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1 Introduction

An important but often neglected property of the Cholesky multivariate stochas-

tic volatility (CMSV) model of Primiceri (2005) and Tsay (2005) is that the estimated

reduced-form covariance matrix may be sensitive to the ordering of variables.1 Excep-

tions are Primiceri (2005); Koop, León-González, and Strachan (2009); Nakajima and

Watanabe (2011); Lopes, McCulloch, and Tsay (2012). However, Figure 1 illustrates

that the full spectrum of this property is not sufficiently explored. It shows that the

estimated covariances are sensitive and substantially different across alternative or-

derings in Primiceri’s (2005) application.2,3 Specifically, estimates diverge during the

stagflation period when individual residuals exhibit some mild non-common volatility

pattern. In contrast, estimates of volatility are hardly affected by this property.

This paper argues that the channels through which alternative ordering affect the

estimated covariance matrix are not well understood. Moreover, it stresses that the

differences between alternative estimates depicted in Figure 1 are not arbitrary but

obey a systematic pattern that is likely to be present in many empirical applications.

In addition, it emphasizes that this type of sensitivity for the estimates must not

be ignored for applications which use the estimated reduced-form covariance matrix

as an input. Such applications include structural VARs with CMSV that identify

structural shocks with short-run (but no triangular restriction), long-run, or sign

restrictions as well as portfolio optimization and risk management problems. This

property is especially problematic for inference as alternative estimates may give rise

to ambiguous conclusions which impede robust inference.

This paper makes several novel contributions. It identifies a time-varying ratio

of reduced-form volatilities as the main channel through which alternative order-

ing impose different dynamic restrictions on the covariance matrix. Under the true

ordering, the parameter of contemporaneous relation evolves linearly in the CMSV

model. In any alternative ordering, however, the implied dynamics of this parameter

1See Primiceri (2005); Cogley and Sargent (2005); Asai, McAleer, and Yu (2006)
2Estimates are based on Algorithm 2 of the corrigendum by Del Negro and Primiceri (2015).
3Primiceri (2005) reported that his results are not sensitive to alternative orderings, however,

this conclusion might be a burden from the incorrect Gibbs sampler used at the time.
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Figure 1: Estimated contemporaneous reduced-form covariance matrix
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The figure shows posterior median of estimated covariance (cov) and volatility (vol)

of the reduced-form residual of inflation (πt), unemployment (ut) and the interest rate

(it) for all possible orderings in the TVP-SVAR with CMSV.

are nonlinear. It is driven by the correlation process and the ratio of volatilities,

which is log-normally distributed. Consequently, the nonlinear dynamics of the im-

plied process cannot be well captured by a linear process of an analogously setup

CMSV model. Moreover, when the data is generated by a separate evolving marginal

volatility and correlation process then the estimated covariances are systematically

different across alternative ordering. Specifically, the ratio of volatilities driving the

parameter of contemporaneous relation is inverted in a reordering. This kind of trans-

formation, therefore, induces a different sort of dynamics in the parameter.

Besides just explicating the problem, this paper proposes the dynamic correla-

tion Cholesky multivariate stochastic volatility (DC-Cholesky MSV, or DC-CMSV)

model in spirit of Engle (2002) as a robust alternative. The evolution of the covariance

matrix is specified by separate volatility and correlation dynamics. The correlation

dynamics are modelled through a pseudo CMSV model on the standardized data,
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which features a constant ratio of reduced-form volatilities. Moreover, simulations

and empirical evidence presented in this paper show that the lack of rotational in-

variance becomes an empirically negligible property for the DC-CMSV model. Thus,

estimates of the DC-CMSV model are almost insensitive to alternative orderings.

A notable feature of the DC-CMSV model is that the implied parameter of con-

temporaneous relation is not restricted to be linear but may also capture nonlinear

structural changing conditions. In addition, the model can easily be implemented

into existing routines. Moreover, the estimation of the model remains simple as tra-

ditional Kalman filter methods or the fast band-precision matrix routines of Chan

and Jeliazkov (2009) can be used for inference purposes.

Next, simulation evidence shows that the estimates of the CMSV model are

more distinct across alternative ordering, the stronger the idiosyncratic volatilitiy

patterns in the data. By construction, the estimates of the DC-CMSV model are

hardly affected by this type of patterns in the data.

Last, this paper demonstrates that restrictions imposed by a particular vari-

able ordering on the estimated reduced-form covariance may be so decisive that it

may drive conclusions and yields results that are inconsistent across alternatives. In

particular, the robustness of Primiceri’s (2005) results are reconsidered under the

assumption that the ordering of variables can be ignored, which is common practice

in the literature. Alternative estimates of this exercise provide strong evidence for

an alternative scenario: the U.S. systematic interest rate response to inflation and

unemployment was substantially more aggressive during the stagflation period. In

contrast, the original results indicate that the response was largely muted. Besides,

estimates of DC-CMSV version of the model draw an unambiguous conclusion under

all possible ordering. The results suggest that the reaction function was modestly

more aggressive. This evidence is consistent with the finding of Sims and Zha (2006).

The findings of this paper relate to several strands in the literature. First, it

formalizes the conditions when and why the lack of rotational invariance may mat-

ter for a data set at hand. It advances the argument of Christopher Sims in Cogley

and Sargent (2005) and Asai, McAleer, and Yu (2006) by the fact that the depen-

dence between volatilities and correlations particularly matters when the ratio of
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volatilities varies over time. Moreover, the results of the paper show that rotational

non-invariance of the prior plays a subordinate role in explaining the sensitivity of the

estimates. This possibility was discussed by Primiceri (2005) and Bognanni (2018).

Second, this paper is not the first to provide evidence that ordering of variables

may play a role in structural inference. Bognanni (2018) shows for Baumeister and

Peersman’s (2013) application that the estimated effects of an oil supply shock on

U.S. real activity are sensitive to the chosen ordering as well. The author inter-

prets the choice of selecting a particular ordering as arbitrary and regards it as an

additional source of model and parameter uncertainty. The findings of this paper,

however, qualify this view. Particularly, alternative estimates must be interpreted as

a byproduct of the model as it generally imposes alternative dynamic restrictions

on the reduced-form covariance matrix. Thus, the finding of this paper question the

validity of using estimates of CMSV model as an input for two-step identified SVARs.

Third, the estimates of the DC-CMSV model can be considered as an effective

model average over all alternative estimates of the CMSV model. This is an attractive

feature as alternative approaches proposed by Primiceri (2005) or Nakajima and

Watanabe (2011) suffer from immense or even intractable computational burdens.

In fact, these methods need to explore all !n (n factorial) possible models.

Fourth, the DC-CMSV model is an attractive alternative to Wishart or inverted

Wishart stochastic volatility, which yield rotationally invariant estimates of the co-

variance matrix. See for instance Uhlig (1997), Bognanni (2018), Chan, Doucet, León-

González, and Strachan (2018) in the context of (TVP)-VARs with MSV or Philipov

and Glickman (2006); Asai and McAleer (2009) in the context of MSV models. As

pointed out by Primiceri (2005), this class of models, however, allow for less flexi-

ble dynamics of the covariance matrix. Particularly, they either allow for integrated

dynamics or simple autoregessive dynamics of order one.

The rest of this paper proceeds as follows. Section 2 studies properties of the

CMSV model under alternative orderings and under an alternative data generat-

ing process. Section 3 introduces the DC-CMSV model. Section 4 studies model

properties using a Monte Carlo simulation. Section 5 reconsiders Primiceri’s (2005)

application in more detail. Section 6 concludes this paper.
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2 On Cholesky Multivariate Stochastic Volatility

Consider the bivariate vector yt ∼ N(0,Σt) with time-varying covariance matrix.

Table 1 presents two common multivariate stochastic volatility models for Σt, which

mainly differ by their chosen factorisation of Σt.

Table 1: Multivariate stochastic volatility model of Σt

Panel (a) CMSV model

Σt = A−1t DtD
′
tA
′−1
t

where

At =

[
1 0

at 1

]
, Dt =

[
exp (g1,t) 0

0 exp (g2,t)

]

Reparameterized vector of observations

yt = A−1t Dtu
C
t , uCt ∼ N(0, I)

State dynamics

gt = gt−1 + εgt , εgt ∼ N(0, G)

at = at−1 + εat , εat ∼ N(0, σ2
a)

Innovations

V ar


uCtεat
εgt


 =

I 0 0

0 σ2
a 0

0 0 G


Prior distribution

a0 ∼ N(µa, Va),

g0 ∼ N(µg, Vg),

σ2
a ∼ IG(νS , k

2
S),

σ2
g,i ∼ IG(νg, k

2
G),∀i = 1, 2

Panel (b) DC-MSV model

Σt = DtRtDt

where

Rt =

[
1 ρt

ρt 1

]
, Dt =

[
exp (h1,t) 0

0 exp (h2,t)

]

Reparameterized vector of observations

yt = Dtu
DC
t , uDCt ∼ N(0, Rt)

State dynamics

ht = ht−1 + ηht , ηht ∼ N(0,W )

mt = mt−1 + ηmt , ηmt ∼ N(0, σ2
m)

ρt =
exp (mt)− 1

exp (mt) + 1
, ηρt ≡ ρt − ρt−1

Innovations

V ar


uDCtηmt
ηht


 =

Rt 0 0

0 σ2
m 0

0 0 W


Prior distribution

m0 ∼ N(µm, Vm),

h0 ∼ N(µh, Vh),

σ2
m ∼ IG(νm, k

2
m),

σ2
h,i ∼ IG(νh, k

2
W ),∀i = 1, 2
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Panel (a) presents the Cholesky multivariate stochastic volatility (CMSV) model

which is based on Primiceri’s (2005) model.4 The name of the model derives from the

fact that it specifies the dynamics of the triangular factorisation of Σt rather than

specifying the dynamics of Σt directly. Panel (b) explicates the dynamic correlation

multivariate stochastic volatility (DC-MSV) model of Yu and Meyer (2006).5 This

model specifies individual volatility and correlation dynamics to span the evolution

of Σt. This factorisation is denoted as the volatility-correlation factorisation of Σt.

