Sparse Bayesian Finite Mixtures

Gertraud Malsiner-Walli

WU Wirtschaftuniversität Wien

joint work with Sylvia Frühwirth-Schnatter and Bettina Grün

Funded by the Austrian Science Fund (FWF P25850, V170, P28740) and Austrian National Bank (Jubiläumsfond 14663)

Brown Bag Seminar WU, January 18th 2017

Outline

Sparse finite mixtures

Mixture of mixtures model

parse finite mixtures Mixture of mixtures References

"Sapientis est Ordinare"

Aristotle, 384 – 322 BC

"It belongs to the wise person to create order"

Cluster analysis

Cluster analysis based on a finite mixture model I

Model

1. Observations $\mathbf{y} = (\mathbf{y}_1, \dots, \mathbf{y}_N)$ are a sample from a **mixture distribution** with $\boldsymbol{\vartheta} = (\boldsymbol{\eta}, \boldsymbol{\theta}_1, \dots, \boldsymbol{\theta}_K)$:

$$p(\mathbf{y}_i|\boldsymbol{\vartheta}) = \sum_{k=1}^K \eta_k p_k(\mathbf{y}_i|\boldsymbol{\theta}_k),$$

where

- the component densities $p_k(\mathbf{y}_i|\boldsymbol{\theta}_k)$ arise from the same parametric family,
- $\eta = (\eta_1, \dots, \eta_K)$ are the component weights, $\sum_{k=1}^K \eta_k = 1, \eta_k \ge 0$,
- it is assumed that each component corresponds to a data cluster,
- usually the group membership S_i ∈ {1,..., K} is unknown:
 ⇒ they are introduced as latent allocation variables S = (S₁,...,S_N) to indicate the component from which each observation is drawn:

$$p(\mathbf{v}_i|S_i=k)=p_k(\mathbf{v}_i|\boldsymbol{\theta}_k), \text{ where } Pr(S_i=k)=\eta_k$$

Cluster analysis based on a finite mixture model II

Bayesian framework

2. The mixture likelihood $p(\mathbf{y}|\boldsymbol{\vartheta})$ is combined with the **prior** $p(\boldsymbol{\vartheta})$ and the **posterior** $p(\boldsymbol{\vartheta}|\mathbf{y})$ is obtained:

$$p(\boldsymbol{\vartheta}|\mathbf{y}) \propto p(\mathbf{y}|\boldsymbol{\vartheta})p(\boldsymbol{\vartheta}).$$

Estimation of the posterior distribution through standard MCMC methods based on data augmentation and Gibbs sampling.

Start with some classification $S = (S_1, ..., S_N)$ and iterate the following steps:

- 3.1 Parameter simulation conditional on the classification S:
 - 3.1.1 Sample η .
 - 3.1.2 Sample the component-specific parameters $\theta_1, \ldots, \theta_K$.
- 3.2 Classification simulation conditional on the parameters ϑ :
 - 3.2.1 Sample $S = (S_1, \ldots, S_N)$.

Issues and approach

- Challenges in model-based clustering:
 - (a) Estimation of the **number of components**: crucial and old problem!
 - (b) Capturing (Non-Gaussian) data clusters: normal components?
- Our approach: "prior modelling":
 - \Rightarrow Specification of "suitable priors" on the mixture parameters.
 - ⇒ To induce **characteristics** in model estimation we are interested in.
 - ⇒ Not a "new" kind of prior families, rather well-known conditional **conjugate priors**.
 - ⇒ **Hyperparameters** of the priors are chosen carefully and in a prudential way.
 - ⇒ Prior specifications work **simultaneously** (joint approach).
 - ⇒ Data can overwhelm the prior information if they are informative enough ⇒ Flexible way of modeling!

Bayesian normal mixture model

• Gaussian mixtures:

$$p(\mathbf{y}_i) = \sum_{k=1}^K \eta_k f_N(\mathbf{y}_i | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k),$$

• Priors:

$$egin{array}{lcl} oldsymbol{\eta} & \sim & \textit{Dir}(e_0,\ldots,e_0), \\ oldsymbol{\mu}_k & \sim & \mathcal{N}(oldsymbol{b}_0,oldsymbol{B}_0), \\ oldsymbol{\Sigma}_k & \sim & \mathcal{W}^{-1}(c_0,oldsymbol{C}_0) & (\Leftrightarrow oldsymbol{\Sigma}_k^{-1} \sim \mathcal{W}(c_0,oldsymbol{C}_0)). \end{array}$$

• Hyperparameters e_0 , \mathbf{b}_0 , \mathbf{B}_0 , c_0 , \mathbf{C}_0 ?

