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”Sapientis est Ordinare”

Atristotle,
384 — 322 BC

It belongs to the wise person to create order”
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Cluster analysis based on a finite mixture model I

Model
1. Observations y = (yi, - - ,y~) are a sample from a mixture distribution with
9= (1],9],...,9[()1

K

p(yil9) = > mpe(vil6),

k=1
where
e the component densities py(y;|6y) arise from the same parametric family,
e = (n,...,nk) are the component weights, Z,’f:l m=1,m >0,
e it is assumed that each component corresponds to a data cluster,
o usually the group membership S; € {1, ..., K} is unknown:

= they are introduced as latent allocation variables S = (Si, ..., Sy) to indicate
the component from which each observation is drawn:

p(y,-\Si = k) = pk(y,-\ek), where PF(S,' = k) = Nk

References
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Cluster analysis based on a finite mixture model II

Bayesian framework

2. The mixture likelihood p(y|) is combined with the prior p(«) and the
posterior p(¥]y) is obtained:

p(Bly) o< p(y|9)p(d).

3. Estimation of the posterior distribution through standard MCMC methods
based on data augmentation and Gibbs sampling.
Start with some classification S = (81, . .., Sy) and iterate the following steps:

3.1 Parameter simulation conditional on the classification S:
3.1.1 Sample 7.

3.1.2 Sample the component-specific parameters 01, . . . , Og.

3.2 Classification simulation conditional on the parameters 19:
3.2.1 SampleS = (Sy,...,Sn).
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Issues and approach

e Challenges in model-based clustering:
(a) Estimation of the number of components: crucial and old problem!

(b) Capturing (Non-Gaussian) data clusters: normal components?

e QOur approach: ”’prior modelling”:

= Specification of “’suitable priors” on the mixture parameters.

R R

To induce characteristics in model estimation we are interested in.

Not a “new” kind of prior families, rather well-known conditional conjugate priors.

Hyperparameters of the priors are chosen carefully and in a prudential way.
Prior specifications work simultaneously (joint approach).

Data can overwhelm the prior information if they are informative enough
= Flexible way of modeling!
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Bayesian normal mixture model

e Gaussian mixtures:
K
p(yi) = Y mifw(yil e, ),
k=1

e Priors:

n ~ Dir(e,...,e0),
1278 N(b07B0)7
S o~ W e, Co) (e~ W(c, Co)).

2

e Hyperparameters e, bo, Bo, co, Co?



Sparse finite mixtures

Estimating K

Overfitting mixture

e Comparison of candidate models with different K (e.g. BIC, Bayes factors) to
select the model with the best fit.

= Opverfitting mixture: At some point in the process, the number of components
must be overfitted i.e. K > K"

= Overfitting: non-identifiability of the model.

Non-identifiability due to overfitting:
e Overfitting mixtures: irregular likelihood (Sylvia FS, 2006).

e If K > K™, there are two possibilities how to handle a superfluous
component:

1. weight of a superfluous component is shrunken toward zero
(component-specific parameter vector not identified),

2. component-specific parameters vector of the superfluous component is equal
to a ’true’ one, splitted components
(weights are not identified).
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Dirichlet prior on the weights I

Posterior of an overfitting mixture: K > K"

e Rousseau and Mengersen (2011) study the asymptotic behavior of the posterior
distribution of an overfitting mixture model. They showed its shape depends on
the prior on the weights:

n ~ Dir(eo, ... ,€o)

o Ifey < d/2,d = dim(6y), the posterior density handles overfitting by
asymptotically shrunking weights of superfluous components towards 0,
i.e. they are left empty.

o If ey > d/2, the posterior density handles overfitting by forming at least two
identical components,
i.e. splitted components, ’filled’ components.
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Dirichlet prior on the weights II

Dirichlet(c, o, «) distribution:

a = 1000

Plot by Chris Holmes and Chris Yau, Edinburgh, 2010, meeting “Mixture estimation and Application”.
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Sparse finite mixtures

Dirichlet prior on the weights III

To select K'™¢:

“Decide through the Dirichlet prior whether you prefer empty components or

duplicated components for overfitting mixtures” (Frithwirth-Schnatter, 2012).