The DC-MSV model is chosen as an alternative data generating process because the

ordering of variables has no effect on the estimated reduced-form covariance matrix.6

The following analysis is restricted to the bivariate case because of tractability

reasons.7 Nevertheless, these properties are considered to be representative for the

n-dimensional case. Specifically because the relationship between individual param-

eters of Σt and the parameters under these alternative factorization of Σt does not

fundamentally change in higher dimensions.

2.1 Some properties of the Cholesky MSV model

Let yt be generated by the CMSV model with covariance matrix Σt. Then, it fol-

lows from the triangular factorisation of Σt that the mapping from model parameters

{g1,t, g2,t, at} to {σ2
11,t, σ

2
22,t, σ12,t, ρt} the elements and functions of the reduced-form

covariance matrix Σt is given by

σ2
11,t = exp (2g1,t), σ2

22,t = exp (2g2,t) + a2
t exp (2g1,t),

σ12,t = at exp (2g1,t) ρt = at
σ11,t

σ22,t

where σ2
ii,t is the variance of the ith element of Σt for i = 1, 2, σ12,t is the covariance,

ρt is the correlation and at is the contemporaneous relation.

4As in Koop, León-González, and Strachan (2009), a diagonal covariance matrix for the inno-

vations of stochastic volatility is assumed to enhance comparability between both models.
5Alternative state dynamics are assumed to mimic the dynamics of the CMSV model.
6For a proof, see Appendix A.2
7The DC-MSV model cannot be easily generalized to higher dimensions for n ≥ 3.
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Then, the transition equation for the implied correlation process, ρt, is given by

ρt = ρt−1

exp(εg1,t)

exp(εg∗∗2,t )
+ εat

σ11,t

σ22,t

where εg∗∗2,t ≡ log(σ22,t)− log(σ22,t−1).

Property (Σt under CMSV model). Let yt be generated by a CMSV model with

Σt, then some important properties for the elements and functions of Σt are

1. the ratio of reduced-form volatilities σ22,t
σ11,t

is time-varying

2. the correlation ρt evolves nonlinearly

3. the contemporanous relation at evolves linearly

For proof, see Appendix A.1

These properties give rise to two important consideration for the CMSV model as

a data generating process. First, the model rules out common reduced-form volatil-

ity dynamics. This may be restrictive for some applications such as term-structure

modelling. Second, the assumption of a smoothly evolving contemporaneous relation

implies that there are rapid changes in the correlation pattern when volatility clusters

idiosyncratically. Stated differently, the model interprets abrupt changes in relative

volatilies as the dominant driver of changing correlation. Therefore, this assumption

may put substantial dynamic restriction on the covariance matrix.

Next, let ỹt = Pyt be the reordered vector of variables where P is a permuta-

tion matrix and let Σ̃t = PΣtP
′ be the covariance matrix with permuted elements.

Analogously, the triangular factorsation of Σ̃t = Ã−1
t D̃tD̃tÃ

′−1
t implies that the map-

ping from model parameters {g1,t, g2,t, at} to {g̃1,t, g̃2,t, ãt} the transformed model

parameters for ỹt is given by

exp(2g̃1,t) = σ2
22,t, exp(2g̃2,t) = σ2

11,t − ã2
tσ

2
22,t, ãt = at

σ2
11,t

σ2
22,t
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Then, the transition equation for the implied contemporaneous relation, ãt, is

given by

ãt = ãt−1

exp (2εg1,t)

exp (2εg∗∗2,t )
+ εat

σ2
11,t

σ2
22,t

,

where εg∗∗2,t ≡ log(σ22,t)− log(σ22,t−1).

Property (Reordering in CMSV model). Let Σ∗t be the covariance matrix of an

analogously set up CMSV model on ỹt with model parameters {g∗1,t, g∗2,t, a∗t}, then

• Σ∗t and Σ̃t cannot have the same dynamic structure, and

• the average distance between transformed implied parameters {g̃1,t, g̃2,t, ãt} and

analogous constructed parameters {g∗1,t, g∗2,t, a∗t} increases in the variability of

the ratio of reduced-form variances
σ2
11,t

σ2
22,t

For proof, see Appendix A.1

To put it differently, the ordering of variables induces a dynamic structure in Σt

that cannot be replicated by an analogously set up CMSV model for any alternative

ordering of variables. The CMSV model imposes alternative dynamic restrictions on

the reduced-form covariance matrix under alternative ordering. Hence, the choice of

the ordering of variables is non trivial in the CMSV model.

While Σ∗t and Σ̃t cannot have the same dynamic structure, the dynamics may

be quite similar or diverge substantially. This distance depends on the volatility

pattern of the data. Specifically, the distance is smaller when the volatility pattern

of the individual series exhibits strong commonalities. In this incidence, the ratio of

reduced-form variances becomes more close to be roughly constant. However, when

there are idiosyncratic volatility patterns, then the distance grows larger.

Above statements allow for some remarks about the CMSV model in the lit-

erature. Primiceri (2005) pointed out that the ordering of variables matters for Σt

because the prior distribution of Σt is not rotationally invariant. Particularly, he

shows that the individual elements of the covariance matrix have alternative distri-

butions under different orderings of the variables (see footnote 5). Nevertheless, he
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suggests that it is not a priori clear how inference is affected and that the effect might

vary from case to case. Relatedly, Bognanni (2018) argues that the introduction of

dynamic dependence of model parameters in conjunction with the factorisation of

the covariance matrix leads to a non observational equivalent prior density for Σt.
8

This discussion clarifies when the ordering of variables is important for inference.

Precisely, it matters when there are idiosyncratic volatility patterns.

These results also shed light on the discussion of Asai, McAleer, and Yu (2006)

and a comment raised by Christopher Sims in Cogley and Sargent (2005). They

conjecture that not separating volatility and correlation dynamics may impose some

dynamic restrictions on the covariance matrix. Particularly, the CMSV model rules

out common volatility pattern, which induces some nonlinear correlation patterns.

Also, because volatility pattern are not common, alternative orderings impose differ-

ent dynamic restriction on the covariance matrix.

2.2 The Cholesky MSV model and the DC-MSV model

Let yt be generated by the DC-MSV model with covariance matrix Σt. Then,

it follows from the volatility-correlation decomposition of Σt that the mapping from

model parameters {h1,t, h2,t,mt} to {σ2
11,t, σ

2
22,t, σ12,t, ρt, at, ãt} the elements and func-

tions of the reduced-form covariance matrix Σt is given by

σ2
11,t = exp (2h1,t), σ2

22,t = exp (2h2,t)

σ12,t = ρt exp (h1,t) exp (h2,t), ρt =
exp (mt)− 1

exp (mt) + 1
,

at = ρt
σ22,t

σ11,t

, ãt = ρt
σ11,t

σ22,t

where σ2
ii,t is the variance of the ith element of Σt for i = 1, 2, σ12,t is the covariance,

ρt is the correlation, at is the contemporaneous relation implied under Σt and ãt is

the contemporaneous relation implied under Σ̃t = PΣtP
′.

Then, the transition equations for the implied contemporaneous relations under

8Primiceri (2005) elaborates on the triangular factorisation in the contemporaneous case.
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the two alternative ordering at and ãt are given by

at = at−1

exp (εh2,t−1)

exp (εh1,t−1)
+ ηρt

σ22,t

σ11,t

, ãt = ãt−1

exp (εh1,t−1)

exp (εh2,t−1)
+ ηρt

σ11,t

σ22,t

where ηρt ≡ ρt − ρt−1.

Under the DC-MSV model, the contemporaneous relation is driven by the corre-

lation and the ratio of volatilities which is defined by second divided by first ordered

variable. Thus, the ordering of variables plays a particular for the implied dynamic

evolution for this parameter.

Notice the volatility-correlation decomposition of Σt allows for the specification

of very general volatility dynamics. For instance, the DC-MSV model may be setup to

feature a purely idiosyncratic (as specified in Table 1) or exhibit some commonalities

or a completely common volatility pattern.

Property (Σt under DC-MSV model). Let yt be generated by a DC-MSV model

with Σt, then some important properties for the elements and functions of Σt are

1. the correlation ρt evolves approximately linearly Gaussian for ρt ∈ (−0.5, 0.5)

2. when the ratio of reduced-form volatilities σ22,t
σ11,t

is constant, then at and ãt are

solely driven by ρt and have the same dynamics up to a scalar

3. when the ratio of reduced-form volatilities σ22,t
σ11,t

is time-varying, then at and ãt

evolve nonlinearly but have different dynamics

For proof, see Appendix A.2

Comparing the dynamic properties of Σt, the CMSV model assumes a linear

Gaussian process for the contemporaneous relation but implies a nonlinearly evolv-

ing correlation process; whereas the DC-MSV model implies nonlinear dynamics for

the contemporaneous relation and approximate linear Gaussian dynamics for the

correlation in some specified range. In other words, the correlation acts somewhat as

a degree of freedom in the CMSV model, while the contemporaneous relation gets

this role in the DC-MSV model.
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Property (DC-MSV, CMSV and implied covariances). Let Σt be generated by the

DC-MSV model. Then, the implied dynamics of the covariance σ12,t, approximated

by the state equations of the CMSV model for yt, is underestimated when the ratio of

volatilities increases; while it is mechanically overestimated, when it is approximated

by the state equations of the CMSV model for ỹt, as the ratio of volatilities is inverted.

For proof, see Appendix A.2

In other words, when yt is generated by the DC-MSV model, then the implied

covariance by a CMSV model are systematically different across alternative order-

ings. Particularly, they represent an upper and lower bound of the true covariance

parameter under the DC-MSV model.

Property (Posterior distribution of at and ãt under homoskedasticity). Let yt be

generated by a bivariate dynamic correlation model with constant unitary variances

on the main diagonal. Then, the difference of posterior mean and variance of at and

ãt implied under a respective CMSV model is induced by the likelihood and not the

prior. The difference between posterior mean and variance of at and ãt depend on

the distance between the sequence of y2
1,t and y2

2,t.

For proof, see Appendix A.2

The posterior distribution of the parameter of contemporaneous relation is not

same across alternative ordering in the CMSV model because the information of

the data is interpreted differently across alternative orderings. For this reason, the

model produces different estimates of the covariance matrix under alternative order-

ings. This observation raises the natural question by how much this channel drives

estimates of the posterior distribution apart.

