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Sparse sequence model in a Bayesian setting

Consider the well known Gaussian sequence model

Xi = θi + εi , εi ∼ N (0, 1), i = 1, . . . , n

and assume that the parameter θ = (θ1, . . . , θn) is nearly black

pn = #{i , θi 6= 0} = o(n)

Applications

Applications for this models are numerous

I Function estimation using wavelets

I It is also a good way to study the behaviour of more complex sparse
models

Salomond (UPEC) Guassian Scale Mixtures May 2017 4 / 38



Sparse sequence model in a Bayesian setting

Consider the well known Gaussian sequence model

Xi = θi + εi , εi ∼ N (0, 1), i = 1, . . . , n

and assume that the parameter θ = (θ1, . . . , θn) is nearly black

pn = #{i , θi 6= 0} = o(n)

Applications

Applications for this models are numerous

I Function estimation using wavelets

I It is also a good way to study the behaviour of more complex sparse
models

Salomond (UPEC) Guassian Scale Mixtures May 2017 4 / 38



Sparse sequence model in a Bayesian setting

Consider the well known Gaussian sequence model

Xi = θi + εi , εi ∼ N (0, 1), i = 1, . . . , n

and assume that the parameter θ = (θ1, . . . , θn) is nearly black

pn = #{i , θi 6= 0} = o(n)

Applications

Applications for this models are numerous

I Function estimation using wavelets

I It is also a good way to study the behaviour of more complex sparse
models

Salomond (UPEC) Guassian Scale Mixtures May 2017 4 / 38



Example

-2

0

2

4

0 25 50 75 100
i

si
gn

al legend
X

θ

Salomond (UPEC) Guassian Scale Mixtures May 2017 5 / 38



Sparse sequence model in a Bayesian setting

A wide variety of both frequentist and Bayesian estimator have been
proposed in the literature.

Bayesian framework

In a Bayesian framework, the sparsity is induced through the prior
(equivalent of the penalty term).

A first approach proposed in the literature is the two components model
Spike and Slab

θi ∼ λiδ0 + (1− λi )π1

where π1 has some heavy tails properties.
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Prior - Normal scale mixture

Normal scale mixture

Consider a product prior on θ = (θ1, . . . , θn)

σ2
i ∼ π
θi ∼ N (0, σ2

i )

Examples of such priors :

I Horseshoe (Carvalho et al., 2010; van der Pas et al., 2014)

I Normal-Gamma (Caron and Doucet, 2008)

I Global-local scale mixtures (Ghosh and Chakrabarti, 2015)

I Spike and Slab Lasso (Roc̆ková, 2015)

I ...
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Prior - Normal scale mixture cnt’d

We are interested in the asymptotic properties of the posterior
distribution and simultaneous testing procedures.

Questions

For the Normal scale mixture class of priors

p(θi ) =

∫
R+

1√
2πσ2

e−
θ2
i

2σ2 π(σ2)dσ2

what are the conditions on π such that our procedures have optimal
asymptotic properties ?

Qualitative answer :

I A lot of mass in a neighbourhood of 0 shrinkage effect

I Heavy tails counteract the shrinkage for large θi
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Non-zeros coefficients I

Regular varying functions at infinity

We say that L is uniformly regular varying at infinity if there exist
R, u0 > 1 such that

1

R
≤ L(au)

L(u)
≤ R, ∀a ∈ [1, 2], u > u0

I Some examples : ub, logb(u)

I Not uniformly varying : eau
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Non-zeros coefficients II

Condition 1

For some b ≥ 0, π(u) = Ln(u)e−bu where Ln is uniformly regularly
varying at 0, and

π(u) &
(pn
n

)K
e−b

′u, ∀u > u∗

This condition assure the recovery of non-zeros coefficients

I The tails of π can decay exponentially fast

I The dependence on n of the prior should behave roughly as a power
of pn/n
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Non-zeros coefficients III

Often practitioners are considering the following prior model

θ|σ2, τ 2 ∼ N (0, τ 2σ2)

σ2 ∼ π′

and τ is an hyper-parameter. In this case the following condition implies
condition 1

Condition 1’

π′ is an uniformly regularly varying function and τ = (pn/n)K
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Zeros coefficients

