the solutions to equédtiéh cor-
responding to this symmetry grodpa (M) we just integrate the system of ODEs. The Lie
equations in our case take a form

95 _ ¢(5.iu), (28)
de
dt <~
% - T(Sat7u)7 (29)
di -~
E - ¢(S7t7 U), (30)
with initial conditions
Sleeo =S, tleo =1, fle—o = u. (31)

Here the variable$, ¢ and @ denote valuess, ¢, u after a symmetry transformation. The
parametee describes a motion along an orbit of the group. Usually it is possible to solve
the autonomous system of equations (28) in closed analytical form.

If we have global transformations which form the symmetry graug( M) it is rather
easy to obtain analytical expressions which are invariant under the attiois Lie group,
i.e. invariants of the group. One can obtain invariants as well on a direcbwaolving
a system of equations which follows from the Lie equations. Both methodsgaealent
and provide the same set of invariants. The form of invariants is not erbquause any
function of invariants is as well an invariant. Always we obtain one anddhgesnumber
of functionally independent invariants. In case of ODEs invariants ardittst integrals
and if we have a rich set of invariants with some additional properties thezawebtain
solutions to the ODEs without any additional integration procedure. In@B®ESs the
situation is much more complicated and we cannot hope to obtain in some selsal gen
solutions to a PDE. Using the invariants we can introduce invariant variabteseeduce the
partial differential equation to some set of ODEs. Each of these ODEs gae to a family
of group-invariant solutions to the partial differential equation. The fasridlack-Scholes
formula for the Call option is one of the examples for the invariant solutiomisesfe type.
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3.2. Previous Results

In this paragraph we give a short overview of the results presentes).inThese results
will be used in the next paragraph to provide the complete set of invatutians to the
equation (9).

In the paper [5] the slightly more general equation

0252 Ugs

U T T = oA(S)Suss)?

=0, (32)

with a continuous function : (0, c0) — (0, oo) is studied (note that fox = 1 this equation
reduces to (9)) and the following theorems were proved.

Theorem 3.1. The differential equation (32) with an arbitrary functior{S) possesses a
trivial three dimensional Lie algebr@i f fo (M) spanned by infinitesimal generators

0 0 0
aa ‘/2_5%7 V3_%

Vi =
Only for the special form of the functior{S) = wS*, wherew, k € R equation(32) admits
a non-trivial four dimensional Lie algebra spanned by generators

0 0 0 0 0

V1= o’ 25 ou

The proof of this theorem is rather easy. We solve the system of the deitegreiua-
tions (27) whereA is defined by (32). The calculations are tedious but straightforward.
Finally, we obtain the admissible form of the coefficiefits, ¢ in (18). We notice that
the four dimensional Lie algebra (33) has a three dimensional Abeliariggldra and in
casek = 0,1 a two dimensional center. In these two cases it is possible to find invariant
solutions in closed analytical form.

On the next step we use the Lie algebra (33) to obtain the symmetry groupstfithed
equation. The Lie equations (28) in case of the Lie algebra (33) are sifipderesults of
these calculations are presented in the form of the following theorem.

Theorem 3.2. The action of the symmetry grodpa of (32) with an arbitrary function
A(S) is given by

S s, (34)
t = t4e, (35)
u = u-+ Sey+ €3, €1,€2,€3 € R. (36)

If the function\(S) has the special form(S) = wS*, k,w € R, equation (32) takes the
special form
0252 uUsgs

U T 1= b5 ugg)?

=0, b=wp. (37)
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In that case the symmetry grod, has the richer structure

S = Se, (38)
t = t+e,
@ = uel™Ma 4 6%Seq(l — e k)

+<16_4k> P 1), k£0,k#£1, (39)
u = uet 4 Seze +eq(et —1), k=0,
i = uteSed —1)+es, k=1 (40)

€1,€2,€3,€4 € R.

As we will see later, the solutions found in [5] for the cage) = S, i.e. for the case
k = 1 can be used to obtain the complete set of invariant solutions to equation (39ri.e
the casé: = 0.