To quantify this distance, a Monte Carlo simulation is conducted with 250 repli-

cations. A dynamic correlation model with unitary variance is used to simulate 1,000

observations or four years of daily data

r1,t = ν1,t

r2,t = ν2,t

,

(
ν1,t

ν2,t

)
∼ N

([
0

0

]
,

[
1 ρt

ρt 1

])
where the process of conditional correlation uses the specification of Engle (2002),
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1. Constant: ρt = 0.9;

2. Sine: ρt = 0.5 + 0.4 cos(2πt/200);

3. Fast Sine: ρt = 0.5 + 0.4 cos(2πt/20);

4. Step: ρt = 0.9− 0.5I(t > 500);

5. Ramp: ρt = mod (t/200).

These correlation processes were chosen by Engle (2002) as they exhibit vari-

ous types of rapid changes, gradual changes, and periods of constancy. Some of the

processes appear to be mean reverting, while others have abrupt changes.

The CMSV model is estimated with fixed hyperparameters and common prior

distribution. The MCMC estimation produce 35000 samples of which 15000 are re-

served for the burnin period.

To gauge the model fit, the average mean absolute error (MAE) of the estimated

quantity under both orderings is reported. It is defined as

MAE(X
¯ORD, X0) =

1

I

I∑
i

(
1

T

T∑
t

|XORD(i)
t −X0

t |

)

where XORD(i) denotes the parameter estimate of the model with order i = 1, 2.

ORD(1) and ORD(2) denote the ordering (y1,t, y2,t) and (y2,t, y1,t), respectively. X0

denotes the true value of the parameter.

The distance between alternative estimates is measured by the mean absolute

difference (MAD) of the parameter of interest, which is defined as

MAD(XORD(1), XORD(2)) =
1

T

T∑
t

|XORD(1)
t −XORD(2)

t |

Table 2 presents the results from this Monte Carlo simulation. Turning to the

precision of the estimates, the MAE figures indicate that both estimated at and ãt fit

the true correlation equally well. However, the implied correlation figure of the CMSV
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model is always more precise than the estimate of contemporaneous relation. This is

not surprising as the model is designed to produce valid draws of a covariance matrix

and not of a correlation matrix. In other words, estimates of the contemporaneous

relation are less precise than an implied correlation estimate because the estimation

routine does not accounts for the bounds of correlation.

Table 2: Precision and discrepancy of posterior median estimates

MAE MAD

ρt at ãt ρt at − ãt at ãt

const 0.016 0.043 0.043 0.008 0.084 0.018 0.019

sine 0.080 0.092 0.091 0.022 0.086 0.035 0.034

fastsine 0.256 0.257 0.257 0.016 0.070 0.020 0.020

step 0.049 0.065 0.066 0.010 0.076 0.018 0.018

ramp 0.106 0.117 0.116 0.023 0.087 0.037 0.037

The table shows the forecast accuracy (MAE) and distance (MAD) for estimated

correlation ρt and contemporaneous relation at and ãt. A bold figure highlights the

best model in each panel and row.

Next, the MAD figures indicate that the distance between alternative estimates

of at and ã∗t obtained under different orderings of variable are of the same magnitude.

The average distance among all simulated processes is 0.026 which is rather small.

However, the distance between estimated posterior medians of at and ãt, at−ãt, is not

small with an average of 0.08. Thus, estimates of at and ãt exhibit some alternative

patterns. Further, the distance between estimated correlation is the smallest with

0.016 among all estimates. This indicates that even though the likelihood drives

pseudo estimates of correlation at and ãt apart, it does, however, not martially affect

the correlation estimate.

Therefore, this Monte Carlo simulation provides evidence that the estimated

correlation of the CMSV model fits the data well and is almost invariant to a rotation

of variables for homoskedastic data.
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3 The DC-Cholesky MSV Model

The property that the estimated correlation of a CMSV model is almost rota-

tionally invariant for homoskedastic data is an attractive feature of the model. This

property can be exploited to construct a new multivariate stochastic volatility with

separate volatility and correlation dynamics in the spirit of Engle (2002). This sec-

tion presents the details of the dynamic correlation Cholesky multivariate stochastic

volatility (DC-Cholesky MSV or DC-CMSV) model.

Let yt be a mean zero vector process with a time-varying covariance matrix Σt

yt ∼ N(0,Σt) (1)

Then, Σt may be decomposed into marginal volatilities and correlations by

Σt = DtRtDt

where Dt is a diagonal matrix with volatilities and Rt is a correlation matrix

Dt =


exp (h1,t) 0 . . . 0

0 exp (h2,t)
. . .

...
...

. . . . . . 0

0 . . . 0 exp (hn,t)

 , Rt =


1 ρ2,1,t . . . ρn,1,t

ρ2,1,t 1
. . .

...
...

. . . . . . ρn,n−1,t

ρn,1,t . . . ρn,n−1,t 1

 ,
Then, it follows

yt = Dtεt, εt ∼ N(0, Rt) (2)

Then, an auxiliary positive definite matrix is estimated on the standardized data

εt = A∗−1
t D∗t et, et ∼ N(0, I)

where

A∗t =


1 0 . . . 0

a∗2,1,t 1 . . .
...

...
. . . . . .

...

a∗n,1,t . . . a∗n,n−1,t 1

 , D∗t =


exp (h∗1,t) 0 . . . 0

0 exp (h∗2,t)
. . .

...
...

. . . . . . 0

0 . . . 0 exp (h∗n,t)


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which is transformed to a correlation matrix using the formulas of Engle (2002)

Rt = Q
∗− 1

2
t QtQ

∗− 1
2

t (3)

Qt = A∗−1
t D∗tD

∗′
t At

∗′−1 (4)

Q∗t = diag[vecd(Qt)] (5)

where vecd(Qt) selects the diagonal of Qt.

Let a∗t be the lower off-diagonal elements of A∗t (stacked by rows) and ht and h∗t
be the vector of log volatilities on the diagonal of the matrix Dt and D∗t , respectively.

Assume that the state dynamics evolve as a random walk

ht = ht−1 + εht , (6)

a∗t = a∗t−1 + εa
∗

t , (7)

h∗t = h∗t−1 + εh
∗

t (8)

All innovations of the model are assumed to be joint normal.

V = V ar



et

εht
εa
∗
t

εh
∗
t


 =


I 0 0 0

0 W 0 0

0 0 S∗ 0

0 0 0 W ∗


where I is an identity matrix, S∗ is block diagonal matrix,W = diag([σ2

h,1, ..., σ
2
h,n])

and W ∗ = diag([σ∗2h,1, ..., σ
∗2
h,n]) are positive definite matrices.

Assume independent prior distribution for h0 , a∗0, h∗0, W , S∗i , W
∗.

h0 ∼ N(µh, Vh), σ2
h,i ∼ IG(νh, k

2
W ), ∀i = 1, ..., n

a∗0 ∼ N(µ∗a, V
∗
a ), Si ∼ IW (ν∗S,i, k

∗2
S · Ii),∀i = 1, ..., n− 1,

h∗0 ∼ N(µ∗h, V
∗
h ), σ∗2h,i ∼ IG(ν∗h, k

∗2
W ),∀i = 1, ..., n

Next, the Gibbs sampling algorithm for the DC-CMSV model is presented, which

builds on the notation and results from Chan (2017).

Algorithm: Gibbs sampling algorithm for the DC-CMSV model

Pick some initial values for h(0), W (0), h
(0)
0 , ε∗(0), a(0), S(0), a

(0)
0 , h(0), W (0) and h

(0)
0 .

Then, repeat the steps from r = 1 to R:
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1. posterior draws from p(s, h,W, h0, ε|y)

• Draw s(r) ∼ (s|y, h(r−1))

• Draw h(r) ∼ (h|y, s(r),W (r−1), h
(r−1)
0 )

• Draw W (r) ∼ (W |h(r), h
(r−1)
0 )

• Draw h
(r)
0 ∼ (h0|y, h(r),W (r))

• Draw ε(r) ∼ (ε|y, h(r))

2. posterior draws from p(a∗, a∗0, S
∗|ε(r), h∗(r−1))

• Draw a∗(r) ∼ (a∗|ε(r), a∗(r−1)
0 , S∗(r−1), h∗(r−1))

• Draw S∗(r) ∼ (S∗|ε(r), a∗(r), a∗(r−1)
0 )

• Draw a
∗(r)
0 ∼ (a∗0|ε(r), a∗(r), S∗(r))

3. posterior draws from p(s∗, h∗,W ∗, h∗0|ε(r), a∗(r))

• Draw s∗(r) ∼ (s∗|ε(r), h∗(r−1))

• Draw h∗(r) ∼ (h∗|ε(r), s∗(r),W ∗(r−1), h
∗(r−1)
0 )

• Draw W ∗(r) ∼ (W ∗|h∗(r), h∗(r−1)
0 )

• Draw h
∗(r)
0 ∼ (h∗0|ε∗, h∗(r),W ∗(r))

Relative to the traditional sampler of the CMSV model, the DC-CMSV sam-

pler first estimates the marginal volatility components of Dt and standardizes the

observed data. Then, a pseudo covariance matrix is estimated on the standardized

data with the CMSV model. The parameters A∗t and D∗t are then transformed into

an estimate of the correlation matrix Rt by equation (3)-(5). The draw of Rt in

conjunction with Dt is used to span the covariance matrix Σt.

Next, merits and drawbacks of the DC-CMSV model are highlighted. First, the

posterior distributions of the marginal volatilities is rotationally invariant. Next, if

the process for marginal volatilities is correctly specified, then the estimated correla-

tion matrix is almost rotationally invariant. Thus, the estimated covariance matrix
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under the DC-CMSV model is almost rotationally invariant as well. Moreover, pa-

rameter of contemporaneous relations may accommodate nonlinear dynamics.

Nevertheless, the appealing properties come at the cost of increased computa-

tional complexity. Particularly, the computational costs increase as the volatility

series needs to be sampled twice instead of once, i.e. the independent volatilities and

the auxiliary volatilities for the estimation of the correlation matrix. This increased

computational complexity, however, is not substantial threat to the applicability of

the model. In principle, the marginal volatilities can be sampled by parallel routines.

