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Abstract

This chapter studies structural and reduced-form credit risk models under incomplete

information using techniques from stochastic filtering. We start with a brief introduction

to stochastic filtering. Next we cover the pricing of corporate securities (debt and equity)

in structural models under partial information. Furthermore we study the construction

of a dynamic reduced-form credit risk model via the innovations approach to nonlinear

filtering, and we discuss pricing, calibration and hedging in that context. The paper

closes with a number of numerical case studies related to model calibration and the

pricing of credit index options.
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1 Introduction

The recent turmoil in credit markets highlights the need for a sound methodology for manag-
ing books of credit derivatives. In particular, it is commonly agreed that the pricing and the
risk management of relatively liquid products such as corporate bonds, CDSs, or index-based
derivatives (e.g. synthetic CDO tranches) should be based on dynamic credit risk models.
The development of such models is however a challenging problem: a successful model needs
to capture the dynamic evolution of credit spreads and the dependence structure of defaults
in a realistic way, while being at the same time tractable and parsimonious.

In this chapter we show that incomplete information and filtering techniques are a very
useful tool in this regard. We begin with a short introduction to stochastic filtering in
Section 2. In Section 3 we give an overview of the application of filtering to credit risk models.
Next we discuss in detail structural models with incomplete information on the asset value.
In particular, we explain that the pricing of many corporate securities naturally leads to a
nonlinear filtering problem; this problem is then solved by a Markov chain approximation.
This part of the exposition (Section 4 and 5) is based on the seminal paper by Duffie and
Lando [17] and on our own work [27].

Sections 6 and 7 are devoted to filtering in reduced-form models. We present in detail the
construction of a dynamic credit portfolio model via the innovations approach to nonlinear
filtering. Moreover, pricing of credit derivatives, model calibration, hedging and various
aspects of the numerical implementation of the model are considered. A number of numerical
case studies in Section 7 illustrate practical aspects of the model. In particular, we discuss
the performance of calibration strategies and present new results on the pricing of credit
index options. This part of the chapter largely follows our own paper [28].

A survey on nonlinear filtering in interest-rate and credit risk models with a focus default-
free term structure models can be found in [25]. Further related literature is discussed in the
body of the paper.

2 A Short Introduction to Stochastic Filtering

Factor models are frequently employed in financial mathematics, since they lead to fairly
parsimonious models. Stochastic filtering comes into play when these factors are observed
only indirectly, possibly because they are hidden in additional noise. We present a small
introduction to filtering which is inspired by [14]; for a detailed exposition we refer to [2].
We start with a small example.

Example 2.1. Consider a normally distributed random variable X ∼ N (0, σ2) (the so-called
signal). Assume that X cannot be observed directly but with additional noise; that is an
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analyst of the system observes the sequence Y = (Y1, Y2, . . . , Yn), where

Yi = X +Wi, (1)

and W1,W2, . . . ,Wn are i.i.d. with Wi ∼ N (0, s2), independent of X. The natural estimate
of X given the observation Y is the conditional expectation E(X|Y1, . . . , Yn). As X and Y

are jointly normal, X can be decomposed in the following way:

X = a1Y1 + · · ·+ anYn + ξ (2)

where ξ is normally distributed and independent of Y . The coefficients ai can be computed
as follows. Consider for simplicity the case n = 2. Then

Cov(X,Y1) = Cov(X,X +W1) = Var(X) = σ2 = Cov(X,Y2).

On the other hand

Cov(X,Y1) = Cov(a1Y1 + a2Y2 + ξ, Y1) = a1 Var(Y1) + a2 Var(X)

= a1(σ2 + s2) + a2σ
2

and similarly Cov(X,Y2) = a1σ
2 + a2(σ2 + s2). This gives two linear equations for a1 and

a2 and we obtain a1 = a2 = σ2/(2σ2 + s2). Hence, the estimate of X turns out to be

E(X | Y1, Y2) = a1Y1 + a2Y2 =
σ2

2σ2 + s2

(
Y1 + Y2

)
.

More generally, the estimate of X for arbitrary n is given by

E(X | Y1, . . . , Yn) =
σ2

nσ2 + s2

n∑
i=1

Yi. (3)

The conditional variance Var(X | Y1, . . . , Yn) is given by the variance of ξ in (2) and computes
to (σ2s2)/(nσ2 + s2).

Stochastic filtering. Generalizing this example, stochastic filtering is concerned with the
following problem: consider a set of time points T ; in the discrete setting typically T =
{1, 2, . . . } or in continuous-time T = [0,∞). The unobservable variable of interest X is
called signal or state process. It is a stochastic process X = (Xt)t∈T . The observation is
given by the observation process Y = (Yt)t∈T , and we denote by FYt = σ(Ys : s ≤ t) the
information generated by the observation until time t.

In filtering one wants to estimate X based on the observation of Y . A major goal is to
describe the conditional distribution of Xt given the FYt . The conditional distribution can
be computed if one knows

E
(
φ(Xt)|FYt

)
(4)

for a reasonably large class of functions φ. For computational reasons it is important to
obtain this expression in a recursive way. In the sequel we describe several standard fil-
tering problems and the corresponding recursive algorithms for evaluating the conditional
expectation (4) in each of the models.
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2.1 The Kalman-Bucy filter in discrete time

The Kalman-Bucy-filter is the simplest practically relevant case where the filtering problem
has an explicit solution. The setup is an extension of Example 2.1. As before X stands
for the unobserved factor process, while Y represents the observation process. Consider the
following model on T = {1, 2, . . . }:

Xt = a(t)Xt−1 + b(t)Wt (5)

Yt = c(t)Xt + d(t)Vt

where W = (W1,W2, . . . ) and V = (V1, V2, . . . ) are sequences of independent, standard nor-
mally distributed random variables and where the distribution of X0 is given. This setup
has the following interpretation: the factor process X evolves through a stochastic difference
equation (note that (1) is the special case with a(t) = 1 and b(t)=0). The observation Y

contains c(t)Xt plus additive noise. For simplicity, we assume that a, b, c and d are determin-
istic, real-valued functions3. It iss well-known that in this case the conditional distribution
of Xt given FYt is normal, so that it suffices to determine the mean and the variance of this
distribution.

The Kalman-Bucy-filter is a recursive procedure for computing the conditional mean and
variance of X. It works in two steps: Assume that until time t

Xt|t := E
(
Xt|FYt

)
has been computed. A first observation is that from t to t+1 the process X evolves according
to (5). Taking this into account, one computes the prediction

Xt+1|t := E
(
Xt+1|FYt

)
= a(t)Xt|t.

The next step incorporates the new observation at t + 1 given by Yt+1. A part of Yt+1,
namely Xt+1|t, can be predicted on the basis of the information available at time t, so
that the innovation (the part of Yt+1 which actually carries new information) is given by
Yt+1 − Xt+1|t. Only the innovation therefore matters for the updating to Xt+1|t+1. It can
be shown that Xt+1|t+1 is given by a recursive updating rule of the form

Xt+1|t+1 = Xt+1|t + Lt(Yt+1 −Xt+1|t) (6)

where

Lt =
c(t)Pt+1|t

c(t)2Pt+1|t + d(t)2
,

Pt+1|t = a(t)2Pt|t + b(t)2, and Pt+1|t+1 = Pt+1|t(1− Ltc(t)).

Here P is the conditional variance, that is Ps|t = E
(
(Xs − Xs|t)2|FYt

)
. Note that P is a

deterministic function of time and independent of the particular realization of the observation
process Y .

The Kalman-Bucy has also been applied to Gaussian models which are nonlinear by
linearizing the nonlinear coefficient functions around the current estimate of Xt. This proce-
dure is called extended Kalman filter. Kalman filtering is frequently employed in the empirical
analysis of swap and credit spreads, see for instance [21].