Estimating *K*

Overfitting mixture

- Comparison of candidate models with different *K* (e.g. BIC, Bayes factors) to select the model with the best fit.
- \Rightarrow Overfitting mixture: At some point in the process, the number of components must be overfitted i.e. $K > K^{true}$
- ⇒ Overfitting: **non-identifiability** of the model.

Non-identifiability due to overfitting:

- Overfitting mixtures: irregular likelihood (Sylvia FS, 2006).
- If K > K^{true}, there are two possibilities how to handle a superfluous component:
- weight of a superfluous component is shrunken toward zero (component-specific parameter vector not identified),
- component-specific parameters vector of the superfluous component is equal
 to a 'true' one, splitted components
 (weights are not identified).

Dirichlet prior on the weights I

Posterior of an overfitting mixture: $K > K^{true}$

 Rousseau and Mengersen (2011) study the asymptotic behavior of the posterior distribution of an overfitting mixture model. They showed its shape depends on the prior on the weights:

$$\eta \sim Dir(e_0,\ldots,e_0)$$

- If e₀ < d/2, d = dim(θ_k), the posterior density handles overfitting by asymptotically shrunking weights of superfluous components towards 0, i.e. they are left empty.
- If e₀ > d/2, the posterior density handles overfitting by forming at least two identical components,
 i.e. splitted components, 'filled' components.

Dirichlet prior on the weights II

Dirichlet(α, α, α) distribution:

Plot by Chris Holmes and Chris Yau, Edinburgh, 2010, meeting "Mixture estimation and Application".

Dirichlet prior on the weights III

To select K^{true}:

"Decide through the Dirichlet prior whether you prefer **empty** components or **duplicated** components for overfitting mixtures" (Frühwirth-Schnatter, 2012).

- By calculating marginal likelihoods $p(\mathbf{y}|K)$ or the posterior $p(K|\mathbf{y})$ in RJMCMC:
- ⇒ Interest lies in **filling** all specified components
- \Rightarrow Specify a **redundant** prior on the mixture weights (i.e. $e_0 > d/2$).
- By estimating the number of non-empty components:
- ⇒ Interest lies in **emptying** superfluous components:
- \Rightarrow Specify a **sparse** prior on the mixture weights (i.e. $e_0 < d/2$)

Sparse finite mixtures (GMW, Sylvia FS, Bettina G, 2016)

Estimation of the number of mixture components:

- \Rightarrow Specify an **overfitting** mixture model ($K > K^{true}$).
- \Rightarrow Specify a sparse prior on the weights η : choose e_0 small.
- \Rightarrow For each iteration *m* consider the number of **non-empty components** $K_{+}^{(m)}$.
- \Rightarrow Estimate K^{true} by the **most frequent number of non-empty components:**

$$\hat{K}_{+} = mode\{p(K_{+}|\mathbf{y})\}$$

⇒ "Automatic" tool to select the number of components!

Mixture components versus data clusters

Note: Sparse finite mixtures

- · make a distinction between
 - \boldsymbol{K} (number of specified components) and
 - K_{+} (the number of non-empty components).

We assume that

- *K* is fixed parameter,
- **K**₊ is a random variable:
 - **a priori** the number K_+ depends on both e_0 and K (fixed parameters), i.e.

$$p(K_+|K,e_0),$$

- a **posteriori** the number K_+ of non-empty groups can be estimated,

$$p(K_+|y)$$
.

Prior of K_+

$$e_0 = 4$$

$$e_0 = 0.01$$

$$e_0 = 0.0001$$

Simulation study I

Simulation study:

- Component means $\mu_1=(2,-2,0,0)'$, $\mu_2=-\mu_1$, $\mu_3=(2,2,0,0)'$, and $\mu_4=-\mu_3$ and isotropic covariance matrices $\Sigma_k=\mathbf{I}_4, k=1,\ldots,4$.
- $\eta = (0.25, 0.25, 0.25, 0.25).$

Figure: Scatter plots of one randomly selected data set.

Simulation study II

K	e_0 fixed	\hat{K}_+	MCR	MSE_{μ}
4	0.01	4	0.047	0.136
15	0.01	4	0.048	0.137
30	0.01	4 (8)	0.048	0.136
30	0.001	4	0.048	0.136
30	0.00001	4	0.047	0.136

Table: Clustering results for different *K*.