Notice when there is strong prior belief that the data is actually generated by the

CMSV model with a particular ordering, then the estimates of the DC-CMSV model

may be substantially off the true values. This property arises as the model imposes a

roughly linear restriction on the correlation process, which, however, cannot be used

to obtain the true nonlinear movements of the correlation. In this case, the CMSV

model is the preferred model.

4 Simulation Evidence

This section conducts a Monte Carlo simulation to evaluate forecast accuracy

and the sensitivity to alternative ordering of variables for the CMSV model and the

DC-CMSV model. For comparison, the integrated dynamic conditional correlation

(IDCC) model of Engle (2002) is added as a benchmark.

As data generating process (DGP), the stationary bivariate stochastic volatility

model with known correlation structure of Asai and McAleer (2009) is used to sim-

ulate 1000 observation, or four years of daily financial data. A scale parameter ci is

introduced to simulate different degrees of idiosyncratic volatility patterns. Specif-

ically, three different scales are considered ci = {1, 2, 0.5} with i = {BM,H,L},
which are denoted as benchmark, high volatility, low volatility DGP, respectively.

h1,t+1 = 0.98h1,t + η1,t+1

h2,t+1 = 0.95h2,t + η2,t+1

,

(
η1,t

η2,t

)
∼ N

([
0

0

]
, ci

[
0.1662 0

0 0.262

])
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then use them for each correlation process,

r1,t = ν1,t exp(0.5h1,t)

r2,t = ν2,t exp(0.5h2,t)
,

(
ν1,t

ν2,t

)
∼ N

([
0

0

]
,

[
1 ρt

ρt 1

])

which are the same as in Section 2.2.

The hyperparameters (kS, kW ) and (kW , k
∗
S, k

∗
W ) are all set to 0.1. The MCMC

estimation produce 35000 samples of which 15000 are reserved for the burnin period.

The IDDC model is estimated by the quasi-maximum likelihood method using the

MFE Toolbox of Sheppard (2013).

All statistics are based on 250 Monte Carlo replications. The forecast accuracy

of the estimated parameter is evaluated by the average mean absolute error (MAE)

over all possible permutations. The average MAE is computed for the estimated

correlation, covariance and value-at-risk of an equally weighted portfolio.

V aRt = 1.65

√
ω2 · V1,t + (1− ω)2 · V2,t + 2 · ω · (1− ω) · ρt · V

1
2

1,t · V
1
2

2,t

where Vi,t = exp(hi,t) is the variance for i = 1, 2, ρt is the correlation and ω = 0.5 is

the weight of the portfolio.

Next, the sensitivity of estimated parameters is assessed by distance and cor-

relation metrics. As distance metrics, the mean absolute difference (MAD) and the

root mean square difference (RMSD) are reported. When the MAD and the RMSD

diverge substantially, then this indicates that there are periods when the distance

between estimated parameters is unusually large.

The similarity of the parameter estimates is measured by the correlation of the

first difference of estimated parameters (FD). The first difference rather than the

level of the estimates is used because the latter induces spurious correlation due to

common trends in the level series.

FD(XORD(1), XORD(2)) = corr
(

∆X
ORD(1)
t ,∆X

ORD(2)
t

)
where ∆ denotes the first difference operator.
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4.1 Results

To illustrate the sensitivity, Figure 2 shows estimated posterior median of the

ratio of volatilities and parameter of contemporaneous relation for a selected ordering

and both models in the upper panel, and estimated correlation and covariance for a

selected model and both orderings in the lower panel for one replication of the sine

correlation process.

The figure shows that the estimated ratio of volatilities is similar across models

and that it exhibits nonlinear patterns over time. For the parameter of contempo-

raneous relation, however, there are marked differences across models. Especially,

estimates of the DC-CMSV model exhibit nonlinear dynamics, which is linked to the

ratio of volatilities. However, when these nonlinearties are not properly captured,

as in the CMSV model, then the estimated correlation and covariance may exhibit

systematic differences across orderings. Particularly, the estimated correlation and

covariance appear more smooth in ORD(1), while it exhibits some wobbliness and

spikes in ORD(2). This pattern is the flipside of a rather spiky path of the contem-

poraneous relation in ORD(1) but smooth path in ORD(2).

Table 3-5 present the performance evaluation of the estimated correlation, co-

variance, and value-at-risk, respectively. Notice the IDCC model is independent of

the ordering of variables, hence, no distance and similarity metrics are reported.

Table 3 shows that the DC-CMSV produces the most precise estimates of the

correlation for all except the fastsine correlation process. Here the CMSV performs

best. For the benchmark DGP, the gains in accuracy are moderate. However, the

forecast accuracy of the CMSV model deteriorates substantially for the high volatility

DGP, while the figures of the CMSV and the DC-CMSV are similar for the low

volatility DGP. Moreover, the forecast accuracy of the DC-CMSV remains similar

under alternative scales for the innovations to stochastic volatility.

Next, the MAD and the RMSD for the CMSV indicate that there may be a

considerable distance between the estimated correlation across alternative orderings.

Particularly, the RMSD for the benchmark DGP documents that a distance of 0.04 to

0.11 for the estimated correlation path is not unusual. These figures substantially in-
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Figure 2: Conditional covariance matrix (sine, benchmark DGP)
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0 200 400 600 800 1000

-0.5

0

0.5

1

0 200 400 600 800 1000

-4

-2

0

2

4

(c) CMSV

0 200 400 600 800 1000

-0.5

0

0.5

1

0 200 400 600 800 1000

-4

-2

0

2

4

(d) DC-CMSV

The figure shows estimated posterior median of the ratio of volatilties and contem-

poraneous relation in the upper panel for a selected ordering of both models. The

lower panel shows estimated posterior median of the correlation and covariance for a

selected model on both orderings.
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Table 3: Estimated correlation

(a) Benchmark DGP

MAE MAD RMSD FD

CMSV DC-CMSV IDCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.040 0.030 0.045 0.031 0.025 0.041 0.031 0.307 -0.284

sine 0.096 0.086 0.150 0.063 0.018 0.088 0.023 0.559 0.943

fastsine 0.249 0.256 0.256 0.082 0.011 0.108 0.014 0.382 0.911

step 0.078 0.061 0.083 0.044 0.017 0.065 0.022 0.499 0.768

ramp 0.118 0.110 0.168 0.067 0.020 0.096 0.027 0.567 0.942

(b) High Volatility DGP

MAE MAD RMSD FD

CMSV DC-CMSV IDCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.060 0.040 0.072 0.048 0.025 0.076 0.031 0.304 -0.269

sine 0.118 0.090 0.155 0.108 0.015 0.146 0.020 0.278 0.947

fastsine 0.248 0.256 0.258 0.144 0.008 0.185 0.011 0.127 0.924

step 0.103 0.067 0.095 0.080 0.014 0.120 0.018 0.291 0.788

ramp 0.138 0.114 0.179 0.112 0.017 0.154 0.022 0.297 0.945

(c) Low Volatility DGP

MAE MAD RMSD FD

CMSV DC-CMSV IDCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.030 0.024 0.029 0.029 0.023 0.037 0.029 0.139 -0.247

sine 0.086 0.083 0.147 0.043 0.021 0.060 0.027 0.772 0.942

fastsine 0.253 0.256 0.256 0.039 0.014 0.052 0.017 0.667 0.901

step 0.064 0.057 0.076 0.029 0.017 0.040 0.022 0.669 0.792

ramp 0.110 0.108 0.166 0.045 0.023 0.066 0.031 0.763 0.940

The table shows the performance metrics for different scales to the innovation of

stochastic volatility. A bold figure highlights the best model in each panel and row.

flate and deflate for the high volatility DGP and the low volatility DGP, respectively.

In contrast, analogous figures for the DC-CMSV are hardly affected by a different

scale of idiosyncratic volatility patterns in the simulated data.

Turing to the similarity metric, the FD metric is fairly below one for the esti-

mated correlation of the CMSV model. This indicates that changes of the estimated

correlation paths feature some idiosyncratic components. For the DC-CMSV model,
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the FD is substantially higher, but also somewhat lower than one. For the case of

constant correlation, the metric is negative which suggest that the estimated corre-

lation path exhibit some mirror type behavior. However, the FD figure should not

be interpreted in isolation. In fact, the small MAD and RMSD figures indicate that

estimated correlations are indeed very similar for the DC-CMSV.

For the estimated covariance, Table 4 shows that the DC-MSV produces for

Table 4: Estimated covariance

(a) Benchmark DGP

MAE MAD RMSD FD

CMSV DC-CMSV IDCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.313 0.285 0.374 0.169 0.031 0.240 0.044 0.378 0.970

sine 0.212 0.199 0.304 0.102 0.021 0.153 0.030 0.668 0.981

fastsine 0.331 0.331 0.350 0.106 0.013 0.159 0.018 0.622 0.990

step 0.248 0.224 0.303 0.109 0.021 0.167 0.030 0.566 0.981

ramp 0.232 0.221 0.315 0.104 0.024 0.158 0.034 0.642 0.978

(b) High Volatility DGP

MAE MAD RMSD FD

CMSV DC-CMSV IDCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.436 0.389 0.548 0.207 0.037 0.349 0.057 0.469 0.988

sine 0.288 0.253 0.406 0.179 0.021 0.307 0.033 0.572 0.993

fastsine 0.403 0.396 0.440 0.210 0.012 0.351 0.019 0.467 0.997

step 0.348 0.301 0.433 0.169 0.021 0.299 0.033 0.562 0.994

ramp 0.312 0.281 0.421 0.183 0.023 0.313 0.037 0.553 0.992

(c) Low Volatility DGP

MAE MAD RMSD FD

CMSV DC-CMSV IDCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.238 0.217 0.259 0.153 0.026 0.201 0.034 0.192 0.931

sine 0.170 0.163 0.240 0.081 0.023 0.114 0.030 0.665 0.963

fastsine 0.296 0.296 0.301 0.049 0.015 0.068 0.020 0.768 0.969

step 0.190 0.177 0.224 0.089 0.019 0.130 0.026 0.473 0.955

ramp 0.190 0.185 0.251 0.085 0.025 0.121 0.034 0.637 0.957

The table shows the performance metrics for different scales to the innovation of

stochastic volatility. A bold figure highlights the best model in each panel and row.
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Table 5: Estimated value-at-risk