A first condition to recover the 0 coefficients is

Condition 2

For some constant c > 0 we have
∫ 1

0
π(u)du ≥ c

We need sufficient mass around 0

I This condition will induce a shrinkage of the posterior

I Form a modelling point of view, it makes sense since we assume that
most of the coefficients are 0
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Still zeros coefficients

A more surprising condition is the following

Condition 3

Let sn = pn
n

√
log(n/pn) and let bn =

√
log(n/pn) then there exists C > 0

such that ∫ ∞
sn

(
u ∧ b3

n√
u

)
π(u)du + bn

∫ b2
n

1

π(u)√
u
du ≤ Csn

Details

I A fair part of the mass is in [0, sn]

I π decays sufficiently fast outside [0, sn]
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Stronger conditions

Under the assumption that pn = o(n) the following two conditions
implies conditions 2 and 3

Condition A

There exists C such that

π(u) ≤ C

u3/2

pn
n

√
log(pn/n), ∀u > sn

Condition B

There exists C such that ∫ ∞
sn

π(u) ≤ Cpn
n
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Recovery

Non-Zero Coefficients

Under condition 1

sup
θ0∈l0(pn)

Π

 ∑
i,θ0,i 6=0

(θi − θ0,i )
2 > Mnpn log(n/pn)|Xn

→ 0

and
sup

θ0∈l0(pn)

∑
i,θ0,i 6=0

En
0(θ̂i − θ0,i )

2 . pn log(n/pn)
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Recovery

Zero Coefficients

Under condition 2 and 3

sup
θ0∈l0(pn)

Π

 ∑
i,θ0,i=0

(θi − θ0,i )
2 > Mnpn log(n/pn)|Xn

→ 0

and
sup

θ0∈l0(pn)

∑
i,θ0,i=0

En
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Sketch of the proof I

Using the hierarchical form of the prior we have that

θi |Xi , σ
2
i ∼ N

(
Xi

σ2
i

1 + σ2
i

,
σ2
i

1 + σ2
i

)
π(σ2

i |Xi ) ∝ (1 + σi )
−1/2e

X 2
i
σi

1+σi π(σi )

To control the posterior mass of a set
Bn = {||θ − θ0||2 ≥ Mnpnlog(n/pn)} we will simply use a Markov
inequality

Π(Bn|X n) ≤ E(||θ − θ0||2)

Mnpnlog(n/pn)
=

∑n
i=1

(
XiE(

σ2
i

1+σ2
i
|Xi )− θ0,i

)2

+ V(θi |Xi )

Mnpnlog(n/pn)
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Sketch of the proof II

We see that

1. We can separate the case θi = 0 and θi 6= 0

2. We only have to control E(
σ2
i

1+σ2
i
|Xi ) := mXi

We first consider the case θi = 0. We show that under Conditions 1 and
2, we have the following bound for mx

mx ≤ sn

(
1 +

√
2C

c
e

x2

4

)
+ qn

2
√

2C

c
e

x2

2

where sn = pn
n log(n/pn) and qn = sn(log(n/pn)−1/2. With this we can

show that
E(XmX )2 ≤ pn

n
log(n/pn)
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Sketch of the proof III

We now consider θi 6= 0. Note that because we only have pn of them, we
simply need to bound the bias and the variance by something of the order
of log(n/pn). We show that under condition 3 we have for
|x | > c0 +

√
2K (u0 ∨ 1) log(n/pn)

1−mx ≤
C

|x |

Now note that

Eθ0,i (XimXi − θ0,i ) = Eθ0,i (Xi (mXi − 1)) .

This is enough to control the bias and the variance.
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Multiple testing problems

We consider now the problem of selecting which components θi are non
zero.

Questions

1. How to select the non-zero coefficient

2. How to assess the quality of the decision rule ?

An answer to 1 has been proposed in Carvalho et al. (2010). Recall that
our prior is defined as

σ2 ∼ π
θ|σ2 ∼ N (0, σ2)

Define κi = σ2
i /(1 + σ2

i ) the shrinkage coefficient.
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Shrinkage Coefficient

Recall that
θi |σ2

i ,Xi
ind∼ N (Xiκi , κi ).

κi =
σ2
i

1+σ2
i

is thus the coefficient that shrinks the MLE Xi . Carvalho et al.