Simulation study III

Figure: Number of observations allocated to the different components. MCMC run of a single data set, K = 15.

Simulation study IV

With a very **small component**: $\eta = (0.02, 0.33, 0.33, 0.32)$:

Figure: (unidentified) Posterior weight draws, sorted by size in each iteration, and trace plot of the number of observations allocated to the different mixture components.

Note: $K_{+} \neq$ number of components with large(r) weights!

Sidestep: Relation to BNP approaches I

Bayesian Non-Parametrics (BNP) approach:

- Sparse finite mixtures are related to infinite mixtures, based on a Dirichlet process prior.
- A Dirichlet process prior $\mathcal{DP}(\alpha, \mathcal{G}_0)$ for y leads to **infinite mixture**

$$p(\mathbf{y}) = \sum_{k=1}^{\infty} \eta_k p_k(\mathbf{y}|\boldsymbol{\theta}_k).$$

- If the base measure θ ~ G₀ is the same as the prior p(θ) in finite mixtures:
 ⇒ the only difference lies in the prior of the weights η₁, η₂, η₃,
- The stick-breaking representation (Sethuraman, 1994) provides an connection in terms of the sticks ν₁, ν₂, ν₃, . . . :

$$\eta_1 = \nu_1, \quad \eta_2 = \nu_2(1 - \nu_1), \quad \eta_k = \nu_k \prod_{j=1}^{k-1} (1 - \nu_j), \quad \nu_k \sim \textit{Beta}(a_k, b_k).$$

• For $\mathcal{DP}(\alpha, \mathcal{G}_0)$: $\nu_k \sim Beta(1, \alpha)$. For finite mixture: $\nu_k \sim Beta(e_0, (K - k)e_0)$, $\nu_K = 1$.

Sidestep: Relation to BNP approaches II

Sidestep: Relation to BNP approaches III

Probability to create a new cluster:

DP mixture: $\frac{\alpha}{\alpha+N-1}$

$$\frac{\alpha+N-1}{e_0(K-K_+^{-i})}$$

Finite mixture: $\frac{e_0(K-K_+^{-i})}{e_0K+N-1}$,

 K_{\perp}^{-1} is the number of non-empty clusters implied by

$$\mathbf{S}_{-i} = (S_1, \dots, S_{i-1}, S_{i+1}, \dots, S_N).$$

Convergence:

A finite mixture with prior $\eta \sim Dir(e_0)$ converges to a $\mathcal{DP}(\alpha)$ for $K \to \infty$ if

$$e_0 = \alpha/K$$
 (Green and Richardson, 2001).

• Expected number of clusters:

DP mixture: $K_+ \propto \alpha log(N)$.

Finite mixture: K_{+} is asymptotically independent of N.

Conclusion:

- use infinite mixtures if you expect that the number of clusters increases for increasing data information,
- use sparse finite mixtures if you do not!

Sidestep: Relation to BNP approaches IV

Figure: Probability to create a new cluster as a function of the already existing clusters K_{+}^{-i} :

- left: sparse finite mixtures with $e_0 = 1/K$,
- right: for finite mixtures with $e_0 = 4$,
- black line: for $K = \infty$.

Some benchmark data sets

Data set	N	r	K _{true}	\hat{K}_{+} for sparse finite mixtures ($K = 10, e_0 = 0.01$)	
Iris	150	4	3	3	
				adj = 0.92, er = 0.03	
Crabs	200	5	4	4	
				adj = 0.80, er = 0.08	
Flea	74	6	3	3	
beetles				adj = 1, er = 0.00	
AIS	202	3	2	3	
				adj = 0.76, er = 0.11	
Wisconsin	569	3	2	4	
				adj = 0.62, er = 0.21	
Yeast	626	3	2	6	
				adj = 0.48, er = 0.23	

adj: adjusted Rand index (1 perfect classification), er: proportion of misclassified observations

arse finite mixtures Mixture of mixtures References

Capturing non-Gaussian data clusters I

Problems with normal mixtures in model-based-clustering:

- If data clusters are non-Gaussian:
- ⇒ number of estimated normal components ≠ the number of data clusters, since: several normal components have to be merged to solve this misspecification.
 - Recent research: non-Gaussian component densities such as skew-normal or skew-t distributions.

However:

- It may be difficult to decide which parametric distribution is appropriate to characterize a data cluster.
- ⇒ "Mixture of mixtures" (GMW, Sylvia FS, Bettina G., 2017):
 - models the non-Gaussian cluster distributions themselves as Gaussian mixtures.
 - Gaussian mixtures can approximate a wide class of probability distributions!