3The Kalman-Bucy filter can be generalised to the multi-dimensional case and a, . . . , d may be adapted
with respect to the filtration FY

t = σ(Ys : s ≤ t).
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2.2 Filtering in continuous time

The standard continuous-time filtering problem is of the form

dXt = a(t,Xt)dt+ b(t,Xt)dWt

dYt = c(t,Xt)dt+ dVt.
(7)

for independent Brownian motions W and V . The model (7) can be viewed as continuous-
time version of a discrete-time filtering setup such as (5), as is illustrated in the following
example.

Example 2.2. Translating (5) to more general time points tk := k∆, we consider the
observation c̃(tk)Xtk+εk for εk ∼ N(0,∆) and c̃(·) = ∆c(·). In continuous-time one considers
instead the cumulative observation process

Yt :=
∑
tk≤t

(
c̃(tk)Xtk + εk

)
.

Then one has for ∆ small:

Yt ≈
∫ t

0

c(s)Xsds+ Vt. (8)

The generalisation of this equation leads to (7).

In the innovations approach to nonlinear filtering the conditional distribution of Xt given
FYt in the model (7) is characterized by a stochastic differential equation (SDE) as follows.
First, denote by L the generator of the Markovian diffusion X:

L φ(t, x) = φta(t, x) + φx(t, x) +
1
2

n∑
i,j=1

vij(t, x)φxixj (t, x)

for any function φ(t, x) ∈ C1,2, where we set v(t, x) := b(t, x)b(t, x)>. Note that by the Itô
formula φ(t,Xt) −

∫ t
0

L φ(t,Xs)ds is a (local) martingale so that locally L φ(t,Xt)dt gives
the expected change of the process φ(t,Xt). Denote for a generic function f(t, x)

f̂t := E
(
f(t,Xt)|FYt

)
.

The innovations approach leads to the following SDE, called Kushner-Stratonovich equation,

dφ̂t = (̂L φ)tdt+
(
ĉφt − ĉtφ̂t

)
·
(
dYt − ĉt dt

)
. (9)

This equation is driven by the innovation

dYt − ĉt dt = dYt − E
(
dYt|FYt

)
.

As in the case of the Kalman-Bucy filter, the filter equation (9) contains two parts: L̂ φt
represents the expected change of φ(Xt), and the second term gives the update with respect
to the new information which we called innovation.

Equation (9) is in general an infinite-dimensional equation: in order to determine φ̂ one
needs ĉφ; this in turn requires ĉ2φ and so on. A substantial part of the modern filtering
literature is concerned with finding finite-dimensional approximations to this equation which
can be implemented on a computer; see for instance [9] or Part II of [2].

Equation (9) remains true if the diffusion X is replaced by a general Markov process,
just the generator L and the class of functions φ need to be adjusted in a proper way. For
instance, in the case of a finite-state Markov chain the generator is given by the matrix of
transition intensities. The corresponding filter formulas can be found in Section 2.4.
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2.3 Observations as a jump process

Alternatively, the observations could be given by a doubly-stochastic Poisson process with
intensity depending on the factor process X. For a concrete example, suppose that N is a
standard Poisson process with intensity one, that X is a diffusion and that the observation
Y is a time-changed Poisson process. Formally,

dXt = a(t,Xt)dt+ b(t,Xt)dWt

Yt = NΛt for Λt =
∫ t

0

λ(Xs)ds .
(10)

In applications to credit risk the jump-process Y typically represents default events in a given
reference portfolio. The Kushner-Stratonovich equation for the model (10) takes the form

dφ̂t = L̂ φtdt+
1

λ̂t

(
λ̂φt − λ̂tφ̂t

)
·
(
dYt − λ̂t dt

)
; (11)

see for instance [6] for a detailed derivation.

2.4 The case of Markov chains

If X is a finite-state Markov chain the Kushner-Stratonovich equation (9) reduces to a finite-
dimensional SDE system. Assume w.l.o.g. that X has values {1, . . . ,K} and denote the
transition intensities of X by (q(i, j))1≤i,j≤K . The conditional distribution of Xt given FYt
is given by the probabilities

πkt := P(Xt = k|FYt ).

From (9) one obtains, letting φ(x) = 1{x=k}, the dynamics of the conditional distribution π:

dπkt =
N∑
i=1

πitq(i, k)dt+ πkt

(
c(t, k)−

N∑
i=1

πitc(t, i)
)
·
(
dYt −

N∑
i=1

πitc(t, i)dt
)
. (12)

An illustration of the filter is given in Figure 1. Similar formulas can be given if Y follows
a jump process. For further details on filtering in the case of finite-state Markov chains
consider [19]. We will use the Kushner-Stratonovich equation for finite-state Markov chains
in the construction of a reduced-form credit risk model in Section 6.

Markov-chain approximations can be used as computational tool for computing the filter
for more general state variables; see for instance [9] for details. There are other situations
where the Kushner-Stratonovich equation admits a finite-dimensional solution. The most
prominent example is the continuous-time Kalman-Bucy filter; see for instance [2].

3 Credit Risk Models under Incomplete Information

In this section we explain how incomplete information (the fact that some state variables
are not fully observed by investors) frequently arises in credit risk models, so that filtering
techniques naturally come into play.

We start with some notation. Consider a portfolio of m firms. The default time of firm i

is denoted by the random variable τi > 0. Let Dt,i = 1{τi≤t} denote the current default state
of firm i. Dt,i is zero if the company did not default until t and jumps to one at the default
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Figure 1: A simulated trajectory of the unobservable Markov chain X (circles) and the filter
estimate X̂ = E(Xt | FYt ). The left figure has high observation noise σV while the right one
has low observation noise. High noise translates to a low precision in the filter estimate and
vice versa.

time. The current default state of the portfolio is Dt = (Dt,1, . . . , Dt,m) and the default
history up to time t is given by FDt := σ(Ds : s ≤ t). The corresponding filtration is denoted
by FD. Throughout we work on a filtered probability space (Ω,G,G, Q) and all stochastic
processes considered will be G-adapted. Typically Q will be the risk-neutral measure used for
pricing. Moreover, we assume for simplicity that default-free interest rates are deterministic
and equal to r > 0.

Existing dynamic credit risk models can be grouped into two classes: structural and
reduced-form models. Structural models originated from Black and Scholes [4], Merton [38],
and Black and Cox [3]. Important contributions to the literature on reduced-form models are
[32], [33] [18] and [5] among others. Further details on credit risk models can be found in [37],
[44], [45] or [34]. In structural as well as in reduced-form models it makes sense to assume
that investors have imperfect information on some of the state variables of the models. A
rich literature on credit risk models under incomplete information deals with this aspect.

Structural models. Here one starts by modeling the asset value A of the firm under
consideration. Given some, possibly random, default barrier K = (Kt)t≥0, default happens
at the first time when A crosses the the barrier K, i.e.

τ = inf{t ≥ 0: At ≤ Kt} . (13)

The default barrier is often interpreted as the value of the liabilities of the firm; then default
happens at the first time that the asset value of a firm is too low to cover its liabilities. If
A is a diffusion, then the default time τ is a predictable stopping time with respect to the
global filtration G to which A and K are adapted. It is well-documented that this fact leads
to very low values for short-term credit spreads, contradicting most of the available empirical
evidence.

The natural state variable in a structural model are thus the asset value A of the firm
and, if liabilities are stochastic, the liability-level K. It is difficult for investors to assess
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the value of these variables. There are many reasons for this: accounting reports offer only
noisy information on the asset value; market- and book values can differ as intangible assets
are difficult to value; part of the liabilities are usually bank loans whose precise terms are
unknown to the public, and many more. Starting with the seminal work of Duffie and
Lando [17], a growing literature therefore studies models where investors have only noisy
information about A and/or K; the conditional distribution of the state variables given
investor information is then computed by Bayesian updating or filtering arguments. Examples
of this line of research include [17], [39], [10], [43] and [27]; we discuss the works [17] and
[27] in detail below. Interestingly, it turns out that the distinction between structural and
reduced-form models is in fact a distinction between full and partial observability of asset
values and liabilities (see [31]): in the models mentioned above the default time is predictable
with respect to the global filtration G but becomes totally inaccessible with respect to the
investor filtration F. As a consequence, the default time admits an intensity in the investor
filtration and the short-term credit spreads achieve realistic levels, as is explained in Section 4
below.