e By calculating marginal likelihoods p(y|K) or the posterior p(K|y) in
RIMCMC:

= Interest lies in filling all specified components

= Specify a redundant prior on the mixture weights (i.e. eg > d/2).

e By estimating the number of non-empty components:
= Interest lies in emptying superfluous components:

= Specify a sparse prior on the mixture weights (i.e. o < d/2)
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Sparse finite mixtures (GMW, Sylvia FS, Bettina G, 2016)

Estimation of the number of mixture components:

=
=
=
=

Specify an overfitting mixture model (K > K").
Specify a sparse prior on the weights 77: choose ¢y small.
For each iteration m consider the number of non-empty components KEL'").

Estimate K" by the most frequent number of non-empty components:

Ky = mode{p(K+y)}

“Automatic” tool to select the number of components!
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Mixture components versus data clusters

Note: Sparse finite mixtures
o make a distinction between

- K (number of specified components) and
- K} (the number of non-empty components).

We assume that
e K is fixed parameter,
e K, is a random variable:

- a priori the number K depends on both ¢y and K (fixed parameters), i.e.
p(K+|K, eo),

- a posteriori the number K+ of non-empty groups can be estimated,

P(K+[y).
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Prior of K
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Simulation study I

Simulation study:

e Component means p; = (2,—2,0,0), p, = —pty, pb3 = (2,2,0,0)’, and
[, = — 4 and isotropic covariance matrices 3y = I, k=1,...,4.

e m = (0.25,0.25,0.25,0.25).

Figure: Scatter plots of one randomly selected data set.
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Simulation study II

Mixture o

K efixed K. MCR MSE,
4 001 4 0.047  0.136
15 001 4 0.048  0.137
30 001  4(8) 0048 0.136
30 0.001 4 0.048  0.136
30 0.00001 4 0.047  0.136

Table: Clustering results for different K.
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Simulation study III

200
I

T T T T T T T
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iteration

Figure: Number of observations allocated to the different components.
MCMC run of a single data set, K = 15.
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Simulation study IV

With a very small component: n = (0.02,0.33,0.33,0.32):

T
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— ; (=]
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S el
R R R R R E RN B T . . . . T .
1 4 7 10 13 16 19 22 25 28 0 2000 4000 6000 8000 10000
components iteration

Figure: (unidentified) Posterior weight draws, sorted by size in each iteration, and trace plot of
the number of observations allocated to the different mixture components.

Note: K4 # number of components with large(r) weights!
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Sidestep: Relation to BNP approaches I

Bayesian Non-Parametrics (BNP) approach:

e Sparse finite mixtures are related to infinite mixtures, based on a Dirichlet
process prior.

e A Dirichlet process prior DP(«, Go) for y leads to infinite mixture

Z Pk (¥]0k)-

o If the base measure 8 ~ Gy is the same as the prior p(0) in finite mixtures:
=> the only difference lies in the prior of the weights 1, 72,73, . . ..

o The stick-breaking representation (Sethuraman, 1994) provides an connection
in terms of the sticks vy, vs, 13, . . .

m=uv, m=wn(l-uv), Uk—VkH (1 —v), vk~ Beta(ax, b).

e For DP(«,Go): vk ~ Beta(l, ).
For finite mixture: v ~ Beta(eo, (K — k)eo), vk = 1.
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Sidestep: Relation to BNP approaches II
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DP(«) Finite mixture Sparse finite mixture

v ~ Beta(1, o) v ~ Beta(eo,eo(K — k)) vk ~ Beta(eo, eo(K — k))
a=1 K =15,e0 = 4 K = 15,¢) = 0.01
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Sidestep: Relation to BNP approaches I1I

Probability to create a new cluster:

H . a
DP mixture: aINTT
. . eo(K—K1")
Finite mixture: oK FN=T *

K;l is the number of non-empty clusters implied by
S.i=(S1,...,Sim1,8i41,...,8N).

Convergence:
A finite mixture with prior  ~ Dir(eo) converges to a DP(«) for K — oo if

eo = /K (Green and Richardson, 2001).