(a) Benchmark DGP

MAE MAD RMSD FD

CMSV DC-CMSV IDCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.252 0.236 0.306 0.115 0.011 0.149 0.014 0.496 0.992

sine 0.212 0.207 0.281 0.072 0.009 0.097 0.012 0.820 0.994

fastsine 0.235 0.231 0.284 0.069 0.006 0.091 0.008 0.840 0.996

step 0.227 0.217 0.285 0.075 0.009 0.104 0.011 0.723 0.994

ramp 0.218 0.213 0.286 0.075 0.010 0.105 0.014 0.762 0.993

(b) High Volatility DGP

MAE MAD RMSD FD

CMSV DC-CMSV IDCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.329 0.307 0.427 0.133 0.012 0.184 0.015 0.663 0.997

sine 0.282 0.271 0.390 0.113 0.009 0.158 0.012 0.856 0.998

fastsine 0.300 0.290 0.390 0.121 0.006 0.162 0.008 0.847 0.998

step 0.301 0.285 0.400 0.108 0.008 0.156 0.011 0.805 0.998

ramp 0.286 0.276 0.394 0.114 0.009 0.161 0.013 0.828 0.998

(c) Low Volatility DGP

MAE MAD RMSD FD

CMSV DC-CMSV IDCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.198 0.185 0.222 0.114 0.010 0.144 0.013 0.263 0.980

sine 0.169 0.165 0.211 0.069 0.011 0.091 0.014 0.671 0.983

fastsine 0.196 0.195 0.218 0.037 0.007 0.049 0.009 0.849 0.989

step 0.179 0.172 0.209 0.068 0.009 0.094 0.011 0.571 0.985

ramp 0.175 0.172 0.215 0.076 0.012 0.101 0.016 0.578 0.978

The table shows the performance metrics for different scales to the innovation of

stochastic volatility. A bold figure highlights the best model in each panel and row.

almost all cases the most precise estimates. The MAD and RMSD indicate that

the distance between estimated covariances is small, while estimates of the CMSV

may exhibit substantial differences. Strikingly, the FD statistics is very close to one

for the estimates of the DC-MSV. This indicates that the estimated covariances

are almost identical across ordering. Since the estimated volatilities of the DC-MSV

are by construction independent of the ordering, this table provides strong evidence

that the estimated covariance matrix of the DC-MSV is almost rotationally invariant.
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Moreover, the similarity and distance metric indicate that the estimates of the CMSV

are more different the stronger the idiosyncratic volatility patterns.

For value-at-risk, Table 5 draws an unambiguous picture. The DC-MSV produces

the most precise estimates, which are virtually indistinguishable across alternative

orderings. The estimates of the CMSV, however, are less precise and it is not unusual

that estimates diverge substantially across orderings. From the perspective of risk

management, this is clearly an undesirable property as alternative estimates may

indicate very different losses for the portfolio over time.

4.2 Robustness

The influence of the hyperparameters for the innovation variance is different

across models and across orderings. Therefore, it is not clear whether this choice re-

sembles a fair model comparison. For this reason, the model and their hyperparmater

are re-estimated using the algorithm of Amir-Ahmadi, Matthes, and Wang (2018).

Table C.1 – C.3 in Appendix C.1 show the results for all three DGPs. Overall,

the choice of the hyperparameters has a limited effect on the results as the posterior

median of the estimated hyperparameters is close, in general, slightly smaller than

the chosen hyperparameters. Broadly, the performance metrics improve slightly in

all dimensions and for both models.

Another concern is misspecification. The true DGP assumes stationary volatility

dynamics. This form of misspecification may affect the ability of the DC-CMSV

model to take out the nonlinearities of the data, which is important to obtain almost

rotationally invariant estimates. Therefore, both models are re-estimated assuming

stationary law of motion for volatility and parameter of contemporaneous relation.

For this exercise, the stationary DCC model of Engle (2002) is added as a benchmark.

Table C.4 – C.6 in Appendix C.2 show the results for all three DGPs. The statis-

tics indicate that the main result is not affected, however, some features stand out.

The estimated covariance and value-at-risk are slightly more accurate than those un-

der the main results. However, distance and similarity metrics indicate more distinct

estimates. This result is the consequence of a more distinct posterior distribution of
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the parameter of contemporaneous relation under an autoregressive process. Never-

theless, all estimates are broadly similar under the DC-CMSV model.

5 Empirical Application

This section reviews the robustness of the results for Primiceri (2005)’s applica-

tion in the light of alternative orderings. The introductory chart (Figure 1) shows that

the estimated covariance are sensitive to alternative orderings and exhibit marked

differences during the stagflation period. These differences may have an effect on the

structural analysis for this particular application.

To investigate this issue, the structural analysis is replicated for all possible per-

mutations of the variables along the lines of a two-step identified structural VAR as

described in Rubio-Ramirez, Waggoner, and Zha (2010). The reduced-form parame-

ters of the model are estimated under all possible orderings, then all parameters are

reordered back into the original position of variables. Then, the structural model is

identified via the Cholesky decomposition of the covariance matrix in each period.

All estimates are based on Algorithm 2 of Del Negro and Primiceri (2015), which is

the approximate mixture sampler for stochastic volatility. In addition, a DC-CMSV

version of the model is estimated for comparison. Also, 70,000 draws of the Gibbs

sampler are produced, while the first 20,000 are discarded in the burn-in period.

Figure B.1 and B.2 in Appendix B depict the posterior median of the estimated

time-varying VAR parameters for each variable in the respective column. The es-

timates are rather similar across alternative ordering for the original model, while

those of the DC-CMSV version of the model are virtually indistinguishable.

Next, Figure B.3 and B.4 in Appendix B show the posterior median of the esti-

mated correlation, covariance, and volatility of the reduced-form residuals. For the

original model, the estimated correlation and covariance exhibit pronounced differ-

ences under the original model. The difference across volatility estimates is however

rather small. In contrast, all estimates of the DC-CMSV version of the model are

virtually indistinguishable across alternative orderings. Taking stock, these proper-

ties of the estimated reduced-form parameters clearly indicate that results of the

structural analysis may only change when an estimate of the covariance is involved.
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Also, notice the estimates of the DC-CMSV version of the model are similar to

a model average over the estimates of all possible orderings of the original model.

Thus, this figure demonstrates that alternative estimates of the original model are not

arbitrary different, but exhibit some systematic differences, which averages out over

possible orderings. Moreover, already small variations in the ratio of volatilities may

lead to systematically different estimates. This provides evidence that this property

is not only relevant in simulations but also for empirical applications.

Having documented general differences across reduced-form parameter estimates,

the consequences are analyzed in more detail for two particular orderings. Specifi-

cally, the estimates of the original ordering and the reverse ordering are contrasted

as differences between estimated covariances are most pronounced. Turning to the

results, the estimates of U.S. systematic interest rate response for inflation and unem-

ployment exhibit significant differences across these two particular ordering. This is

hardly surprising as these estimates use the estimated covariance as an input. There

are no marked difference for the other exercises in Primiceri’s (2005) application.9

Figure 3 shows the estimated long-run U.S. systematic interest rate response to

inflation and unemployment for both the original model and the DC-CMSV version

of the model. In particular, the estimates of the original model provide evidence

for two equally plausible but mutually exclusive conclusions on how U.S. systematic

monetary policy reacted during the stagflation period. The original estimates pro-

vide evidence for a muted response, while those under the reverse ordering point to

a drastically changing and aggressive response. As a result, this chart provides evi-

dence that the ordering of variables may be so decisive that it may alter conclusions

drawn from this model. Therefore, the choice of the ordering is not negligible in the

CMSV model. It must be considered as an additional identifying assumption on the

dynamic evolution of the reduced-form covariance matrix which may be or may be

not attractive feature for this application.

Besides, estimates of DC-CMSV version of the model draw an unambiguous

conclusion under all possible ordering. The results suggest that the reaction function

was modestly more aggressive. This evidence is consistent with the finding in Sims

9A comparison for all exercises is documented in Appendix B (Figure B.5 – B.12).
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Figure 3: Long-run U.S. systematic interest rate response
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The figure depicts interest rate response to a 1% permanent increase of inflation and

unemployment rate under alternative orderings using the two-step procedure.

and Zha (2006). Particularly, this paper provides strong evidence that there were

regime switches for the conduct of monetary policy during the period of stagflation.

6 Conclusion

This paper studied the dynamic properties of the estimated reduced-form time-

varying covariance matrix of the CMSV model under alternative orderings of vari-

ables. It found that this model imposes alternative dynamic restrictions across or-

derings when the ratio of volatilities varies over time. The DC-CMSV model was

proposed as a robust alternative. The reduced-form estimates of this model are al-

most rotationally invariant. The model also allows for nonlinear dynamics between

contemporaneous relations. For the investigated example, it was illustrated that rota-

tional non-invariance is not negligible and that estimates under alternative orderings

may lead to ambiguous conclusions. This property is likely to be important for many

empirical applications as it is not uncommon that financial and economic time se-

ries to exhibit individual volatility dynamics. Thus, these findings suggest that the
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estimates based on the CMSV model should be interpreted with some caution. In

addition, the relatively small costs of computing a more robust estimate using the

DC-CMSV model seems sensible for most empirical applications.

The main finding that specific state dynamics impose restrictions on the reduced-

form estimates may not only be limited to this state space model. Also, the linear

dynamic factor model with time-varying factor loadings and stochastic volatility may

suffer from similar restrictions. Future research should investigate whether rotational

non-invariance in this class of models is also driven by a too restrictive evolution of

the state or factor dynamics.
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A Proofs

A.1 Some properties of the Cholesky MSV model

Proof of Property “Σt under CMSV model” .