Reduced-form models. In this model class one models directly the law of the default time
τ . Typically, τ is modeled as a totally inaccessible stopping time with respect to the global
filtration G, and it is assumed that τ admits a G-intensity λ. This intensity is termed risk-
neutral default intensity (recall that we work under the risk-neutral measure Q). Formally,
λ = (λt)t≥0 is a G-predictable process such that

1{τ≤t} −
∫ t∧τ

0

λs ds (14)

is a G-martingale. Dependence between defaults is typically generated by assuming that the
default intensities depend on a common factor process X. Denote by FX := (FXt )t≥0 =
(σ(Xs : s ≤ t))t≥0 the filtration generated by the factor X. The simplest construction is that
of conditionally independent, doubly stochastic default times: here it is assumed that given
the realization of the factor process the default times τi are conditionally independent with
intensities λi(Xt), i.e.

Q(τ1 > t1, . . . , τm > tm | FX∞) =
m∏
i=1

exp
(
−
∫ ti

0

λi(Xs) ds
)
. (15)

In applications X is usually treated as a latent process whose current value must be
inferred from observable quantities such as prices or the default history. A theoretically
consistent way for doing this is to determine via filtering the conditional distribution of Xt

given investor information F. Models of this type include the contributions by [46], [11], [16],
[28] and [26]. The last two papers are discussed in Section 6.

Remark 3.1. We will see below that the introduction of incomplete information generates
information-driven default contagion (both in structural and in reduced-form models): the
news that some obligor has defaulted causes an update in the conditional distribution of the
unobserved factor and hence to a jump in the F-default intensity of the surviving firms. This
in turn leads to interesting dynamics of credit spreads, compare the discussions on pages 10
and 16.
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4 Structural Models I: Duffie and Lando [17]

In this section we discuss the influential paper by Duffie and Lando [17]. As previously,
let Q be the risk-neutral measure and G = (Gt)t≥0 be the filtration which represents full
information. The asset value A is assumed to follow a geometric Brownian motion with drift
µ, volatility σ and initial value A0, such that

At = A0 exp
((

µ− 1
2
σ2
)
t+ σWt

)
, (16)

where W is a Browninan motion. The default barrier K and the inital value A0 are taken to
be constant and therefore the default time is τ := inf {t ≥ 0: At ≤ K} . It is assumed that A is
not directly observable. Rather, investors observe default, and they receive noisy accounting
reports at deterministic times t1, t2, · · · . This is modelled by assuming they observe the
random variables

Yi := lnAti + Ui

at ti, where U1, U2, . . . is a sequence of independent, normally distributed random variables,
independent of A. Formally, with Dt := 1{τ≤t}, the information available to investors is
given by

Ft := σ(Ds : s ≤ t) ∨ σ({Yi : ti ≤ t}) .

We now study the computation of survival probabilities, default intensities and credit
spreads. We start with the situation under full information. By the Markov property of A
one has, for T ≥ t,

Q (τ > T | Gt) = 1{τ>t}Q
(

inf
s∈(t,T )

As > K | Gt
)

= 1{τ>t}Q
(

inf
s∈(t,T )

As > K | At
)

=: 1{τ>t}Fτ (t, T,At) .

Note that the mapping T 7→ Fτ (t, T, v) gives the risk-neutral survival probabilities of the firm
under full information at time t, given that At = v. This probability is easily computed using
standard results on the first passage time of Brownian motions with drift. Using iterated
conditional expectations one obtains the survival probability in the investor filtration:

Q (τ > T | Ft) = E
(
Q (τ > T | Gt) | Ft

)
= 1{τ>t}

∫ ∞
logK

Fτ (t, T, v)πAt|Ft(dv) ;

here πAt|Ft denotes the conditional distribution of At given Ft. In [17] this distribution is
computed in an elementary way, involving Bayes’ formula and properties of first passage time
of Brownian motion. Section 5.1 shows how filtering techniques can be used in this context.

Next we turn to the default intensity in the model with incomplete information. It can
be shown that under some regularity conditions the default intensity is given by

λt = lim
h↓0

1
h
Q
(
t < τ ≤ t+ h | Ft

)
, (17)
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provided this limit exists for all t ≥ 0 almost surely (see [1] for details). Duffie and Lando
show that such a λt exists and is given on {τ > t} by

λt =
σ2K

2
∂

∂v
fAt|Ft(K) , (18)

where fAt|Ft denotes the Lebesgue-density of the conditional distribution of At given Ft.

Bonds and credit spreads. A defaultable zero-coupon bond with zero recovery pays one
unit of account at maturity T if no default happened and zero otherwise. Hence, in this
setup its price p(t, T ) at time t equals

1{τ>t}e−r(T−t)Q
(
τ > T | Ft

)
= 1{τ>t}e−r(T−t)

∫ ∞
logK

Fτ (t, T, v)πAt|Ft(dv).

Therefore zero-coupon bond prices can be expressed as an average with respect to the filter
distribution. The credit spread c(t, T ) of the bond gives the yield over the risk-free short-rate.
Formally it is given by

c(t, T ) = − 1
T − t

(
log p(t, T )− log p0(t, T )

)
, (19)

where p0(t, T ) denotes the price at time t of the risk-free zero-coupon bond with maturity T .
Hence we get on {τ > t} that c(t, T ) = −1

T−t logQ(τ > T | Ft) . In particular, we obtain

lim
T→t

c(t, T ) = − lim
T→t

( ∂

∂T
Q(τ > T | Ft)

)
= λt,

where the second equation follows from (17). This shows that the introduction of incomplete
information typically leads to non-vanishing short-term credit spreads.

Other debt-related securities such as credit default swaps (CDS) can be priced in a
straightforward fashion once the conditional survival function given investor information is
at hand.

5 Structural models II: Frey & Schmidt [27]

In [27], the Duffie-Lando model is extended in two directions: first, nonlinear filtering tech-
niques based on Markov-chain approximations are employed in order to determine the con-
ditional distribution of the asset value given the investor-information; second, the paper
introduces dividend payments and discusses the pricing of the firm’s equity under incomplete
information. We begin with a discussion of the filtering part.

5.1 The filtering part

The model. Here we present a slightly simplified version of the model discussed in [27].
Similarly as in the Duffie-Lando model the asset value A is given by the geometric Brownian
motion (16), so that the log-asset value Xt := logAt satisfies Xt = X0 +

(
µ− 1

2σ
2
)
t+ σWt.

The default time τ is

τ := inf {t ≥ 0: At ≤ K} = inf {t ≥ 0: Xt ≤ logK} .

10



Investors observe the default state of the firm; moreover, they receive information related
to the state of the company such as information (news) given by analysts, articles in news-
papers, etc. It is assumed that this information is discrete, corresponding for instance to
buy/hold/sell recommendations or rating information. Formally, news events on the com-
pany are issued at time points tIn, n ≥ 1; the news obtained at tIn is denoted by In, which
takes values in the discrete state space {`1, . . . , `MI}. The conditional distribution of In given
the asset value of the company at tIn is denoted by νI(In|x) where

νI(`j |x) := Q(In = `j |XtIn
= x).

Summarizing, the information of investors at time t is given by

Ft := FDt ∨ σ
(
In : tIn ≤ t

)
. (20)

Filtering. In order to determine the conditional distribution πXt|Ft with minimal technical
difficulties, the log-asset value process X is approximated by a finite-state discrete-time
Markov chain as follows: define for a ∆ > 0 the grid

{t∆k = k∆ : k ∈ N}.