For A(S) = wS* with & = 0,1 we can use (38) to obtain a new independent invariant
variablez and (40) to obtain a new dependent variafgléhese variables are given by

z=1logS +at, a#0,

41
v=uS*D k=01 41

Using these variables we can reduce the PDE (37) to the ODE
v b gt (42)

(1 - b(Uzz + fﬂz))2

whereq = % a#0,b=wp#0, &= (-1)F k= 0,1. Itis a straightforward
consequence of Theorem 3.2 that these are the only nontrivial invaggables. In the
sequel we will determine explicit solutions for (42) for the case 0 which corresponds
to the original equation (9).

Remark 3.3. Equation (42) withk = 0 andk = 1 are related to each other. Note however,
that the relation between the corresponding solutions is not so straigatthriaecause (42)
is nonlinear and we need real valued solutions. Hence the results filom JBhere (42)
was studied for the cage= 1 — do not carry over directly to the present cadse- 0, so
that a detailed analysis of the cdse- 0 is necessary.

3.3. Symmetry Reductions of the Equation (9)

We use the previous results and continue with an analytical treatment of thgaeq(#2)
in casek = 0. To find families of invariant solution to (9) we introduce a new dependent
variable

y(2) = v2(2). (43)

If we assume that the denominator of the equation (42) is different fraom xee can
multiply both terms of equation (42) by the denominator of the second term daithob

yyf+2€<y2—£2y+§q>yz+(92—€iy+(1+£q>)y=0a b#0. (44)

262 b2
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We denote the left hand side of this equation®y, y.). The equation (44) can possess
exceptional solutions which are the solutions of a system

OF (y,y.)

= F —0. 4
i 0, (y,92) =0 (45)

The first equation in this system defines a discriminant curve which haertine f

q

-4 (46)

y(2)
If this curve is also a solution of the original equation (44) then we obtairkeeptional
solution to equation (44). We obtain an exceptional solutign=if —4¢, i.e.a = £02/8. It
has the form

m@:—§ E=(-1F, k=0,1. (47)

b?
This solution belongs to the family of solutions (49) by the specified value qfdremeter
g. In all other cases the equation (44) does not possess any exceptilutans.

Hence the set of solutions of equation (44) is the union of the solution séte &6l-

lowing equations

y=0, (48)
§+./4q
y=2V0 (49)
Y, = —&P+1 S *g<g—y>‘l y#0 (50)
z b? T op? v \1p " ’
R S qa(9 _ 1
z&—(£y+by 52 T WQ% @ y,y#07 (51)

where one of the solutions (49) is an exceptional solution (47) by —4¢ for k& = 1.

In the case: = 0 we havet = 1 so that solutions of (49) are complex valued functions.
We denote the right hand side of equations (50), (51)fty). The Lipschitz condition for
equations of the typg. = f(y) is satisfied in all points where the derivati% exists and

is bounded. It is easy to see that this condition will not be satisfied by

q
4b
Hence on the lines (52) the uniqueness of solutions of equations (39)x;4B be lost. We
will study in detail the behavior of solutions in the neighborhood of the lings (®or this

purpose we look at the equation (44) from another point of view. If ssime now that
z,y, 1, are complex variables and denote

y=0, y=—_—, y=o0. (52)

y(2) = ¢ y:(2) =w, (weC, (53)

then the equation (44) takes the form

FiGu) =t 26 (@ - e v e Yo+ (G- T ) o0, (0
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whereb # 0. The equation (54) is an algebraic relationGA and defines a plane curve
in this space. The polynomidl(¢,w) is an irreducible polynomial if at all roots, (z)
of F(¢,w,) either the partial derivativé (¢, w,) or F,,(¢,w,) are non zero. Itis easy to
prove that the polynomial (54) is irreducible.

We can treat equation (54) as an algebraic relation which defines a Riemaunface
I : F((,w) =0 ofw = w(¢) as a compact manifold over tlfesphere. The function
w(() is uniquely analytically extended over the Riemann surlacé two sheets over the
¢(—sphere. We find all singular or branch pointsuaf() if we study the roots of the first
coefficient of the polynomiaF'(¢, w), the common roots of equations

F((,w)=0, Fu(,w)=0, (,we CU . (55)

and the point = co. The set of singular or branch points consists of the points
_ _ 9 _
Cl - Oa CQ — 4b7 C3 . (56)

As expected we got the same set of points as in the real case (52) by dyeo$tthe
Lipschitz condition but now the behavior of solutions at the points is more visible

The points(s, (5 are the branch points at which two sheet§ afre glued on. We remark
that . s

q 2 q
= —— 1 —_ _ — [ — o — _ — 7
w@ =y (=€)~ =t F=Cop (57)

wheret is a local parameter in the neighborhood @f For the special value af = 4¢, i.e.
k = 0, the valuew((2) is equal to zero.