Subproof of Claim (1). Define bt =
σ2
11,t

σ2
22,t

. Then,

σ2
22,t = exp(2g2,t) + a2

t btσ
2
22,t

=
1

1 + bta2
t

exp(2g2,t)

=
1

1 + bt(at−1 + εat )
2

exp(2g2,t−1) exp(2εg2,t)

=
1 + bta

2
t−1

1 + bt(at−1 + εat )
2
σ2

22,t−1 exp(2εg2,t). (A.1)

Using σ2
11,t = btσ

2
22,t, it follows that

σ2
11,t =

1 + bta
2
t−1

1 + b(at−1 + εat )
2
σ2

11,t−1 exp(2εg2,t). (A.2)

However, the state equation for σ2
11,t is given by

σ2
11,t = σ2

11,t−1 exp(2εg1,t). (A.3)

Combining (A.2) with (A.3) gives

1 + bta
2
t−1

1 + bt(at−1 + εat )
2
σ2

11,t−1 exp(2εg2,t) = σ11,t−1 exp(2εg1,t)

1 + bta
2
t−1

1 + b(at−1 + εat )
2

exp(2εg2,t) = exp(2εg1,t). (A.4)

Since εat is independent of {εg1,t, ε
g
2,t}, bt must be time-varying to ensure that this

equation holds in every period. Thus, the ratio of volatilities is not constant. �
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Subproof of Claim (2). The correlation ρt depends on reduced-form parameters by

ρt = at
σ11,t

σ22,t

= at−1
σ11,t−1

σ22,t−1

exp(εg1,t)

exp(εg∗∗2,t )
+ εat

σ11,t

σ22,t

= ρt−1

exp(εg1,t)

exp(εg∗∗2,t )
+ εat

σ11,t

σ22,t

(A.5)

where εg∗∗2,t ≡ log(σ22,t) − log(σ22,t−1). Then, because the ratio of volatilities is time-

varying and is log-normally distributed, it follows from (A.5) that the correlation

evolves nonlinearly. �

Subproof of Claim (3). Trivial. Follows directly from the definition. �

Proof of Property “Reordering in CMSV model”.

Under Σ̃t, the true parameter ãt is given by

ãt = at
σ2

11,t

σ2
22,t

.

Then, the transition equation for the implied contemporaneous relation parameter,

ãt is given by

ãt = ãt−1

exp (2εg1,t)

exp (2εg∗∗2,t )
+ εat

σ2
11,t

σ2
22,t

,

where εg∗∗2,t ≡ log(σ22,t)− log(σ22,t−1).

The time-varying ratio of reduced-form variances implies that ãt evolves non-

linearly. Specifically, the transition from ãt−1 to ãt is leveraged or dampened by the

innovations to stochastic volatility as well as the ratio of variances itself. In contrast,

the state equation of ã∗t is a Gaussian random walk. Consequently, the true dynamics
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of ãt cannot be obtained by the state equation of ã∗t . Hence, the dynamic structure

induced into Σ∗t and Σ̃t are different.

The parameters under the analogous set up CMSV model for Σ̃∗t are given by

σ̃∗22,t = exp(2g̃∗2,t), σ̃∗11,t = exp(2g̃∗1,t) + (ã∗t )
2 exp(2g̃∗2,t)

σ̃∗12,t = ã∗t σ̃
∗2
22,t, ρ̃∗t =ã∗t

σ̃∗22,t

σ̃∗11,t

When the ratio of variances is constant, then there is a mapping from the parame-

ters of the analogous set up CMSV model to the implied transformed parameters.

However, since the ratio of variances cannot be constant for this DGP, this mapping

does not exist. The analogous set up state equations then depart stronger from the

true parameters

σ̃12,t = ãtσ̃
2
11,t = σ12,t, ρ̃t = at

σ11,t

σ22,t

= ρt,

the higher variability of the ratio of variances.

A.2 The Cholesky MSV model and the the DC-MSV model

Property (Rotational invariance of Σt under DC-MSV model). Let yt be generated

by the DC-MSV model with covariance matrix Σt. Define the vector of variables with

exchanged rows ỹt and the permuted covariance matrix Σ̃t = PΣtP
′. Analogously,

define Σ̃∗t = D∗tR
∗
tD
∗
t , the covariance matrix of ỹt = Pyt where P is a permutation

matrix. Then, Σ̃t = Σ̃∗t , i.e. the reduced-form parameters of Σt are independent of

the ordering of the variables.

Proof. If Σ̃t = Σ̃∗t , then P ′Σ̃∗tP = P ′D∗tPP
′R∗tPP

′D∗tP since Dt = P ′D∗tP (D∗t is

diagonal) and Rt = P ′R∗tP = R∗t (R∗t is symmetric). It follows that Σt = P ′Σ̃∗tP .

Proof of Property “Σt under DC-MSV model”.
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Subproof of Claim (1). For g : m → ρ and m ∈ [−1.1, 1.1] we have ρ = g(m) ∈
[−0.5, 0.5]. On this interval, the MSE of a linear regression of ρ on m is 5.5e-5.

Figure A.1 compares the linear prediction for ρ on the interval for m ∈ [−5, 5]. The

figure indicates that when |m| > 1.1, the approximation error increases substantially

as the function g becomes more nonlinear. Thus, for ρ ∈ (−0.5, 0.5), the mapping

g(m) is approximately linearly and the innovations are approximately Gaussian.

Figure A.1: Fisher transformation: mapping between ρ and m

-5 0 5
-1

-0.5

0

0.5

1

�

Subproof of Claim (2). The transition equations for the implied contemporaneous

relations under the two alternative ordering at and ãt are given by

at = at−1

exp (εh2,t−1)

exp (εh1,t−1)
+ ηρt

σ22,t

σ11,t

, ãt = ãt−1

exp (εh1,t−1)

exp (εh2,t−1)
+ ηρt

σ11,t

σ22,t

where ηρt ≡ ρt − ρt−1. Then, when the ratio of reduced-form volatilities is constant,

that is, σ22,t
σ11,t

= c ∀t, c > 0, it follows

at = at−1 + ηρt c, ãt = ãt−1 + ηρt
1

c
, (A.6)

Thus, the dynamic evolution of at and ãt are driven by the correlation process. Since

ãt = at
1
c2

, the dynamic evolution of ãt and at are the same up to a positive scalar. �
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Subproof of Claim (3). When the ratio of reduced-form volatilities is time-varying,

then the transition from at−1 to at is nonlinear as it is scaled by the log-normally

distributed ratio of volatilities. Then, after a reordering of variables, the influence of

the ratio of volatilities on the contemporaenous relation is inverted. This means that

the distance from at−1 to at and from ãt−1 to ãt is not symmetric. Therefore, at and

ãt obey different nonlinear dynamics. �

Proof of Property “DC-MSV, CMSV and implied covariances”.

The true dynamic structure for the contemporaneous relation is given by

at = at−1

exp (ηh2,t)

exp (ηh1,t)
+ ηρt

exp (h2,t)

exp (h1,t)
. (A.7)

This equation substantially differs from the linear Gaussian process of a∗t . Specifically,

it features state dependent time-varying parameters, non-normal and heteroskedastic

innovations that may leverage or dampen the transition transition from at−1 to at.

To quantify the impact of these nonlinearities, the equation is linearized using

a first order Taylor series expansion with information up to t − 1, i.e. a0 = at−1,

ηρ,0 = 0, ηh,0i = E(ηhi,t) = 0 and h0
i = hi,t−1 for i = 1, 2. The linearization is given by

at = at−1 + (at−1 + ηρt
exp(h2,t−1)

exp(h1,t−1)
)(ηh2,t − ηh1,t) + ηρt

exp(h2,t−1)

exp(h1,t−1)
. (A.8)

This linearization features an approximation error, except when the innovations to

stochastic volatility offset each other, i.e. the ratio of volatilities is constant.

The approximation error is defined as

errort = at − ât (A.9)

where at and ât denote the resulting parameter under (A.7) and (A.8), respectively.

The bias associated with this linear transition function is given by

biast = 1{at>at−1}(ât − at)− (1− 1{at>at−1})(ât − at) (A.10)
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where 1{at>at−1} is an indicator function, which ensures the correct sign of the bias.10

Figure A.2 illustrates the quantitative effects of innovations to stochastic volatil-

ity and innovation to correlation on the approximation error and the bias for two

initial points (at−1 = 0, ρt−1 = 0) and (at−1 = 0.5, ρt−1 = 0.5) with exp (h2,t−1)

exp (h1,t−1)
= 1.11

The true parameter at moves on an exponential hyperplane while the first order ap-

proximation ât moves on a linear hyperplane, which touches the true hyperplane

from below (above, indefinite) for positive (negative, zero) values of at−1.

For the first point, when there are non-offsetting innovations to stochastic volatil-

ity, then the approximation error is non-negative (non-positive) as the true value at

is above (below) the initial value at−1. Consequently, the bias is negative in either

direction. In other words, the first order approximation underestimates any transi-

tion from this point. For the second point, the approximation error is, in general,

non-negative since the first order approximation touches the exponential hyperplane

from below. Thus, when the ratio of volatilities increases, the true value increases and

the first order approximation underestimates this transition. In contrast, it generally

overestimates the transition when the ratio of volatilities decreases.

Note that when the linear approximation in (A.8) is further restricted to ex-

hibit homoskedastically and normally distributed innovations, then these dynamic

restrictions become tighter such that the approximation error and the bias becomes

larger.

Next, when the order of variables is changed, then ãt has a similar functional

form as at in (A.7), but the ratio of volatilities is inverted

ãt = ãt−1

exp (ηh1,t)

exp (ηh2,t)
+ ηρt

exp (h1,t)

exp (h2,t)
.

Consequently, when the ratio of volatilities increases then the equation of a∗t
underestimates the true transition of at in the original ordering, while the dynamic

10For instance, when the true value falls and the approximate value falls by even more but both

remain positive, then the transition is overstated. However, a bias function without sign correction

assigns a negative value, indicating underestimation.
11Notice the surface plots for a positive value of at−1 are a reflection for negative value of at−1.
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Figure A.2: Approximation error and bias of linearization
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Panel (II): Bias

The figure shows the approximation error and the bias for two initial values of

(at−1 = 0, ρt−1 = 0) and (at−1 = 0.5, ρt−1 = 0.5) with
exp (h2,t−1)
exp (h1,t−1)

= 1. The x-axis

and the y-axis show the range of the innovations to correlation and ratio of volatility.

equation of ã∗t mechanically overestimates the true transition of ãt in the alternative

ordering.