(2010) proposed the following selection rule : Chose θi to be non zero if

Eπi (κi |Xi ) > 1/2
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Multiple testing risk

We thus have the following decision rule δi = IEπi (κi |Xi )>τ .

We will
consider a Bayesian classification risk to assess the quality of the multiple
testing rule δ = (δ1, . . . , δn)
Bayesian Risk associated with a 2 group prior
µ : θi ∼ (1− pn

n )δ0 + pn
n N (0, ψ2) Thus

Rψn (δ) =
n∑

i=1

{
(1− pn

n
)PN (0,1)(δi = 1) +

pn
n
PN (0,1+ψ2)(δi = 0)

}
How does the decision rule behave for this risk under the previous
conditions ?
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Upper bound on the risk

Results

Under Conditions 1-3’ we have for the decision rule δi = IEπ(κi |Xi )>τ

Rψn
n (δ) ≤ pn

(
8
√
πC

cτ
+ 2Φ

(√
2K (u0 ∨ 1)Cψ

)
− 1

)
(1 + o(1))

if ψ2
n = Cψ log(n/pn)(1 + o(1))

Where K and u0 are the constants from condition 1 and c and C are the
constants in condition 2 and 3
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Remarks

The constants for the Bayesian risk is almost sharp !
Bogdan et al. (2011) derived an Oracle and computed the optimal Bayes
Risk

pn
(

2Φ(
√
Cψ)− 1

)
(1 + o(1)),

here the best possible constant is pn
(
2Φ(2

√
Cψ)− 1

)
(1 + o(1)) (but for

a large class of priors !)
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Sketch of the proof

Because the observations are independent, we simply have to control the
Types I t1 = PN (0,1)(δi = 1) and Type II tψ2 = PN (0,1+ψ2)(δi = 0) error
for each test. Using the same notations as before we have

t1 = PN (0,1)(mX ≥ τ)

tψ2 = PN (0,1+ψ2)((1−mX ) ≥ 1− τ)

The proofs uses the same bounds presented before.
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Extension - Known structure

In many cases, we have additional information on the structure of the
parameter (θ1, . . . , θn).

There is some way of taking advantage of this structure (e.g. fused lasso)

θ1

θ2

θ3

θ4

θ5

θ6

θ7

θ8

θ9
Example of a grid structure
If θ5 is non zero, then there is high
chances that (θ1, . . . , θ9) are also
non-zero.

This additional information can be easily introduced through the prior π
on (σ1, . . . , σn)
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A dependent prior

We consider the following depend prior

si ∼ π(si )

σ = As

θ ∼ Nn(0,diag(σ))

where A is the adjacency matrix of the underlying graph.

We thus get the
posterior

π(si |Xn, s−i ) ∝
1∏n

i=1

(
1 +

∑n
j=1 ai,jsj

)1/2
exp

(
1

2

n∑
i=1

X 2
i

∑n
j=1 ai,jsj

1 +
∑n

j=1 ai,jsj

)
π(s)
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Numerical results - estimation

dependent prior
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Numerical results - testing

dependent prior
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Real data example
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Extensions and Perspectives I

When considering multiple testing, one could also want to consider False
Discovery rates.

False Discovery Rate

Recall that FDR is given by

FDRn = E
(

FDn

TDn + FDn

)

Similarly one could consider the False Non-discovery rate

FNDn = E
(
FNn

pn

)
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Extensions and Perspectives II

Recently Rabinovich et al. (2017) studied a new risk defined as

Rn = FDRn + FNRn

Question

I Can we get an upper bound for this risk for the considered testing
procedure ?

I Can we ensure that the Risk will tend to 0 uniformly over a certain
set ?
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Extensions and Perspectives III

One can also want to consider Gaussian linear model

X = Zθ + ε

where Z is a m × n matrix with m� n. In this case the proofs
techniques developed so far cannot be used. Can we get contraction rates
under similar conditions such as

Conditions for sparse linear model

π([sp,∞[) ≤ sp, ∀u > u0, π(u) ≥
(
s

p

)K

e−bu

It seems that we can get the minimax contraction rate in this case work in

progress...
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Thank you for your attention !
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Condition 3 can be re-written as

∫ 1

sn

uπ(u)du +

∫ b2
n

1

(
u +

bn√
u

)
π(u)du + b3

n

∫ ∞
b2
n

π(u)√
u
du ≤ Csn

Back
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