At the point(s = oo we have

&1 4 p_1
W(C)— t2+b gt 4b37 3 _Cv C—>OO7

wheret is a local parameter in the neighborhood(gf At the point{; = 0 the function
w(¢) has the following behavior

w(() ~ _1?22, ¢ — (1 =0, on the principal sheet (58)

w(() ~ -— <§ + 1> ¢, ¢(—(¢=0,qg+#1, onthe secondsheet (59)
q
w(¢) ~ —2b°¢% (¢ — (¢ =0, ¢=1, onthe second sheet (60)

Any solutionw(¢) of an irreducible algebraic equation (54) is meromorphic on this
compact Riemann surfadeof the genus 0 and has a pole of the order one correspondingly
(58) over the point; = 0 and the pole of the second order oygr= co. It means also that
the meromorphic functiom(¢) cannot be defined on a manifold of less than 2 sheets over
the( sphere.

To solve the differential equations (50) and (51) from this point of vieiw @quivalent
to integrate od" a differential of the typeu% and then to solve an Abel’s inverse problem
of degenerated type

/ ujié) = z + const. (61)
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The integration can be done very easily because we can introduce eminifgy parameter
on the Riemann surfacé and represent the integral (61) in terms of rational functions
merged possibly with logarithmic terms.

To realize this program we introduce a new variable (our uniformizingrperarp) by

g1 =p?)

¢ = b (62
~ &p—1)(q(1 4 p)? +4€)

v 4b(p+ 1) ' (63)

Then the equations (50) and (51) will take the form

p(p+1)dp B
qu/ p-Dgp+1)2+d4e " const, (64)

p(p —1)dp
248 / + Dialp— D2+ 46)

The integration procedure of equations (64), (65) gives rise to retatiefining a complete
set of first order differential equations. In order to see that thesérat order ODEs recall
that from the substitutions (53) and (43) we have

/ 4b
p=4/1— Evz. (66)

We summarize all these results in the following theorem.

= z + const. (65)

Theorem 3.3. The equation (42) for arbitrary values of the parameters # 0 can be
reduced to the set of first order differential equations which considtseecéquations

v, =0, v, =(1£2)/b, (67)

and equations (50), (51) whergis defined by the substitution (43). The complete set of
solutions of the equation (42) coincides with the union of solutions of thesdiens.

To solve equations (64), (65) exactly we have first to integrate and thvent ithese
formulas in order to obtain an exact representatiop @S a function ofz. If an exact
formula for the functiorp = p(z) is found we can use the substitution (66) to obtain an
explicit ODE of the typev.(z) = f(z) or another suitable type; in that case it is possible to
solve the problem completely. However, for an arbitrary value of thenpetierq inversion
is impossible, and we have just an implicit representation for the solutions efjtnstion
(42) as solutions of the implicit first order differential equations.

3.4. Exact Invariant Solutionsfor a Fixed Relation between S and ¢

For a special value of the parametgemnamely forq¢ = —4, we can integrate and invert the
equations (64) and (65). For= —4 the relation between the variablgsandt is fixed in

the form

o2

z=log S — §t7 (68)
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equation (64) takes the form

(p—1)%(p+2) =2c exp(—32/2), (69)
and correspondingly the equation (65) becomes

(p+1)%(p—2) =2c exp(—32/2), (70)

wherec an arbitrary constant. Itis easy to see that the equations (69) and¢@ranected
by a transformation
p— —p, ¢— —c. (71)

This symmetry arises from the symmetry of the underlying Riemann sulfgéd) and
corresponds to a change of the sheet§ oblsing these symmetry properties we can prove
the following theorem.