Expected number of clusters:
DP mixture: K4 o alog(N).
Finite mixture: K is asymptotically independent of N.

Conclusion:

- use infinite mixtures if you expect that the number of clusters increases for
increasing data information,

- use sparse finite mixtures if you do not!
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Mixture of mixtures

Sidestep: Relation to BNP approaches IV
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Figure: Probability to create a new cluster as a function of the already existing clusters K;iz

- left: sparse finite mixtures with eg =
- right: for finite mixtures with ey = 4,
- black line: for K = oc.

1/K,
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Some benchmark data sets

Data set N Kyye | K+ for sparse finite mixtures (K = 10, ep = 0.01)
Iris 150 3 3
adj = 0.92, er = 0.03
Crabs 200 4 4
adj = 0.80, er = 0.08
Flea 74 3 3
beetles adj =1, er = 0.00
AIS 202 2 3
adj = 0.76, er = 0.11
Wisconsin 569 2 4
adj = 0.62, er = 0.21
Yeast 626 2 6
adj = 0.48, er = 0.23

adj: adjusted Rand index (1 perfect classification), er: proportion of misclassified observations
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Capturing non-Gaussian data clusters I

Problems with normal mixtures in model-based-clustering:
o [f data clusters are non-Gaussian:
= number of estimated normal components # the number of data clusters,

since: several normal components have to be merged to solve this
misspecification.

e Recent research: non-Gaussian component densities such as skew-normal or
skew-t distributions.
However:
o It may be difficult to decide which parametric distribution is appropriate to
characterize a data cluster.
= ”Mixture of mixtures” (GMW, Sylvia FS, Bettina G., 2017):

e models the non-Gaussian cluster distributions themselves as Gaussian
mixtures.

o Gaussian mixtures can approximate a wide class of probability
distributions!
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Capturing non-Gaussian data clusters 11

Figure: Smiley’s data (Leisch, 2004)
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Idea and strategy: Mixture of mixtures

o Idea: Specification of a mixture model where
= each cluster distribution is itself a mixture of normal subcomponents:

K
p(yil®) = > mpi(yil6),
k=1
L
pilO) = D wafn (vl S)-

=1
= Highly over-parameterized mixture model!

e We specity informative priors for the parameters of the mixture of mixtures
model in order to be able to
o to estimate the number of data clusters,

e to achieve a good approximation of the cluster density through the cluster
mixture distribution.
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Number of clusters

e Qur strategy for 7 ~ Dirk(eo):

“sparse finite mixture”: specify an overfitting mixture of cluster distributions and
define a sparse weight prior on the cluster weights.

e Our strategy for wy ~ Dirr(do):

We use the normal mixture to approximate an arbitrary cluster distribution in a
semiparametric way.
= We are not interested in estimating the “true” number of subcomponents L.

We specify the same fixed redundant number of normal subcomponents L for each
cluster.

We specify a redundant prior for the subcomponent weights in order to fill all
subcomponents during MCMC sampling by choosing dj large, dy > d/2.

“Automatic” tool to get a good density fit of the cluster distribution!
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Modelling non-Gaussian cluster distributions I

o Non-identifiability problem: It cannot be decided by the likelihood which
subcomponents build which cluster.

e Strategy: Specification of highly informative priors for the subcomponent
parameters such that

e within a cluster subcomponents have strongly overlapping and flat densities.

= large subcomponent covariance matrices.
= strong shrinkage of the subcomponent means toward the cluster mean.

e Idea: We specify the prior parameters through variance-covariance
decomposition of the data.
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Modelling non-Gaussian cluster distributions II

Variance-covariance decomposition of a mixture of mixtures:

Cov(Y) = ¢Cov(Y) + (1 — ¢5)Cov(Y)
—_—— —— —_—
by cluster means within the clusters
= ¢sCov(Y) + (1 — ¢g)pwCov(Y) + (1 — ¢5)(1 — ¢pw)Cov(Y)
——
by cluster means by the subcomponent means within the subcomponents
I I

Cov(pyy) 27
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Modelling non-Gaussian cluster distributions I11

To define the prior parameters for subcomponent means and covariance matrices:
1. Choose ¢w and ¢pp, e.g. o = 0.5, 9w = 0.1.