Let (X∆
k )k∈N be a discrete-time finite-state Markov chain with state space {m∆

1 , . . . ,m
∆
M∆}

and transition probabilities p∆
ij . Define the induced process X∆ by X∆

t = X∆
k for t ∈

[t∆k , t
∆
k+1). In [27] it is assumed that the chain (X∆

k )k∈N is close to the continuous log-asset-
value processX in the sense thatX∆ converges in distribution toX as ∆→ 0; it is shown that
this implies that the conditional distribution πX∆

t |Ft converges weakly to πXt|Ft as ∆ → 0.
The approximating Markov chain can be chosen to be trinomial with transition probabilities
determined by matching the first and second moment of the transition probabilities of X∆

with those of X; see [27] for details.
In the sequel we keep ∆ fixed and therefore mostly omit it from the notation. The condi-

tional distribution πX∆
tk
|Ftk

is summarized by the probability vector π(k) = (π1(k), . . . , πM (k))
with

πj(k) := Q
(
Xk = mj | Ftk

)
.

The initial filter distribution π(0) can be inferred from the initial distribution of X0 which
is a model primitive. There is a simple explicit recursive updating rule for the probability
vector π(k) as we show next. It is convenient to formulate the updating rule in terms of
unnormalized probabilities σ(k) ∝ π(k) (∝ standing for proportional to); the vector π(k) can
then be obtained by normalization:

πj(k) =
σj(k)∑M
i=1 σ

i(k)
.

Proposition 5.1. For k ≥ 1 and tk < τ denote by Nk := {n ∈ N : tk−1 < tIn ≤ tk} the
set of indices of news arrivals in the period (tk−1, tk], and recall that pij are the transition
probabilities of the approximating Markov chain X. Then for j = 1, . . . ,M we have that

σj(k) = 1{mj>logK}

M∑
i=1

(
pij σ

i(k − 1)
∏
n∈Nk

νI
(
In|mi

))
. (21)

Here we use the convention that the product over a empty set is equal to one.
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Formula (21) explains how to obtain σ(k) from σ(k − 1) and the new observation received
over (tk−1, tk]. The derivation of this formula is quite instructive. First note that given
the new information arriving in (tk−1, tk], (21) forms a linear and in particular a positively
homogeneous mapping Γ such that σ(k) = Γσ(k − 1). Hence it is enough to show that
π(k) ∝ Γπ(k − 1). In order to compute π(k) from π(k − 1) and the new observation we
proceed in two steps. In Step 1 we compute (up to proportionality) an auxiliary vector of
probabilities π̃(k − 1) with

π̃i(k − 1) = Q
(
Xk−1 = mi | F−k

)
, 1 ≤ i ≤M, (22)

where F−k := Ftk−1∨σ
(
{In : n ∈ Nk}

)
. In filtering terminology this is a smoothing step as the

conditional distribution of Xk−1 is updated using the new information arriving in (tk−1, tk].
In Step 2 we determine (again up to proportionality) π(k) from the auxiliary probability
vector π̃(k − 1) using the dynamics of (Xk) and the additional information that τ > tk. We
begin with Step 2. Since {τ > tk} = {τ > tk−1} ∩ {Xk > logK}, we get

Q (Xk = mj | Ftk) ∝ Q
(
Xk = mj , Xk > logK | F−k

)
=

M∑
i=1

Q
(
Xk = mj , Xk > logK,Xk−1 = mi | F−k

)
= 1{mj>logK}

M∑
i=1

pij π̃
i(k − 1) . (23)

Next we turn to the smoothing step. Note that given Xk−1 = mi, the likelihood of the news
observed over (tk−1, tk] equals

∏
n∈Nk νI

(
In|mi

)
, and we obtain

π̃i(k − 1) ∝ πi(k − 1) ·
∏
n∈Nk

νI
(
In|mi

)
.

Combining this with equation (23) gives (21).

5.2 Pricing the firm’s equity

Next we discuss the pricing of the firm’s equity or shares. This is of interest for at least two
reasons: on the theoretical side this analysis sheds some light on the relation between share
price and asset value in the presence of incomplete information; on the practical side this
is a prerequisite for the pricing of certain hybrid corporate securities such as equity default
swaps.

In [27] the pre-default value of the firm’s equity S is defined as expected value of the
future discounted dividends up to the default of the firm. Simplifying slightly the original
setup of [27], we assume that dividends are paid at dividend dates tdn; the dividend paid at
tdn is given by the random variable

dn = δnAtdn , for δn ∈ [0, 1) iid, independent of A with mean δ̄ .

Formally we thus have
St = E

( ∑
t<tdn<τ

e−r(t
d
n−t)δnAtdn | Ft

)
. (24)
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Denote by E
(∑

t<tdn<τ
e−r(t

d
n−t)δnAtdn | Gt

)
the equity value under full information. Since A

is a Markov process, on {τ > t} the latter is given by some function S(t, At) of time and the
current equity value. Using the tower property of conditional expectations we thus get

St = E
(

E
( ∑
t<tdn<τ

e−r(t
d
n−t)δnAtdn | Gt

)
| Ft

)
= 1{τ>t}E

(
S(t, At) | Ft

)
,

and the conditional distribution of the right can be computed using the approximation of the
filter distribution given in Proposition 5.1.4

Example 5.2 (A closed-form solution for the equity value under full information). A slight
modification of the setup leads to a closed form expression for the function S(·). For this we
assume that the dividend dates are the jump times of a Poisson process with intensity λd,
corresponding to the average number of dividend dates per year. With frequent dividend pay-
ments, such as quarterly or semi-annually, the equity value obtained under the assumption of
Poissonian dividend dates is a good approximation of its counterpart for fixed dividend dates.
The advantage of this assumption is that the pre-default equity value becomes independent
of calender time t. Proposition 2.4 of [27] states that for µ < r the full-information value of
the firm’s equity equals 1{τ>t}S(At) with

S(v) =
λdδ̄

r − µ

[
v −

( v
K

)α∗
K
]
. (25)

Here α∗ < 0 is the unique negative root of the quadratic equation

αµ+
1
2
σ2α(α− 1) = r.

Note that S is concave in v and approaches the line v 7→ v · λdδ̄
(r−µ) as v tends to infinity.

This line corresponds to the value of the firm’s equity for K = 0 and therefore τ =∞. The
qualitative behaviour of S is illustrated in Figure 2.

5.3 Further applications

We briefly discuss further results obtained in [27].

Estimating the asset values from equity values. The filter estimate of the previous
section corresponds to a fundamental valuation approach: one tries to assess the value of the
firm’s assets from economic information such as news. When the stock of the firm is liquidly
traded, one could alternatively compute a market implied estimator of the asset value by
inverting some pricing formula that relates asset- and equity value. The KMV-methodology
is a typical example where this approach is used, see [13]. Formally, given the current equity
value S∗ observed in the market and a valuation formula under full information of the form
St = S(t, At), S strictly increasing in v, the corresponding equity-implied estimator EEt is
given by the solution of the equation S(t,EEt) = S∗ .

In [27] it is shown that this estimator performs well if the conditional variance of At given
the investor information Ft is small, that is if the the observations received by investors carry

4Strictly speaking, observed dividends contain information about A as well and should therefore be in-
cluded in the filtering result. This can be done analogously as in Proposition 5.1; for details we refer to
[27].
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Figure 2: Value of the firm’s equity as function of the asset value according to (25) for
different σ and with K = 60. The straight line is the equity value for K = 0.

a lot of information about the “true value” of At. On the other hand the estimator performs
poorly if the conditional variance of At is comparatively large. Moreover, it is possible to
study the bias of the equity estimator via Jensen’s inequality. If the function v 7→ S(t, v) is
concave as in Example 5.2 one obtains that

EEt ≤ E(At|Ft);

if v 7→ S(t, v) is convex, the inequality is reversed.

Equity value and default intensity. It can be shown that relation (18) for the default
intensity under incomplete information in the Duffie-Lando model carries over to the setup
of [27]. Given this result, in [27] the relation between equity value and default intensity λt is
studied. It turns out that for fixed firm characteristics µ and σ a hyperbolic relation of the
form λt = h(St) := α

Sρ - as it is imposed in certain hybrid models such as [36] - describes the
relation between stock price and default intensity well. If these characteristics vary however,
the relation between default intensity and equity value breaks down completely.