Theorem 3.4. The second order differential equation

Uz + Uy
. —4 =0, 72
U = b(0ss + 02))2 (72)
is exactly integrable for any value of the parameterThe complete set of solutions for
b # 0 is given by the union of solutions (76), (78)-(81) and solutions

1
v(z)=d, wv(z)= %z +d, v(z)= 37 +d, (73)
whered is an arbitrary constant. The last solution in (73) corresponds to thepiareal
solution of equation (44).
For b = 0 equation (72) is linear and its solutions are given bfz) = d; +
ds exp —(3z/4), whered; , do are arbitrary constants.

Proof. Because of the symmetry (71) it is sufficient to study either the equations (69
or (70) forc € R or both these equations foer> 0. The valuec = 0 can be excluded
because it complies with the constant valug@f) and correspondingly constant value of
v.(z), but all such cases are studied before and the solutions are givéB)y (

We will study equation (70) in casec R \ {0} and obtain on this way the complete
class of exact solutions for equations (69)-(70) and on this way faedbation (72).

Equation (70) for: > 0 has one real root only. It leads to an ODE of the form

2
1 3z 3z "3
vx(2) = i (1 + <1 +ce 2z + \/266_7 + 2 e3z>

2
4 z 3
+(1+C€_32+\/2C€32+6263Z> ), c> 0.

Equation (74) can be exactly integrated if we use an Euler substitution anduct a new
independent variable

(74)

T:2<1+cegz+\/2cegz+c2e3z>. (75)
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The corresponding solution is given by

(76)

1
5. - 3
+(1+C€_32+\/266_32+C2€_32> —2>+d,

whered € Ris an arbitrary constant. If in the right hand side of equation (70) thewpstex
c satisfies the inequality < 0 and the variable chosen in the region

z € —glnz,oo (77)
3

then the equation op possesses maximal three real roots. These three roots of the cubic
equation (70) give rise to three differential equations of the type= —(1 — p?(2))/b.

These equations can be exactly solved and we find correspondingly salations
vi(2), 1=1,2,3.

The first solution is given by the expression

2 2 —32
vi(z) = —% 7 cos <3 arccos (1 —|cle 2 ))
4 1 —32
~ 3 log <1 + 2 cos <3 arccos (1 — ¢ eg)>> (78)
1 1 -3z
- 3—5 log (sin (6 arccos <1 — || eg)>> +d,

whered € R is an arbitrary constant. The second solution is given by the formula
()__f_g 22 (1_”%)
V2(Z2) = b b COS 37‘(’ 3 arccos Cc|e
4 1 1 —32
~ 3 log <—1 + 2 cos (37r — 3 arccos (1 — ¢ eg>>> (79)

16 1 1 —32
~ 3 log (sin (671' — g arccos (1 — ¢ eg))> +d,

whered € R is an arbitrary constant. The first and second solutions are definedthp to
pointz = —ZIn % where they coincide (see Fig. 1).
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15}

-10+¢

Figure 1. Plot of the solution(z) given in (76) (thick solid line)p;(z) from (78) (short
dashed line)pz(z) from (79) (long dashed line) and the third solutig (z), vs 2(z) from

(80), (81) (thin solid line). The parameters takes the values- 0.35, ¢ = —4,d = 0,

b = 1 and the variable € (—5,4.5).

The third solution for: > —Z In % is given by the formula

z 2 2 2 -3z
v32(2) = =3 T eos(3m + 3 arccos (1 —lc|e2 )

4 1 1 —32
3 log (—1 + 2 cos <37T + 3 arccos (—1 + |c] eg)>> (80)

16 L (1+H%> +d
— — 10, COS | — — arccos | —
3p 8 6" "™ ce ’

whered € R is an arbitrary constant. In the casec %111 % the polynomial (70) has one
real root and the corresponding solution can be represented byrthelfo

2 2 —32
v31(2) = 2 2 cosh <3arccosh (—1 + |¢] e§>>

b b

16 1 -3z
~ 3% log (cosh <6arccosh (—1 +|cle2 ))) (81)
~ A o (<142 cosh (£ b (<14 e ) ) ) +d

75 o8 cosh | Zarccos cle )

The third solution is represented by formulas(z) andvs ; (2) for different values of
the variablez.