Since the covariance term σ∗12,t and σ̃∗12,t is proportional to {a∗t , g∗1,t} and {ã∗t , g̃∗2,t},
and h1,t = g∗1,t and h2,t = g̃∗2,t is left unrestricted, it follows that the bias in the

contemporaneous parameter carries over to the covariance terms.
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Proof of Property “Posterior distribution of at and ãt under homoscedasticity”.

Assume that yt is generated by[
y1,t

y2,t

]
∼ N

([
0

0

]
,

[
1 ρt

ρt 1

])
.

Define for yt and ỹt = Pyt, where P is permutation matrix exchanging rows, the

respective covariance matrices Σt = A−1
t DtD

′
tA
−1′

t and Σ̃t = Ã−1
t D̃tD̃

′
tÃ
−1′

t . In addi-

tion, assume the variance of the first element on the diagonal of Dt and D̃t is equal to

one. The parameters associated with yt are {1, gt, at} and those with ỹt are {1, g̃t, ãt}.
Because of the special structure of the DGP, it follows that the prior distribution of

at = ãt and gt = g̃t is invariant to rotation of variables.12

Turning to inference, suppose the posterior draw for the initial value a0 = ã0, the

variance of the time-varying parameter S = S̃ and the variance of the transformed

second variable gt = g̃t ∀t.

Using the results in Chan (2017), the posterior distribution of a is given by

(a|y,D, a0, S) ∼ N(K−1
a ā, K−1

a )

where

Ka =



2
S

+ y1,12

exp(g1)
− 1
S

0 0 . . . 0

− 1
S

2
S

+ y1,22

exp(g2)
− 1
S

0 . . . 0
...

. . . . . . . . . . . . 0
...

. . . . . . − 1
S

2
S

+
y1,T−1

2

exp(gT−1)
− 1
S

0 0 0 0 − 1
S

2
S

+
y1,T

2

exp(gT )


, ā =



a0
S
− y1,1y2,1

exp (g1)

− y1,2y2,2
exp (g2)

...

−y1,T−1y2,T−1

exp (gT−1)

−y1,T y2,T
exp (gT )


while the posterior distribution of ã is given by

(a|ỹ, D, a0, S) ∼ N(K̃−1
a

˜̄a, K̃−1
a )

12Notice that this does not imply that the elements in Σt and Σ̃t have the same distribution.
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where

K̃a =



2
S

+ y2,12

exp(g1)
− 1
S

0 0 . . . 0

− 1
S

2
S

+ y2,22

exp(g2)
− 1
S

0 . . . 0
...

. . . . . . . . . . . . 0
...

. . . . . . − 1
S

2
S

+
y2,T−1

2

exp(gT−1)
− 1
S

0 0 0 0 − 1
S

2
S

+
y2,T

2

exp(gT )


, ˜̄a =



a0
S
− y2,1y1,1

exp (g1)

− y2,2y1,2
exp (g2)

...

−y2,T−1y1,T−1

exp (gT−1)

−y2,T y1,T
exp (gT )


Then, since ā = ˜̄a but Ka 6= K̃a unless y2

1,t = y2
2,t ∀t, it follows that the posterior

distribution of a and ã is different. Note that the backward solution for the individual

elements in a and ã differ, while they add up to the same sum in the time-invariant

case.13 Consequently, the likelihood information leads to a rotationally non-invariant

posterior distribution for the time-varying parameter.

13If a is time-invariant, thenKa = 1
exp (2g2)

∑T
t=1 y

2
1,t and K̃a = 1

exp (2g1)

∑T
t=1 y

2
2,t with exp (g1) =

exp (g2) and
∑T
t=1 y

2
1,t =

∑T
t=1 y

2
2,t implies that Ka = K̃a. ā = ˜̄a as ā = 1

exp (2g2)

∑T
t=1 y1,ty2,t

˜̄a = 1
exp (2g1)

∑T
t=1 y1,ty2,t. Hence, the posterior distribution of a and ã is the same under alternative

orderings of the variables.
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B Figures

B.1 Sensitivity of reduced-form parameters

Figure B.1: TVP-VAR CMSV
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The figure depicts the posterior median of the time-varying VAR parameters for each

equation in the respective column for alternative orderings.
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Figure B.2: TVP-VAR DC-CMSV

Inflation Unemployment Interest rate
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The figure depicts the posterior median of the time-varying VAR parameters for each

equation in the respective column for alternative orderings.
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Figure B.3: TVP VAR CMSV
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The figure depicts posterior median of the correlation, covariance, and standard devi-

ation of the reduced-form residual for alternative orderings. INF denotes the inflation

rate, UNEMP denotes the unemployment rate and IR denotes the interest rate.
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Figure B.4: TVP-VAR DC-CMSV
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The figure depicts posterior median of the correlation, covariance, and standard devi-

ation of the reduced-form residual for alternative orderings. INF denotes the inflation

rate, UNEMP denotes the unemployment rate and IR denotes the interest rate.
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B.2 Sensitivity of structural analysis

Figure B.5: Replication Figure 1

TVP-VAR DC-CMSV TVP-VAR CMSV

Panel (I): Original ordering, yt = [πt, ut, it]

Panel (II): Reverse ordering, yt = [it, ut, πt]

The figure depicts the posterior mean, 16th and 84th percentiles of the standard

deviation of (a) the residuals of the inflation equation, (b) the residuals of the un-

employment equation and (c) the residuals of the interest rate equation or monetary

policy shocks.
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Figure B.6: Replication Figure 2

TVP-VAR DC-CMSV TVP-VAR CMSV

Panel (I): Original ordering, yt = [πt, ut, it]

Panel (II): Reverse ordering, yt = [it, ut, πt]

The figure depicts (a) impulse response of inflation to monetary policy shocks in 1975:I,

1981:III, and 1996:I, (b) difference between the responses in 1975:I and 1981:III with

16th and 84th percentiles, (c) difference between the responses in 1975:I and 1996:I

with 16th and 84th percentiles, (d) difference between the responses in 1981:III and

1996:I with 16th and 84th percentiles.
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Figure B.7: Replication Figure 3

TVP-VAR DC-CMSV TVP-VAR CMSV

Panel (I): Original ordering, yt = [πt, ut, it]

Panel (II): Reverse ordering, yt = [it, ut, πt]

The figure depicts (a) impulse response of unemployment to monetary policy shocks

in 1975:I, 1981:III, and 1996:I, (b) difference between the responses in 1975:I and

1981:III with 16th and 84th percentiles, (c) difference between the responses in 1975:I

and 1996:I with 16th and 84th percentiles, (d) difference between the responses in

1981:III and 1996:I with 16th and 84th percentiles.
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Figure B.8: Replication Figure 4

TVP-VAR DC-CMSV TVP-VAR CMSV

Panel (I): Original ordering, yt = [πt, ut, it]

Panel (II): Reverse ordering, yt = [it, ut, πt]

The figure depicts interest rate response to a 1% permanent increase of inflation with

16th and 84th percentiles. (a) Simultaneous response, (b) response after 10 quarters,

(c) response after 20 quarters, (d) response after 60 quarters.
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Figure B.9: Replication Figure 5

TVP-VAR DC-CMSV TVP-VAR CMSV

Panel (I): Original ordering, yt = [πt, ut, it]

Panel (II): Reverse ordering, yt = [it, ut, πt]

The figure depicts interest rate response to a 1% permanent increase of inflation.
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Figure B.10: Replication Figure 6

TVP-VAR DC-CMSV TVP-VAR CMSV

Panel (I): Original ordering, yt = [πt, ut, it]

Panel (II): Reverse ordering, yt = [it, ut, πt]

The figure depicts interest rate response to a 1% permanent increase of unemployment

rate with 16th and 84th percentiles. (a) Simultaneous response, (b) response after 10

quarters, (c) response after 20 quarters, (d) response after 60 quarters.
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Figure B.11: Replication Figure 7

TVP-VAR DC-CMSV TVP-VAR CMSV

Panel (I): Original ordering, yt = [πt, ut, it]

Panel (II): Reverse ordering, yt = [it, ut, πt]

The figure depicts interest rate response to a 1% permanent increase of unemployment

rate.
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Figure B.12: Replication Figure 8

TVP-VAR DC-CMSV TVP-VAR CMSV

Panel (I): Original ordering, yt = [πt, ut, it]

Panel (II): Reverse ordering, yt = [it, ut, πt]

The figure depicts counterfactual historical simulation drawing the parameters of the

monetary policy rule from their 1991-1992 posterior. (a) Inflation, (b) unemployment.

51



C Tables

C.1 Robustness: estimated hyperparameters

Table C.1: Estimated correlation

(a) Benchmark DGP

MAE MAD RMSD FD

CMSV DC-CMSV IDCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.041 0.030 0.045 0.029 0.023 0.038 0.029 0.371 -0.219

sine 0.098 0.086 0.150 0.064 0.018 0.090 0.023 0.534 0.942

fastsine 0.245 0.256 0.256 0.087 0.008 0.115 0.010 0.390 0.931

step 0.081 0.062 0.083 0.045 0.016 0.068 0.021 0.493 0.795

ramp 0.119 0.110 0.168 0.068 0.020 0.098 0.027 0.546 0.942

(b) High Volatility DGP

MAE MAD RMSD FD

CMSV DC-CMSV IDCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.061 0.039 0.072 0.048 0.025 0.076 0.031 0.308 -0.216

sine 0.119 0.089 0.155 0.106 0.015 0.146 0.020 0.275 0.945

fastsine 0.244 0.257 0.258 0.142 0.006 0.185 0.008 0.176 0.936

step 0.105 0.068 0.095 0.080 0.015 0.121 0.019 0.287 0.801

ramp 0.139 0.113 0.179 0.111 0.018 0.154 0.023 0.296 0.944

(c) Low Volatility DGP

MAE MAD RMSD FD

CMSV DC-CMSV IDCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.030 0.024 0.029 0.024 0.021 0.031 0.026 0.296 -0.181

sine 0.087 0.083 0.147 0.043 0.020 0.061 0.026 0.748 0.942

fastsine 0.251 0.256 0.256 0.051 0.010 0.067 0.012 0.587 0.926

step 0.066 0.057 0.076 0.029 0.015 0.042 0.019 0.671 0.826

ramp 0.111 0.108 0.166 0.046 0.023 0.068 0.030 0.742 0.942

The table shows the statistics for the estimated correlation of the MSV model with

estimated hyperparameters. Accuracy metric is MAE, discrepancy metrics are MAD

and RMSD, and similarity metric is FD. A bold figure highlights the best model in

each panel and row.
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Table C.2: Estimated covariance