Pricing of hybrid securities. As mentioned before, the model could in principle be used
for the pricing and hedging of hybrid securities such as equity default swaps or convertible
bonds. For this one needs to give a description of the stock price dynamics in the investor
filtration, using a suitable variant of the Kushner-Stratonovich equations (9) and (11); see
for instance [24]. In the next section we will show how a similar approach can be carried out
in the context of reduced-form models.

14



6 Constructing Reduced-form Credit Risk Models via

Nonlinear Filtering

Now we turn our attention to reduced form models under incomplete information. We discuss
in detail our own model proposed in [28]. A key idea in that paper is to use the innovations
approach to nonlinear filtering in order to derive the price dynamics of credit derivatives. We
will show that this leads to a fairly tractable model with rich dynamics of credit spreads and
a lot of flexibility for calibration.

6.1 The Setup

We consider a portfolio that contains credit derivatives on m firms. As before the default state
of the portfolio is described by the process D = (Dt,1, . . . , Dt,m)t≥0 with Dt,i = 1{τi≤t}, G
represents the global filtration to which all processes are adapted, and we work directly under
the risk neutral pricing measure Q. The model is driven by some factor process X, modelled
as a finite-state Markov chain with state space SX := {1, . . . ,K}. The default time τi has
G-default intensity λi(Xt) where λ1, . . . , λm are given functions from SX to (0,∞). Then, as
in Equation (14), Dt,i −

∫ τi∧t
0

λi(Xs) ds is a martingale w.r.t. the full-information filtration
G. Moreover, we assume that the τi are conditionally independent given X (compare (15)).
In this setup the process (X,D) is jointly Markov.

However, we assume that X is unobservable and that prices of traded securities are given
as conditional expectation with respect to a filtration F = (Ft)t≥0 which is called market
information. The filtration F is generated by a process Y giving observations of X in additive
noise and by the default history of the firms under consideration, that is F = FY ∨ FD. Y is
of the form

Yt =
∫ t

0

a(Xs)ds+ Vt (26)

with a Brownian motion V , independent of X and D. As intended, X is not F-adapted.
The process Y models the information contained in security prices; it is not directly linked
to observable economic quantities. We come back to this point when we discuss calibration
strategies for the model in Section 6.4 below. Throughout the rest of the paper we denote
by Ût := E(Ut|Ft) the projection of a generic process U on the market filtration F.

Example 6.1. (A one-factor model) In the numerical part we will consider a one-factor
model where X represents the global state of the economy. For this we model the default
intensities under full information as increasing functions λi : {1, . . . ,K} → (0,∞). Note that
this implies that 1 represents the best state (lowest default intensities) and thatK corresponds
to the worst state; moreover, the default intensities are comonotonic. In the special case of
a homogeneous model the default intensities of all firms are identical, λi(·) ≡ λ(·). In
that situation one could assume that a(·) = c lnλ(·). Here the constant c ≥ 0 models the
information-content of Y : for c = 0, Y carries no information, whereas for c large the state
Xt can be observed with high precision.

Denote by (q(i, k))1≤i,k≤K the generator matrix of X so that q(i, k), i 6= k, gives the
intensity of a transition from state i to state k. In this paper we consider two possible
choices for this matrix. First, let the factor process be constant, Xt ≡ X for all t. In that
case q(i, k) ≡ 0, and filtering reduces to Bayesian analysis. A model of this type is known
as frailty model, see also [46]. Below we will see that the frailty model can be viewed as a
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dynamic version of the implied copula model of [30]. Second, we consider the case where
X has next neighbour dynamics, that is the chain jumps from Xt only to the neighbouring
points Xt

+
− 1 (with the obvious modifications for Xt = 0 and Xt = K).

Nonlinear filtering problems. In this setup the computation of important economic
quantities leads to nonlinear filtering problems in a natural way. Consider first the pricing of
credit derivatives. The payoff H of a typical credit derivative depends on the default-state of
the portfolio at the maturity date T ; in mathematical terms H is an FDT -measurable random
variable. Examples include defaultable zero-coupon bonds, CDSs or CDOs; see Subsection 6.3
for details. In line with risk-neutral pricing we define the price of the claim by the conditional
expectation of the discounted payoff under the risk-neutral measure:

Ĥt := E
(
e−r(T−t)H | Ft

)
;

note that this definition involves the market filtration Ft. As (X,Y ) is Markovian it follows
that for typical payoffs E

(
e−r(T−t)H | Gt

)
is a function of t, Xt and Dt which we denote by

h(t,Xt, Dt). By the tower property of the conditional expectation we obtain

Ĥt = E
(
E
(
e−r(T−t)H | Gt

)
| Ft

)
= E

(
h(t,Xt, Dt) | Ft

)
. (27)

Since Dt is observable, in order to compute Ĥt we need to determine the conditional distri-
bution of Xt given Ft, i.e. we have to solve a nonlinear filtering problem. This problem is
studied in the next Section.

The intensity of τi with respect to a smaller information set F with FD ⊂ F ⊂ G is given
by projecting the G-default intensity on the smaller filtration F (see Chapter II of [6]). Hence
in our setup the F-default intensity of firm i is given by

λ̂t,i := E (λi(Xt) | Ft) , t ≤ τi (28)

i.e. the computation of default intensities in the market filtration leads to a nonlinear filtering
problem as well.

Model performance. We are convinced that this model has a number of attractive fea-
tures. First, actual computations are done mostly in the context of the hypothetical model
where X is fully observable. Since the latter has a simple Markovian structure, computations
become relatively straightforward. Second, the fact that prices of traded securities are con-
structed by projection on the market filtration F leads to rich credit-spread dynamics: the
proposed approach accommodates spread risk (random fluctuations of credit spreads between
defaults) and default contagion; see for instance Figure 3 below. Finally, the approach gives
great flexibility in terms of calibration methodologies, as is discussed in detail in Section 6.4.

6.2 Filtering and factor representation of market prices

Since X is a finite state Markov chain, the conditional distribution of Xt given Ft is described
by the vector πt = (π1

t , . . . , π
K
t )> with πkt := Q(Xt = k|Ft). In particular, we have for a

generic function a : {1, . . . ,K} → R the relation

ât := â(Xt) =
K∑
k=1

πkt a(k).
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Proposition 6.2 shows that π is the solution of a K-dimensional SDE system. This system is
driven by the F-Brownian motion mY given by

mY
t := Yt −

∫ t

0

âs ds (29)

and by the compensated default indicator process M = (Mt,1, . . . ,Mt,m)′t≥0 with

Mt,j := Dt,j −
∫ t

0

(1−Ds−,j) (λ̂j)sds. (30)

Recall that (q(i, k))1≤i,k,≤K is the generator matrix of X. In [28] the following result is
established.

Proposition 6.2. The vector πt = (π1
t , . . . , π

K
t )′ solves the SDE-system

dπkt =
K∑
i=1

q(i, k)πitdt+ (γk(πt−))> dMt + (αk(πt))> dmY
t , (31)

with coefficients given by

γkj (πt) = πkt

( λj(k)∑
i∈SX λj(i)π

i
t

− 1
)
, 1 ≤ j ≤ m, (32)

αk(πt) = πkt

(
a(k)−

∑
i∈SX

πita(i)
)
. (33)

Note that the diffusion part of (31) and in particular the function αk from (33) has the
same form as in equation (12); the form of γk from (32) is closely related to the Kushner-
Stratonovich equation for point process observation (11).

Proposition 6.2 permits us to give an explicit expression for contagion effects induced by
incomplete information. More precisely, consider two firms i 6= j. Then it follows from (32)
that the jump in the default intensity of firm i at the default time τj of firm j is given by

λ̂τj ,i − λ̂τj−,i =
K∑
k=1

λi(k) · πkτj−
(

λj(k)∑K
l=1 λj(l)π

l
τj−
− 1
)

=
covπτj−

(
λi, λj

)
Eπτj−(λj)

. (34)

Here covπ as well as Eπ denote the covariance (expectation) w.r.t. the probability measure
π on SX , and πτj− gives the conditional distribution of X immediately prior to the default
event. According to (34), default contagion increases with increasing correlation of the ran-
dom variables λi(·) and λj(·) under πτj−, which is perfectly in line with economic intuition.