2. Define the prior parameters in order that a priori

E(Zu) = (1—9w)(1—9¢5)S,,
Cov(py) = éw(l — ¢s5)S,.
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Model identification

To solve the label switching problem:

e On the cluster level:

o Cluster the draws in point process representation to obtain a unique
labeling.

e Note: we clustered only a functional of the subcomponent means of a
cluster in the point process representation.

e On the subcomponent level:

e Actually: A lot of label switching occurs due the the strong overlapping
subcomponent distributions, but it does not matter!

= It is not necessary to identify single subcomponents:
we are only interested in the whole cluster mixture distribution of the
cluster.

= we can ignore the label switching problem on this level!
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Example: Simulated data I

e Data from a mixture of 8 bivariate normal distributions (left).

o Clustering using a sparse finite mixture (middle) compared to using a sparse
finite mixture-ofmixtures model (right).
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Example: Simulated data II

200
100 120

150
EY

50 100
0 4w e

0 2000 4000 6000 8000 o 1000 2000 3000 4000

iration araton

Figure: MCMC run with K = 15 and L = 3. Trace plot of number of observations allocated to different
clusters (left) and trace plot of the subcomponents forming the L-shaped cluster.
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Revisiting the benchmark data sets

Data set K'™e | Ky for SparseMix | Ky for SparseMixMix (K = 10, ¢y = 0.001)
L=1 L=4
AIS 2 3 2
adj = 0.76, er = 0.11 adj = 0.81, er = 0.05
Wisconsin 2 4 2
adj = 0.62, er = 0.21 adj = 0.82, er = 0.05
Yeast 2 6 2

adj = 0.48, er = 0.23

adj = 0.81, er = 0.05

adj: adjusted Rand index (1 perfect classification), er: proportion of misclassified observations.

K" = 2 recovered for all data sets
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Mixture of two SAL distributions (Franczak et al., 2012)

Figure: Samples from a mixture of two SAL distributions (left), the estimated clusters for K = 10, L = 5,
¢p = 0.4, pw = 0.2, with fixed hyperparameters Co; and Ay (right-hand side).
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Pitfalls of post-processing merging

AIS data sets, variables ”X.Bfat” and "LBM”.

Solutions:
e Mclust (K = 3), Fraley et al. (2012) (left),
e combiClust (K = 2), Baudry et al. (2010) (middle),
o sparse finite mixture (K1 = 2), K = 10, L = 4 (right).
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Flow cytometric data I

1. Flow cytometric data set DLBCL
e N =7932, r = 3, known labeling.

e Sparse finite mixture of mixtures (K = 30, L = 15, ¢y = 0.001) yields K = 4,
error rate=0.03.

cDs
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100 200 300 400 500 600 700
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700 0 100 200 300 400 500 600 700

Figure: Flow cytometry data set DLBCL. Scatterplot of the clustering results.
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Flow cytometric data II

2. Flow cytometric data set GYHD
e N = 12442, r = 6, unknown labeling.
e Sparse finite mixture of mixtures (K = 30, L = 15, ¢y = 0.001) yields K = 8.
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Figure: Flow cytometric data set GVHD. Scatter plot of two variables (“FSC”, “CD8”) (left-hand side), and
heatmap of the clustering results by fitting a sparse hierarchical mixture of mixtures model (right-hand side).
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Mixture of mixtures

Summary

Sparse finite mixtures

e Estimates the number of data clusters through the number of non-empty
components (random a priori).

= In an overfitting mixture specification of a Dirichlet prior with ¢, very small.
Mixtures of mixtures
e Flexible modelling of unknown cluster distributions.
e Prior specification crucial: strongly overlapping subcomponent densities.
Extensions

o Sparse finite mixtures: Extension to other non-Gaussian component densities,
e.g. mixtures of #-distributions, Poisson distributions, topic model? ...

o Mixtures of mixtures: for latent class models: overcome the local independence
assumption?

o Computational issues: for large N, p: MCMC tends to get stuck

= Work in progress: develop another sampling scheme to overcome this issue!
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