One of the sets of solutions (76), (78) -(81) for fixed paramétersi is represented in
Fig. 1. The first solution (74) and the third solution given by both (80) &4l &re defined
for any values ot. The solutions); (z) andwvz(z) cannot be continued to the left after the
pointz = —2 In % where they coincide.

[c]
If we keep in mind that = log .S — %:t andu(S,t) = S v(z) we can represent the
complete set of exact invariant solution of equation (9). The solutiondi¥®} rise to an
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Figure 2. Plot of solutions,(S,t),u1(S,t), u2(S,t) andug 1(S,t),us2(S,t) for the pa-
rameterss = 0.4, |c| = 0.5,¢ = —4,b = 1.0,d = 0. The variablesS, ¢ lie in intervals
S € (0.,5.) andt € [0,0.5]. All invariant solutions change slowly irdirection.

invariant solutionu, (S, t) in the form

W

1 o2 o2 o2 B
u(S,t) = =8 1+c5—3e?’16t+\/2c5—3e3wt+c25—3e3st)
2
3

1 o2 3 302 2
— Ls(1res et 4 2ot B 4o s (82)
wp

— —Slog 1+cS_%eaTﬁt+\/QCS_%e?’th+c2S*3esTt
wp

+ 1—1—05’_363th+\/205’_363176t+c25’—3637t —2| +dS+ds

whered, ds € R, ¢ > 0. This solution was obtained and studied in [6]. We describe now
other invariant solutions from the complete set of invariant solutions.
In the case: < 0 we can obtain correspondingly three real solutions if

2/3 2
S > ('g') exp <(;t) (83)
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The first solution is represented by

1 2 2 2 o2
ui(S,t) = ——S5 [ log S — 7 ¢) - = Scos (= arccos (1 — le| S~ STt
wp 8 wp 3
4 1 3 302,
———Slog (142 cos| = arccos (1 —|c| ST 2¢e 16 (84)
3wp 3
1 1 o2
——GSIOg sin | — arccos [ 1 —|¢] S~2ets! +d S+ da,
3wp 6
whered, ds € R, ¢ < 0. The second solution is given by the formula
1 2 2 2 2 o2
ug(S,t) = ——S(logS — T 4) — = Scos (=7 + = arccos [ —1 + || S~2etet
wp 8 wp 3 3

1 1 o2
— —Slog|1+2cos| -7+ = arccos | —1 + || S*%e%t (85)
3wp 3" 73

1 1 1 3 302
_ 16 Slog ( sin { =7 + — arccos [ —1 + |¢] S~2efet +d S+ ds.
3wp 6 6

whered , ds € R, ¢ < 0. The first and second solutions are defined for the variables under
conditions (83). They coincide along the curve

2/3 2
S = <‘26’> exp (275)

and cannot be continued further. The third solution is defined by

1 2
uza(S,t) = -5 (logS - U8t> (86)

2 2 o?
— — Scos < arccos <—1 + |c| Sgeglﬁt)>
wp 3
4 1 o2
— —Slog | —1+2cos| = arccos | =1+ || S~2eet
3wp 3
16 1 o2
— ——Slog | cos | = arccos | —1 + |¢] S~2ets! +d S +dy,
3wp 6

whered, ds € R andS,t satisfy the condition (83).
Incase) < S < (' ') exp (" t) the third solution can be represented by the formula

1 2
uzy(S,t) = -5 (logS - 0875) (87)

2 2 :
— — Scosh (arccosh (—1 + |¢| S‘% 37 >)
wp 3
16 1 2
— —— Slog ( cosh | —arccosh [ —1 4+ |c| S~ $ 5t
3wp 6
4 _3 302,
— —— Slog | —1+2 cosh farccosh —1+|c| S 2e16
3wp

T dS+ds,



Pricing Options in llliquid Markets... 103

whered, dy € R. The solutionu(S,t) (82) and the third solution given hy; 1, u3 2 (86),
(87) are defined for all values of variableandS > 0. They have a common intersection
curve of the type5' = const. eXp(%Qt). The typical behavior of all these invariant solutions
is represented in Fig. 2.

We summarize the previous results in the following theorem which describsstio¢
invariant solutions of equation (9).