In [28] it is shown that the process (Dt, πt)t≥ is a Markov process in the market filtration
F; the generator L of this process is an integro-differential operator. Hence the prices of
credit derivatives can be expressed in terms of Dt and πt, as is discussed in detail in the next
section. The process (D,π) will therefore be called the market state process. The following
algorithm can be used to generate a trajectory of the market state process:

Algorithm 6.3. (i) Generate a trajectory of X using a standard algorithms for the sim-
ulation of Markov chains.
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(ii) Generate for the trajectory of X constructed in Step (i) a trajectory of the default
indicator D and the noisy information Y . For the simulation of D one can use known
methods for simulating conditionally independent, doubly stochastic random times as
given in Section 9.6 of [37].

(iii) Solve (numerically) for the given trajectory of D and Y the SDE-system (31), e.g. via
Euler approximation.

Once a trajectory of the market state process (D,π) is at hand, the price path of a credit
derivative can be simulated using the relation Ĥt =

∑K
k=1 h(t, k,Dt)πkt , h(·) the full-information

value of the claim as in (27).

6.3 Pricing

In this section we discuss the pricing of credit derivatives in more detail. Basically all credit
derivatives common in practice fall in one of the following two classes:

• Options on the default state: this class comprises derivatives with a cash-flow stream
that depends on the default history of the underlying portfolio so that it is FD-adapted;
examples are corporate bonds, CDSs and CDOs.

• Options on traded assets: this class contains derivatives whose payoff depends on the
future market value of traded credit products. Examples include options on corporate
bonds or options on CDS indices and CDO tranches.

The pricing methodology for these product classes differs, so that they are discussed sepa-
rately.

Options on the default state. Let the FD-adapted process (Ht)0≤t≤T be the cumulative
cash-flow stream associated with the claim. Then by risk-neutral pricing its ex-dividend price
at time t is defined to be

Ĥt = E
(∫ T

t

e−r(s−t) dHs | Ft
)
. (35)

Denote by h(t, k, d) := E
( ∫ T

t
e−r(s−t) dHs | (Xt, Dt) = (k, d)

)
the full-information price of

the claim. Similarly as in (27), double conditioning on the full-information filtration G leads
to the relation

Ĥt =
K∑
k=1

πkt h(t, k,Dt). (36)

Note that Ĥt depends only on the current market state (Dt, πt) and on the function h(·) that
gives the hypothetical value under full information; the precise form of the the function a(·)
from (26) and thus of the dynamics of π is irrelevant. The dynamics of π do however matter
in the computation of hedging strategies; see [28] for details.

Example 6.4. We discuss zero bonds and CDS.

• Consider a zero bond on firm i with maturity T and zero recovery. Here Ht ≡ 0 for
t < T and HT = 1{τi>T}. By standard results on bond pricing with doubly stochastic
default times (see for instance [33]) the full-information value is given by

hi(t, k, d) = 1{di=0}E
(
e−

∫ T
t
r+λi(Xs)ds|Xt = k

)
; (37)
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The price of the bond at time t is then given by Ĥt,i =
∑K
k=1 π

k
t hi(t, k,Dt).

• Next consider a CDS on name i. Denote by t1 < · · · < tN = T the premium payment
dates and by x the spread of the contract. The cumulative cash-flow stream of the
premium leg is then given by Hprem

t = x
∑
tn≤t 1{τi>tn}, whereas the cumulative cash-

flow stream of the default leg equals Hdef
t = δ

∫ t
0
dDs,i, δ ∈ (0, 1) the loss given default

of the firm. It is well-known that the full-information value of the premium leg at time
t is equal to x1{τi>t}V

prem
i (t, k) with

V prem
i (t, k) =

∑
tn>t

E
(
e−

∫ tn
t

r+λi(Xs)ds|Xt = k
)

; (38)

the full-information value of the default leg equals δ1{τi>t}V
def
i (t, k) with

V def
i (t, k) = E

(∫ T

t

λi(Xs)e−
∫ s
t
r+λi(Xu)du ds|Xt = k

)
. (39)

Given the spread x the value at time t is thus given by
∑K
k=1 π

k
t

(
xV prem

i (t, k) −
V def
i (t, k)

)
, and the fair spread at time t is

x∗t :=
δ
∑K
k=1 π

k
t V

def
i (t, k)∑K

k=1 π
k
t V

prem
i (t, k)

.

Analogous arguments are used in the pricing of CDS indices and CDOs.

Remark 6.5 (Computation of full-information value h(·)). For bonds and CDSs the computa-
tion of h amounts to computing (37) and (38), respectively. There is an easy solution to this
task involving the exponential of the generator matrix of X, see [20] and [29]. In the case of
CDOs, a solution of this problem via Laplace transforms can be found in [15]. Alternatively,
a two stage method that employs the conditional independence of defaults given FX∞ can be
used. For this one first generates a trajectory of X via Monte Carlo. Given this trajectory,
the loss distribution can then be evaluated using one of the known methods for computing the
distribution of the sum of independent (but not identically distributed) Bernoulli variates.
Finally, the loss distribution is computed by averaging over the sampled trajectories of X.
An extensive numerical case study comparing the different approaches is given in [47].

Options on traded assets. Assume now that N basic options on the default state are
traded on the market, and denote their ex-dividend price at time t by p̂t̃,1, . . . , p̂t̃,N . Then
the payoff of an option on traded assets is of the form g̃(DT̃ , p̂T̃ ,1, . . . , p̂T̃ ,N ), to be paid at
maturity T̃ ≤ T (T is the maturity of the underlying products). From (36) the payoff of
the option can be written in the form g (DT̃ , πT̃ ), where g is implicitly defined. Since the
market state (D,π) is an F-Markov process, the price of the option at time t < T̃ is given by
a function of time and the current market state,

E
(
e−r(T̃−t)g(DT̃ , πT̃ )|Ft

)
= g(t,Dt, πt). (40)

By standard results from Markov process theory the function g is a solution of the backward
equation

∂tg(·) + L g(·) = 0,
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L the generator of (D,π). However, the market state is usually a high-dimensional process
so that the practical computation of g(·) has to be based on Monte Carlo methods, using
Algorithm 6.3. Note that for an option on the default state the function g(·) does typically
depend on the entire generator L of (D,π) and hence on the form of a(·).

Example 6.6 (options on a CDS index). Index options are a typical example for an option
on a traded asset. Denote by T̃ < T the maturity of the contract and of the underlying
CDS index. Upon exercise the owner of the option holds a protection-buyer position on the
underlying index with a pre-specified spread x̄ (the exercise spread of the option); moreover,
he obtains the cumulative portfolio loss up to time T̃ given by

LT̃ =
m∑
i=1

δ1{τi≤T̃} .

Denote by V def(t,Xt, Dt) and V prem(t,Xt, Dt) the full-information value of the default and
the premium payment leg of the CDS index. In our setup the value of the option at maturity
T̃ is then given by the following function of the market state at T̃ :

g(DT̃ , πT̃ ) =
(
LT̃ +

∑
k≤K

πk
T̃

(
V def(T̃ , k,DT̃ )− x̄V prem(T̃ , k,DT̃ )

))+

. (41)

Numerical examples are given in Subsection 7.3 below.

6.4 Calibration

As we have just seen, the price of the credit derivatives common in practice is given by a
function of the current market state (D,π). Here a major issue arises: we view the process
Y generating the market filtration F as some kind of abstract information. Then the process
π is not directly observable for investors. On the other hand, pricing formulas need to be
evaluated using only publicly available information. An key point for the application of the
model is therefore to determine πt from prices of traded securities observed at time t, that
is model calibration. We discuss two approaches, standard calibration based on linear or
convex optimization and a calibration approach via filtering proposed in [26].