(a) Benchmark DGP

MAE MAD RMSD FD

CMSV DC-CMSV IDCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.314 0.288 0.374 0.155 0.030 0.224 0.042 0.445 0.976

sine 0.215 0.200 0.304 0.102 0.021 0.154 0.030 0.666 0.983

fastsine 0.330 0.331 0.350 0.112 0.010 0.170 0.014 0.607 0.993

step 0.251 0.225 0.303 0.107 0.020 0.165 0.028 0.591 0.985

ramp 0.235 0.222 0.315 0.105 0.024 0.161 0.035 0.636 0.979

(b) High Volatility DGP

MAE MAD RMSD FD

CMSV DC-CMSV IDCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.438 0.393 0.548 0.202 0.038 0.344 0.059 0.486 0.987

sine 0.292 0.255 0.406 0.177 0.021 0.308 0.033 0.566 0.993

fastsine 0.401 0.395 0.440 0.207 0.009 0.353 0.014 0.472 0.998

step 0.353 0.303 0.433 0.169 0.021 0.303 0.034 0.557 0.994

ramp 0.316 0.283 0.421 0.182 0.024 0.315 0.039 0.544 0.991

(c) Low Volatility DGP

MAE MAD RMSD FD

CMSV DC-CMSV IDCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.238 0.219 0.259 0.134 0.024 0.177 0.032 0.349 0.956

sine 0.172 0.165 0.240 0.077 0.022 0.109 0.029 0.689 0.967

fastsine 0.295 0.296 0.301 0.062 0.011 0.085 0.014 0.738 0.983

step 0.192 0.178 0.224 0.082 0.017 0.119 0.023 0.574 0.970

ramp 0.192 0.185 0.251 0.082 0.024 0.119 0.034 0.649 0.961

The table shows the statistics for the estimated covariance of the MSV model with

estimated hyperparameters. A bold figure highlights the best model in each panel and

row.
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Table C.3: Estimated value-at-risk

(a) Benchmark DGP

MAE MAD RMSD FD

CMSV DC-CMSV IDCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.252 0.237 0.306 0.105 0.011 0.137 0.014 0.570 0.994

sine 0.213 0.207 0.281 0.071 0.009 0.096 0.012 0.826 0.995

fastsine 0.236 0.229 0.284 0.073 0.005 0.098 0.007 0.813 0.997

step 0.227 0.217 0.285 0.074 0.008 0.102 0.011 0.748 0.995

ramp 0.218 0.213 0.286 0.075 0.011 0.105 0.014 0.766 0.994

(b) High Volatility DGP

MAE MAD RMSD FD

CMSV DC-CMSV IDCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.330 0.308 0.427 0.129 0.012 0.180 0.016 0.682 0.997

sine 0.282 0.271 0.390 0.111 0.009 0.156 0.012 0.849 0.998

fastsine 0.300 0.289 0.390 0.121 0.006 0.164 0.008 0.827 0.998

step 0.301 0.285 0.400 0.108 0.009 0.156 0.011 0.799 0.998

ramp 0.286 0.276 0.394 0.113 0.010 0.161 0.013 0.817 0.998

(c) Low Volatility DGP

MAE MAD RMSD FD

CMSV DC-CMSV IDCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.198 0.186 0.222 0.100 0.009 0.126 0.012 0.428 0.987

sine 0.169 0.165 0.211 0.062 0.010 0.083 0.013 0.731 0.987

fastsine 0.196 0.193 0.218 0.044 0.006 0.058 0.007 0.834 0.993

step 0.178 0.172 0.209 0.062 0.008 0.086 0.010 0.672 0.990

ramp 0.175 0.171 0.215 0.072 0.012 0.096 0.016 0.627 0.982

The table shows the statistics for the estimated value-at-risk of the MSV model with

estimated hyperparameters. A bold figure highlights the best model in each panel and

row.
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C.2 Robustness: stationary state dynamics

Table C.4: Estimated correlation

(a) Benchmark DGP

MAE MAD RMSD FD

CMSV DC-CMSV DCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.041 0.028 0.049 0.028 0.029 0.038 0.036 0.437 -0.370

sine 0.101 0.092 0.141 0.065 0.021 0.092 0.027 0.508 0.901

fastsine 0.224 0.229 0.231 0.118 0.046 0.157 0.058 0.470 0.694

step 0.081 0.063 0.088 0.047 0.022 0.069 0.028 0.486 0.700

ramp 0.121 0.114 0.159 0.070 0.027 0.100 0.035 0.526 0.875

(b) High Volatility DGP

MAE MAD RMSD FD

CMSV DC-CMSV DCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.063 0.035 0.079 0.048 0.033 0.078 0.042 0.348 -0.345

sine 0.122 0.095 0.147 0.111 0.019 0.151 0.024 0.249 0.903

fastsine 0.235 0.232 0.234 0.165 0.041 0.215 0.052 0.226 0.702

step 0.106 0.069 0.106 0.084 0.022 0.125 0.028 0.281 0.694

ramp 0.141 0.118 0.168 0.116 0.025 0.160 0.032 0.275 0.877

(c) Low Volatility DGP

MAE MAD RMSD FD

CMSV DC-CMSV DCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.030 0.023 0.031 0.025 0.024 0.032 0.031 0.364 -0.368

sine 0.090 0.088 0.137 0.043 0.023 0.060 0.029 0.730 0.905

fastsine 0.215 0.226 0.230 0.092 0.052 0.120 0.065 0.650 0.688

step 0.065 0.058 0.077 0.031 0.020 0.043 0.026 0.656 0.740

ramp 0.113 0.111 0.155 0.046 0.029 0.068 0.038 0.725 0.878

The table shows the statistics for the estimated correlation of the MSV model with

stationary state dynamics for volatility and the time-varying parameter. A bold figure

highlights the best model in each panel and row.
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Table C.5: Estimated covariance

(a) Benchmark DGP

MAE MAD RMSD FD

CMSV DC-CMSV DCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.314 0.286 0.380 0.152 0.038 0.217 0.053 0.519 0.934

sine 0.215 0.201 0.294 0.101 0.024 0.152 0.034 0.685 0.977

fastsine 0.311 0.303 0.345 0.158 0.052 0.243 0.076 0.517 0.804

step 0.249 0.224 0.303 0.107 0.027 0.162 0.037 0.639 0.977

ramp 0.235 0.222 0.307 0.105 0.032 0.160 0.045 0.650 0.957

(b) High Volatility DGP

MAE MAD RMSD FD

CMSV DC-CMSV DCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.440 0.394 0.562 0.195 0.051 0.331 0.082 0.547 0.951

sine 0.293 0.257 0.394 0.181 0.025 0.312 0.040 0.573 0.990

fastsine 0.394 0.367 0.446 0.236 0.053 0.408 0.088 0.437 0.874

step 0.353 0.303 0.433 0.170 0.031 0.301 0.049 0.590 0.988

ramp 0.317 0.284 0.412 0.185 0.033 0.319 0.053 0.551 0.980

(c) Low Volatility DGP

MAE MAD RMSD FD

CMSV DC-CMSV DCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.236 0.216 0.263 0.139 0.029 0.183 0.038 0.414 0.900

sine 0.171 0.164 0.230 0.076 0.024 0.105 0.032 0.724 0.956

fastsine 0.264 0.266 0.288 0.125 0.053 0.174 0.072 0.555 0.735

step 0.190 0.176 0.222 0.088 0.022 0.124 0.029 0.626 0.961

ramp 0.191 0.185 0.242 0.083 0.031 0.117 0.042 0.671 0.922

The table shows the statistics for the estimated covariance of the MSV model with

stationary state dynamics for volatility and the time-varying parameter. A bold figure

highlights the best model in each panel and row.
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Table C.6: Estimated value-at-risk

(a) Benchmark DGP

MAE MAD RMSD FD

CMSV DC-CMSV DCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.252 0.236 0.308 0.107 0.013 0.138 0.017 0.628 0.986

sine 0.212 0.206 0.280 0.072 0.011 0.098 0.014 0.841 0.994

fastsine 0.235 0.224 0.288 0.110 0.023 0.146 0.030 0.595 0.921

step 0.227 0.217 0.286 0.077 0.011 0.104 0.014 0.780 0.994

ramp 0.218 0.212 0.285 0.077 0.014 0.106 0.018 0.782 0.987

(b) High Volatility DGP

MAE MAD RMSD FD

CMSV DC-CMSV DCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.332 0.309 0.431 0.131 0.015 0.181 0.020 0.725 0.992

sine 0.283 0.271 0.390 0.115 0.010 0.160 0.013 0.856 0.998

fastsine 0.302 0.285 0.395 0.140 0.021 0.190 0.028 0.774 0.975

step 0.302 0.286 0.400 0.112 0.011 0.159 0.015 0.817 0.997

ramp 0.288 0.276 0.393 0.116 0.013 0.164 0.017 0.827 0.997

(c) Low Volatility DGP

MAE MAD RMSD FD

CMSV DC-CMSV DCC CMSV DC-CMSV CMSV DC-CMSV CMSV DC-CMSV

const 0.197 0.183 0.223 0.105 0.011 0.133 0.014 0.480 0.971

sine 0.168 0.163 0.208 0.064 0.011 0.084 0.015 0.777 0.985

fastsine 0.191 0.184 0.219 0.100 0.026 0.128 0.034 0.406 0.826

step 0.178 0.170 0.209 0.070 0.010 0.094 0.012 0.709 0.988

ramp 0.175 0.169 0.213 0.075 0.015 0.099 0.020 0.657 0.964

The table shows the statistics for the estimated value-at-risk of the MSV model with

stationary state dynamics for volatility and the time-varying parameter. A bold figure

highlights the best model in each panel and row.
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