Theorem 3.5. The invariant solutions of equation (9) can be defined by the set obfitst
ordinary differential equations listed in Theorem 3.3.

If moreover the parametey = —4, or equivalent in the substitution (41) we chose
a = —o?/8 then the complete set of invariant solutions of (9) can be found exactly. Th
set of invariant solutions is given by formulas (82)—(87) and by solutions

u(S,t) =d S, u(S,t)= % S (log S — 02%),

1
u(S,t) = -5 (log S — 02§),
whered denotes an arbitrary constant. This set of invariant solutions is uniqui tiipe
transformations of the symmetry groGp\ given by Theorem 3.2.

The solutionsu,.(S,t), (82), u1(S,t), (84), u2(S,t), (85), us,1(S,t), (86), ug2(S,t)
(87), have no one counterpart in a linear case. If in the equation (@pilaenetep = 0 the
eguation becomes linear. If the parameier- 0, then equation (9) and correspondingly
equation (37) will be reduced to the linear Black-Scholes equation bubthtans (82)-
(87) which we obtained here will be completely blown updby- 0 because of the factor
1/b = 1/(wp) in the formulas (82)-(87). This phenomena was described as well if9]6],
where the solution,.(S,t) was studied and for the complete set of invariant solutions of
equation (37) withk = 1 in [5].

4. Propertiesof Solutionsand Parameter-Sensitivity

We study the properties of solutions, keeping in mind that because of the sgypraper-
ties (see Theorem 3.2) of the equation (9) we can add to each solution raflineton of
the variableS.

4.1. Dependenceon the Constant ¢ and Terminal Payoff

First we study the dependence of the solutigron the arbitrary constamt The constant
c is the first constant of integration of the ODEs (50), (51). This depeeclés illustrated
in Figure 3. We see on Fig. 3 that for different values of the congtém domains of the
solutions are different. The dependence of the solutignsus 2 (.S, t) on the constant is
exemplified in Figure 4.

We obtain a typical terminal payoff function for the solutions (82)-(87) & just fix
t = T. By changing the value of the constanand by adding a linear function ¢f we
are able to modify terminal payoff function for the solutions. Hence we pgmoximate
typical payoff profiles of financial derivatives quite well.
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Figure 3. Plot of solutions (S, t) where |¢| = 0.01,1.,5.,10.,20.,0 = 0.4,q = —4,
b=1.0,d = 0. The variablesS lie in intervalsS € (0.,15.) andt = 1..
The curves going from up to down with the growing value of the parameter

10

-10f~ — i

-20 T

Figure 4. Plot of solutionss(S,t) where|c| = 0.01,1.,5.,10.,20.,0 = 04,9 = —4,
b=1.0,d = 0. The variablesS lie in intervalsS € (0.,15.) andt = 1..
The curves going from up to down with the growing value of the parameter

4.2. Dependenceon Time

All solutions depend weakly on time because of the substitution (68) all imtagtdutions
depends on the combinatierit. As long as we take the volatility to be small we obtain
a dampened dependence of the solutions on time.

In Fig. 5 we can see this dependence for examples of the solioib, t), us 2(S, t).

4.3. Dependence on the Parameter p
All solutions found in this work have the form
u(S,t) = w(S,1)/p, (88)

wherew(S, t) is a smooth function o, ¢. Hence the functiom (S, ¢t) solves the equation
(9) with p =1,
0252 wss

2 (1- Swgg)?
Because of this relation anp¢dependence of invariant solutions of (9) is trivial. In particu-
lar, if the terminal conditions are fixed(.S, T') = h(.S), then the value(S, t) will increase

wy +

—0. (89)
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Figure 5. Plot of solutions:s;(S,t), uz2(S,t) for the parameters = 0.4, |¢| =

10.,q = —4,b = 1.0,d = 0. The variablesS lie in intervalsS < (0.,15.) and

t = 0.01,1.,5.,10.,20.. The highest level corresponds to= 0.01 and the lowest to
t = 20..

if the value of the parameterincreases. This dependence of hedge costs on the position of
the large trader on the market is very natural.