Standard calibration. Standard calibration means that we determine πt by minimizing
some distance between market prices and model prices at time t. This is facilitated sub-
stantially by the observation that the set of all probability vectors consistent with the price
information at a given point in time t can be described in terms of a set of linear inequalities.

Example 6.7. We discuss zero coupon bonds and CDSs as representative examples:

• Consider a zero coupon bond on firm i and suppose that at t we observe bid and ask
quotes p ≤ p for the bond. In order to be consistent with this information, a solution
π of the calibration problem at t needs to satisfy the linear inequalities

p ≤
K∑
k=1

pi(t, k)πk ≤ p .
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• Consider a CDS contract on firm i and suppose that at time t we observe bid and ask
spreads x ≤ x for the contract. Then π must satisfy the following two inequalities:

K∑
k=1

πk
(
xV prem

i (t, k)− δV def
i (t, k)

)
≤ 0 ,

K∑
k=1

πk
(
xV prem

i (t, k)− δV def
i (t, k)

)
≥ 0 .

Moreover, π needs to satisfy the obvious linear constraints πk ≥ 0 for all k and∑K
k=1 π

k = 1.

Standard linear programming techniques can be used to detect if the system of linear
inequalities corresponding to the available market quotes is nonempty and to determine a
solution π. In case that there is more than one probability vector π consistent with the given
price information at time t, a unique solution π∗ of the calibration problem can be determined
by a suitable regularization procedure. For instance one could choose π∗ by minimizing the
relative entropy to the uniform distribution. This leads to the convex optimization problem

π∗ = argmin
{ K∑
k=1

πk lnπk : π is consistent with the price information in t
}
.

Calibration via filtering. Alternatively πt can be estimated from historical price data by
nonlinear filtering. By (36), the price of a traded credit product in the market filtration is
given by a function g(t,Dt, πt) of time and of the current market state. Assume that investors
observe this price with a small amount of noise. The noise represents observation errors such
as bid-ask spreads and transmission errors as well as errors in the model specification. As
explained in Subsection 2.2, the noisy price observation can be modelled by the process U
with dynamics

dUt = g(t,Dt, πt)dt+ wdṼt, (42)

where Ṽ is a Brownian motion independent of all other processes, and where the constant
w > 0 models the error variance in the price observation. In this context estimating πt
amounts to finding the mean of conditional distribution of πt given the information available
to investors at time t, where the latter is described by the σ-field FIt := FDt ∨FUt . Recall that
πt solves the SDE (31). In order to determine the conditional distribution of πt given FIt one
therefore has to solve a second nonlinear filtering problem with signal process (πt)t≥0 and
observations given by the default state D and the noisy price information U . From a filtering
viewpoint this is a challenging problem with usually high-dimensional signal π, observations
of mixed type (diffusion and marked point processes) and with common jumps of observation
D and signal π. This problem is studied in detail in [26]; in particular, that paper proposes a
numerical solution via particle filtering. Numerical results are presented in the next section.

Calibration via filtering is appealing conceptually: new price information at t is used to
update the a priori distribution of πt given past price information up to time t− 1, say, but
this a-priori distribution (and hence the history of prices) is not disregarded altogether. In
that sense the method provides an interpolation between “historical estimation” of model
parameters and standard calibration procedures.
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Remark 6.8. Of course, in order to use the model one needs to determine also the parameters
of a(·) and - in case of next neighbour dynamics - parameters of the generator matrix of X.
An approach to this problem via time-series methods can be found in [29].

6.5 Hedging

Hedging is a key issue in the management of portfolios of credit derivatives. The standard
practice adopted on credit markets is to use sensitivity-based hedging strategies computed
by ad hoc rules within the static base-correlation framework; see for instance [40]. Clearly, it
is desirable to work with hedging strategies which are based on a methodologically sound ap-
proach instead. Using the previous results on the dynamics of credit derivatives it is possible
to derive model-based dynamic hedging strategies. A detailed derivation of these strategies
can be found in the original paper [28]. A key issue in the computation of hedging strategies
is the fact the market is typically incomplete (that is most claims cannot be replicated per-
fectly), as the price of the traded credit derivatives follows a jump-diffusion process. In order
to deal with this problem the concept of risk minimization as introduced by [22] is therefore
used. Risk-minimization is well-suited for the hedging of credit derivatives, as the ensuing
hedging strategies are relatively easy to compute and as it suffices to know the risk-neutral
dynamics of credit derivative prices.

The dynamic hedging of credit derivatives is also studied in [23], [35] or [12], albeit in a
different setup.

7 Numerical case studies

In order to illustrate the application of the model to practical problems we present a number
of small numerical case studies on model-dynamics, calibration and on the pricing of credit
index options. We concentrate on homogeneous models throughout, while the inhomogeneous
situation is covered in [28].

7.1 Dynamics of credit spreads and of π

As remarked earlier, the fact that in our model the prices of traded securities are given by
the conditional expectation with respect to the market filtration leads to rich credit-spread
dynamics with random fluctuations of credit spreads between defaults and default contagion.
This is illustrated in Figure 3 by a simulated credit-spread trajectory. The fluctuation of
credit spreads between defaults as well contagion effects at default times (e.g. around t = 600)
can be spotted clearly. The right graph gives the corresponding trajectory of the solution
π of the Kushner-Stratonovich equation (31). State probabilities fluctuate in response to
the fluctuations of D; moreover, there are shifts in the distribution π at default events.
Both graphs have been created for the case where X is a Markov chain with next-neighbour
dynamics.

7.2 Calibration

We discuss calibration for the frailty model where Xt ≡ X and hence the generator matrix of
X is identically zero, see also Example 6.1. In the frailty model default times are independent,
exponentially distributed random variables givenX = k, and dependence is created by mixing
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Figure 3: A simulated path of credit spreads under zero recovery (left) and the corresponding
trajectory of the solution π of the Kushner-Stratonovich equation (right); time is measured
in days. Note that on the right graph logarithmic scaling is being used.

over the states of X. A static model of this form (no dynamics of π) has been proposed by
[30] under the label implied copula model ; see also [42]. Since prices of CDS-indices and
CDO tranches are independent of the dynamics of π (recall the discussion surrounding (36)
above), for these products pricing and standard calibration in the dynamic frailty model and
in the static implied copula models coincide. However, our framework permits the pricing
of tranche- and index options and the derivation of model-based hedging strategies. Both
issues cannot be addressed in the static implied copula models.

Since in the frailty model default times are independent given the current value of X,
computing the full-information value of traded securities is particularly easy. On the other
hand, the long-run dynamics of credit spreads implied by the frailty model are quite unrealis-
tic, as the filter learns the “true value” of X over time. However, since prices of CDS-indices
and CDO tranches are independent of the dynamics of π this is not a problem for the cali-
bration of the model to index data and tranche data or for the pricing of bespoke tranches.
The frailty model is however not well-suited for the pricing of options on traded assets if the
maturity T̃ of the option is large.

Standard calibration to itraxx spreads. We begin with an example for a calibration of
the model to observed tranche and index spreads of the itraxx. We consider a homogeneous
model with |SX | = 9; the values of the one-year default intensity are given in Table 1 below.
The model was calibrated to tranche and index spread data from 2004, 2006, 2008 and 2009.
The data from 2004 and 2006 are typical for tranche and index spreads before the credit crisis;
the data from 2008 and 2009 on the other hand represent the state of the market during the
crisis. In order to determine a solution π∗ of the calibration problem we use the methodology
described in Section 6.4, with very satisfactory results. The resulting values for π are given in
Table 1. We clearly see that with the emergence of the credit crisis the calibration procedure
puts more mass on states where the default intensity is high; in particular, the extreme state
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Figure 4: A trajectory of the market default intensity λ̂t and of the investor estimate E(λ̂t |
FIt ) for different observation noise.

where λ = 70% gets a probability of around 3%. This reflects the increased awareness of
future defaults and the increasing risk aversion in the market after the advent of the crisis.
The fact that the the model-implied probability of “Armageddon-scenarios” increases as the
credit crisis unfolds can also be observed in other model types; see for instance [8].