Capturing non-Gaussian data clusters II

Figure: Smiley's data (Leisch, 2004)

Idea and strategy: Mixture of mixtures

Idea: Specification of a mixture model where
 ⇒ each cluster distribution is itself a mixture of normal subcomponents:

$$p(\mathbf{y}_i|\boldsymbol{\Theta}) = \sum_{k=1}^{K} \eta_k p_k(\mathbf{y}_i|\boldsymbol{\theta}_k),$$

$$p_k(\mathbf{y}_i|\boldsymbol{\theta}_k) = \sum_{l=1}^{L} w_{kl} f_{\mathcal{N}}(\mathbf{y}_i|\boldsymbol{\mu}_{kl}, \boldsymbol{\Sigma}_{kl}).$$

- ⇒ Highly over-parameterized mixture model!
- We specify informative priors for the parameters of the mixture of mixtures model in order to be able to
 - to estimate the number of data clusters,
 - to achieve a good approximation of the cluster density through the cluster mixture distribution.

Number of clusters

- Our strategy for $\eta \sim Dir_K(e_0)$:
 - "sparse finite mixture": specify an overfitting mixture of cluster distributions and define a sparse weight prior on the cluster weights.
- Our strategy for $\mathbf{w}_k \sim Dir_L(d_0)$:
 - We use the normal mixture to approximate an arbitrary cluster distribution in a semiparametric way.
 - \Rightarrow We are not interested in estimating the "true" number of subcomponents L.
 - We specify the same fixed redundant number of normal subcomponents L for each cluster.
 - We specify a **redundant prior** for the subcomponent weights in order to fill all subcomponents during MCMC sampling by choosing d_0 large, $d_0 > d/2$.
 - ⇒ "Automatic" tool to get a good **density fit** of the cluster distribution!

Modelling non-Gaussian cluster distributions I

- Non-identifiability problem: It cannot be decided by the likelihood which subcomponents build which cluster.
- **Strategy**: Specification of highly **informative priors** for the subcomponent parameters such that
 - within a cluster subcomponents have strongly overlapping and flat densities.
 - ⇒ large subcomponent covariance matrices.
 - ⇒ **strong shrinkage** of the subcomponent means toward the cluster mean.
- Idea: We specify the prior parameters through variance-covariance decomposition of the data.

Modelling non-Gaussian cluster distributions II

Variance-covariance decomposition of a mixture of mixtures:

$$\begin{array}{lll} \textit{Cov}(\mathbf{Y}) & = & \underbrace{\phi_B \textit{Cov}(\mathbf{Y})}_{\text{by cluster means}} + \underbrace{(1-\phi_B)\textit{Cov}(\mathbf{Y})}_{\text{within the clusters}} \\ & = & \underbrace{\phi_B \textit{Cov}(\mathbf{Y})}_{\text{by cluster means}} + \underbrace{(1-\phi_B)\phi_W \textit{Cov}(\mathbf{Y})}_{\text{by the subcomponent means}} + \underbrace{(1-\phi_B)(1-\phi_W)\textit{Cov}(\mathbf{Y})}_{\text{within the subcomponents}} \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$$

Modelling non-Gaussian cluster distributions III

To define the prior parameters for subcomponent means and covariance matrices:

- 1. Choose ϕ_W and ϕ_B , e.g. $\phi_B = 0.5$, $\phi_W = 0.1$.
- 2. Define the prior parameters in order that a priori

$$E(\mathbf{\Sigma}_{kl}) = (1 - \phi_W)(1 - \phi_B)\mathbf{S}_y,$$

$$Cov(\boldsymbol{\mu}_{kl}) = \phi_W(1 - \phi_B)\mathbf{S}_y.$$

Model identification

To solve the label switching problem:

- On the cluster level:
 - Cluster the draws in point process representation to obtain a unique labeling.
 - Note: we clustered only a functional of the subcomponent means of a cluster in the point process representation.
- On the **subcomponent level**:
 - Actually: A lot of label switching occurs due the strong overlapping subcomponent distributions, but it does not matter!
 - ⇒ It is not necessary to identify single subcomponents: we are only interested in the whole cluster mixture distribution of the cluster
 - ⇒ we can **ignore** the label switching problem on this level!

Example: Simulated data I

- Data from a mixture of 8 bivariate normal distributions (left).
- Clustering using a sparse finite mixture (middle) compared to using a sparse finite mixture-ofmixtures model (right).