4.4. Dependenceon the Asset Price S

In practice one use often delta-hedging to reduce the sensitivity of ajiotd the move-
ments of an underlying asset. Hence it is important to know the \aldefined byA = g—g,

wherewu denotes the value of the derivative product or of a portfolio. Using xiaetefor-
mulas for the invariant solutions we can easily calculatas a function ofS and¢. The A

corresponding to the solutiar, is presented in Fig. 6

Figure 6. Plot ofA for us(S,t) ando = 0.4, || = 1.,¢ = —4,b = 1.0,d = 0. The
variables lie in interval$ € (0.,5.) andt = [0.,0.5].

The A of the solutionus 1, us 2 is represented on the Fig. 7.
We see in both cases the strong dependencg fam small value ofS. If S — oo, in
both cases thé tends to a constant which is independent of time and the constant
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Figure 7. Plot of theA for us1(S,t),u32(S,t) ande = 0.4, || = 1.,q = —4,b =
1.0,d = 0. The variables lie in intervalS € (0.,5.) andt € [0.01,0.5].
4.5. Asymptotic Behavior of Invariant Solutions

If S is large enough we have four well defined solutiangsS,t), ui(S,t), ua(S,t),
uz,2(S,t). The asymptotic behavior solutions (S, t) from (82) andu; from (84) coin-
cides in the main terms &5 — oo and is given by the formula

1
w(S,8), wi(S.) ~ 5 (35 In S + const.S + 0(5—1/2)) . (90)

The exact formula for the asymptotic behavior of the funciie(S, t) for S — oo is given
by

1 2
u(S,t) ~ §Slog(S) +-S <4 log(3) —2 — 8 log <) - §02 t)

b b 3 |c] 8
24 302t 1 _s
+ e’ s z+0(5 ) (91)

We see that folS — oo, the main term does not depend on time or on the value of the
constant. Moreover, this term cannot be changed by adding a linear functichtofthe
solution.

The main terms of the solutions (.5, t) from (85) andus » from (87) behave similar to
each other as' — oo; this behavior is given by the formulas

ug(S,t) ~ % (1 +§ log <3§‘70’>> S (92)
+ ?)Z 2‘36’ i %—;T\c\ewts_é—i-(’)(S_Z)
and
uz2(S,t) ~ % (1 —i—% log (33,;)) S (93)
— gz 2;6‘63;;? S}l—;;]degitSé%—O(Si). (94)
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Note that the main term in formulas (92) and (93) depends lamearly and has a coefficient
which depends on the constaranly. Hence we can change the asymptotic behavior of the
solutionsusy (.S, t) andug 1 (S, t), us2(S,t) by simply adding a linear function & to the
solutions.

For.S in a neighborhood of' — 0 there exist just two non trivial real invariant solutions
of equation (9), i.e. the known solutian (S, 1) and the new solutions ; (.S, t). Using the
exact formulas for the last solution we retain the first term and obtait as 0 for the
solutionus 1 (S, t)

w31 (S, 1) ~ _714 S (S) + O (S). (95)

The main term in this formula do not depend bor constanic and can be changed by
adding a linear function of to the solution.

Conclusion

In this chapter we obtained explicit solutions for the equation (9) and sttitkédhnalytical
properties. These solutions are useful for a number of reasonsegin tvith, while the
payoffs of these similarity solutions cannot be chosen arbitrary, theffisaygn be modified
using embedded constants to tailor a given portfolio reasonably well. roe salues of
the parameters d we obtain a payoff typical for futures, for other valueg the payoff is
very similar to the form of calls (see Figure 3 and Figure 4). Moreovegxpécit solutions
can be used as benchmark for different numerical methods.

An important difference between the case of the linear Black-Scholeti@gaad these
nonlinear cases can be noticed if we consider the asymptoti ferco. In the linear case
the price of a Call option satisfiegS,¢) — const - S. In the nonlinear case the families
of similarity solutionsus andugs which approximate the payoff of a Call option well on a
finite interval[0, S], grow faster than linear as — oo; see the formulas (92) and (93) for
details. This reflects the fact that in illiquid markets option hedging is more skpethan
in the standard case of perfectly liquid markets.

Invariant solutions can be used as benchmarks for different nurherethods or as a
starting point for stability investigations of numerical schemes. We refer]timf6urther
information on this issue.
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