λ (in %) 0.01 0.3 0.6 1.2 2.5 4.0 8.0 20 70

π∗, data from 2004 12.6 22.9 42.0 17.6 2.5 1.45 0.54 0.13 0.03
π∗, data from 2006 22.2 29.9 39.0 7.6 1.2 0.16 0.03 0.03 0.05
π∗, data from 2008 1.1 7.9 57.6 10.8 11.7 4.9 1.26 1.79 2.60
π∗, data from 2009 0.0 13.6 6.35 42.2 22.3 12.5 0.0 0.00 3.06

Table 1: Results of the calibration to itraxx spread data (index and tranches) for different
data sets from several years; the components of π∗ are given in percentage points.

Calibration via filtering. Next we illustrate the filter approach to model calibration with
numerical results from [26]. The quantity to be estimated via filtering is the default intensity
in the market filtration λ̂t which can be viewed as approximation for the short-term credit
spread. Numerical results are given in Figure 4, where the filter estimate E(λ̂t | FIt ) is given
for a high and a low value of the observation noise w. Note that for low observation noise
the estimator E(λ̂t | FIt ) tracks λ̂t quite well. Further details are given in [26].

7.3 Pricing of credit index options

Options on a CDS index introduced in Example 6.6 are a typical example for an option on
traded asset. In practice this contract is usually priced by a fairly ad-hoc procedure: it is
assumed that the so-called loss adjusted spread (the sum of the value of the default payments
over the time period (T̃ , T ] and of the front-end protection LT̃ , divided by the value of
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c 0.5 1 2 5

moneyness x̄/x0 = 0.8 1.53 1.56 1.62 1.83
moneyness x̄/x0 = 1 1.75 1.75 1.76 1.93
moneyness x̄/x0 = 1.2 1.95 1.95 1.95 2.04

Table 2: Implied volatilities for a option to buy protection on the CDS index with Implied
volatilities are computed via the Pedersen (2003) [41] approach.

the premium payments over (T̃ , T ]) is lognormally distributed under a suitable martingale
measure so that the value of the option can be computed via the Black formula. Prices
are then quoted in terms of implied volatilities; see [41] and [7] for further details. Beyond
convenience there is no justification for the lognormality assumption in the literature. In
particular, it is unclear if a dynamic model for the evolution of spreads and credit losses can
be constructed that supports the lognormality assumption and the use of the Black formula,
and there is no empirical justification for this assumption either.

The filter-model discussed here on the other hand offers the possibility to price this
product in the context of a consistent model for the joint evolution of defaults and credit
spreads. In our numerical experiments we worked in the following setup: we used the same
frailty model as in the calibration to itraxx data; the function a(·) from (26) was given by
a(k) = c lnλ(k) for varying values of c; the value π0 at the starting day of the contract
was the 2009-value from Table 1, i.e. the model was calibrated to tranche spreads and index
spreads on that date; the time to maturity T̃ of the option was taken equal to three months5.
Prices were computed using Monte Carlo simulation.

Table 2 presents our pricing results for varying values of c (varying local spread volatility)
and varying moneyness x̄/x0 (x̄ the exercise spread of the option as given in (41) and x0 the
index spread at inception of the option). We can see the following

• The model generates volatility skews: options with high moneyness (out of the money
options) tend to have higher implied volatilities than in the money options. This
appears reasonable: out of the money potions provide protection against the adverse
scenario of rising spreads and/or many losses during the runtime of the option. Such
a protection tends to be more expensive than the protection against benign scenarios.
The obvious analogy is the skew for equity options, where implied volatilities for out-
of-the-money put options (which offer protection against the adverse scenario of falling
markets) are higher than implied volatilities for out-of-the-money calls.

• Increasing the value of c tends to lead to higher implied volatilities. Nonetheless it
shows that for options on traded assets the choice of the function a(·) does indeed have
an impact on the price of the option. Given market quotes for credit index options this
observation could of course be used to calibrate parameters of a(·).

We also used next neighbour dynamics for X to price the option. This led to a slightly
smoother distribution of the credit spread at T̃ , but the impact on option prices and implied
volatilities was found to be very small. Finally we looked at the distribution of the loss-
adjusted spread in our model. Recall that in the literature it is frequently assumed that

5Short maturities of 3–6 months are the market standard for index options, longer-term contracts are
hardly traded as the composition of the underlying index changes every 6 months.
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Figure 5: Quantile-quantile plot of logarithmic loss-adjusted spread against the normal dis-
tribution. The S-shaped form of the plot clearly points to heavy tails.

this spread is log-normally distributed. In Figure 5 we therefore give a quantile-quantile
plot of logarithmic loss-adjusted spreads in our model against the normal distribution. The
S-shaped form of the plot clearly points to heavy tails.

Unfortunately, market quotes for index options are relatively scarce so that we could
not test our pricing results empirically. However, our findings clearly caution against the
thoughtless use of the Black formula and of market models in credit index markets, despite
of the obvious success of this methodology in the default-free interest world.
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[6] P. Brémaud. Point Processes and Queues. Springer Verlag. Berlin Heidelberg New York,
1981.

[7] D. Brigo and M. Morini. Arbitrage-free pricing of credit index options. the no-
armageddon-pricing measure and the role of correlation after the subprime crisis.
preprint, available on www.defaultrisk.com, 2007.

[8] D. Brigo, A. Pallavicini, and R. Torresetti. Credit Models and the Crisis, or: How I
learned to stop worrying and love the CDO. working paper, Imperial College London,
2009.

[9] A. Budhiraja, L. Chen, and C. Lee. A survey of nonlinear methods for nonlinear filtering
problems. Physica D, 230:27–36, 2007.

[10] D. Coculescu, H. Geman, , and M. Jeanblanc. Valuation of default sensitive claims
under imperfect information. Finance and Stochastics, 12:195–218, 2008.

[11] P. Collin-Dufresne, R. Goldstein, and J. Helwege. Is credit event risk priced? Modeling
contagion via the updating of beliefs. Preprint, Carnegie Mellon University, 2003.

[12] R. Cont and Y. H. Kan. Dynamic hedging of portfolio credit derivatives. Working paper ,
2008.

[13] P. Crosbie and J. R. Bohn. Modeling Default Risk. KMV Corporation
[http://www.kmv.kom/insight/index.html], 1997-2001.

[14] M. H. A. Davis and S. I. Marcus. An introduction to nonlinear filtering. In M. Hazewinkel
and J. C. Willems, editors, Stochastic Systems: The Mathematics of Filtering and Iden-
tifications and Applications, pages 53–75. Reidel Publishing Company, 1981.

[15] G. di Graziano and L. C. G. Rogers. A new approach to the modeling and pricing of
correlation credit derivatives. Int. Jour. Theor. Appl. Fin., 64:2089–2123, 2009.

[16] D. Duffie, A. Eckner, G. Horel, and L. Saita. Frailty correlated default. Journal of
Finance, 64, 2089–2123, 2009.

[17] D. Duffie and D. Lando. Term structures of credit spreads with incomplete accounting
information. Econometrica, 69:633–664, 2001.

27



[18] D. Duffie and K. Singleton. Modeling term structures of defaultable bonds. Review of
Financial Studies, 12:687–720, 1999.

[19] R. Elliott. New finite-dimensional filters and smoothers for noisily observed markov
chains. IEEE Trans. Info. theory, IT-39:265–271, 1993.

[20] R. J. Elliott and R. S. Mamon. A complete yield curve description of a Markov interest
rate model. International Journal of Theoretical and Applied Finance, 6:317 – 326, 2003.

[21] P. Feldhütter and D. Lando. Decomposing swap spreads. Journal of Financial Eco-
nomics, 88:375 – 405, 2008.
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