Example: Simulated data II

Figure: MCMC run with K=15 and L=3. Trace plot of number of observations allocated to different clusters (left) and trace plot of the subcomponents forming the L-shaped cluster.

Revisiting the benchmark data sets

Data set	K^{true}	K_+ for SparseMix	\hat{K}_{+} for SparseMixMix $(K=10,e_0=0.001)$
		L=1	L=4
AIS	2	3	2
		adj = 0.76, er = 0.11	adj = 0.81, er = 0.05
Wisconsin	2	4	2
		adj = 0.62, er = 0.21	adj = 0.82, er = 0.05
Yeast	2	6	2
		adj = 0.48, er = 0.23	adj = 0.81, er = 0.05

adj: adjusted Rand index (1 perfect classification), er: proportion of misclassified observations.

 $K^{true} = 2$ recovered for all data sets

Mixture of two SAL distributions (Franczak et al., 2012)

Figure: Samples from a mixture of two SAL distributions (left), the estimated clusters for K=10, L=5, $\phi_B=0.4$, $\phi_W=0.2$, with fixed hyperparameters \mathbf{C}_{0k} and λ_{kl} (right-hand side).

Pitfalls of post-processing merging

AIS data sets, variables "X.Bfat" and "LBM".

Solutions:

- Mclust (K = 3), Fraley et al. (2012) (left),
- combiClust (K = 2), Baudry et al. (2010) (middle),
- sparse finite mixture $(K_+ = 2)$, K = 10, L = 4 (right).

Flow cytometric data I

- 1. Flow cytometric data set DLBCL
 - N = 7932, r = 3, known labeling.
 - Sparse finite mixture of mixtures ($K = 30, L = 15, e_0 = 0.001$) yields $K_+ = 4$, error rate=0.03.

Figure: Flow cytometry data set DLBCL. Scatterplot of the clustering results.

Flow cytometric data II

2. Flow cytometric data set GvHD

- N = 12442, r = 6, unknown labeling.
- Sparse finite mixture of mixtures ($K = 30, L = 15, e_0 = 0.001$) yields $K_+ = 8$.

Figure: Flow cytometric data set GvHD. Scatter plot of two variables ("FSC", "CD8") (left-hand side), and heatmap of the clustering results by fitting a sparse hierarchical mixture of mixtures model (right-hand side).

Summary

Sparse finite mixtures

- Estimates the number of data clusters through the number of non-empty components (random a priori).
- \Rightarrow In an overfitting mixture specification of a **Dirichlet prior with** e_0 **very small.**

Mixtures of mixtures

- Flexible modelling of unknown cluster distributions.
- Prior specification crucial: strongly overlapping subcomponent densities.

Extensions

- *Sparse finite mixtures*: Extension to other **non-Gaussian component densities**, e.g. mixtures of *t*-distributions, Poisson distributions, topic model? ...
- Mixtures of mixtures: for latent class models: overcome the local independence assumption?
- Computational issues: for large N, p: MCMC tends to get stuck
 - ⇒ Work in progress: develop another sampling scheme to overcome this issue!

References I

- Baudry, J.-P., A. Raftery, G. Celeux, K. Lo, and R. Gottardo (2010). Combing mixture components for clustering. *Journal of Computational and Graphical Statistics* 19(2), 332–353.
- Fraley, C., A. Raftery, T. Murphy, and L. Scrucca (2012). Technical report 597. Department of Statistics, University of Washington (http://www.stat.washington.edu/mclust/).
- Franczak, B. C., R. P. Browne, and P. D. McNicholas (2012). Mixtures of shifted asymmetric Laplace distributions. *eprint arXiv:1207.1727*.
- Frühwirth-Schnatter, S. (2012). Flexible econometric modelling based on sparse finite mixtures. Presentation at the ISBA 2012, 11th World Meeting of the International Society of Bayesian Analysis.
- Malsiner-Walli, G., S. Frühwirth-Schnatter, and B. Grün (2016). Model-based clustering based on sparse finite Gaussian mixtures. *Statistics and Computing* 26, 303–324.
- Malsiner-Walli, G., S. Frühwirth-Schnatter, and B. Grün (2017). Identifying mixtures of mixtures using Bayesian estimation. *Journal of Computational and Graphical Statistics*.
- Rousseau, J. and K. Mengersen (2011). Asymptotic behaviour of the posterior distribution in overfitted mixture models. *Journal of the Royal Statistical Society B* 73(5), 689–710.