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ABSTRACT

Growing interest in synthetic data has stimulated development and advancement of a large variety of
deep generative models for a wide range of applications. However, as this research has progressed,
its streams have become more specialized and disconnected from each other. For example, models
for synthesizing text data for natural language processing cannot readily be compared to models for
synthesizing health records. To mitigate this isolation, we propose a data-driven evaluation framework
for generative models for synthetic data based on five high-level criteria: representativeness, novelty,
realism, diversity and coherence of a synthetic data sample relative to the original data-set regardless
of the models’ internal structures. The criteria reflect requirements different domains impose on
synthetic data and allow model users to assess the quality of synthetic data across models. In a
critical review of generative models for sequential data, we examine and compare the importance of
each performance criterion in numerous domains. For example, we find that realism and coherence
are more important for synthetic data for natural language, speech and audio processing, while
novelty and representativeness are more important for healthcare and mobility data. We also find that
measurement of representativeness is often accomplished using statistical metrics, realism by using
human judgement, and novelty using privacy tests.

Keywords Artificial intelligence, neural networks, deep learning, generative models, synthetic data, sequential data,
big data, privacy

1 Introduction

In recent years, adoption of deep generative models for synthetic data have spread to a variety of domains. Such models
can generate impressive synthetic images [1], text [2], and music [3] as well as sensory data [4], electronic health
records [5], mobility trajectories [6], and financial time-series [7]. This significant progress was made possible by
accessibility of vast amounts of data and computing technologies capable of handling the data, both connected to the
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rise of ”big data” and advances in deep learning. Models based on deep learning can handle large amounts of complex,
highly correlated, high-dimensional data and generate synthetic data for many use-cases. With the capacity have come
challenges that have also led to increase in methodological advances in fields in which synthetic data have been applied.
In particular, models for generating synthetic data boosted progress in data augmentation [8], data imputation [9],
fairness in biased data-sets [10], and sharing of privacy-sensitive data-sets [11]. Today, deep generative data synthesis is
a large and mature field that involves many streams of research across a wide range of domains.

Overall, the field has advanced in big leaps, but research in various (sub-) domains has tended to drift apart. Indeed, it is
difficult to compare models applied to problems in natural language processing (NLP) with models for the generation
of synthetic health records. Still, some domains share common characteristics, and models applied in one field can
be applied in others. Consider, for example, the recent success of so-called transformer models introduced in natural
language generation (NLG) [12, 13] and now being applied in other domains to generate synthetic time-series data
[14]. Because it is not always possible to transfer models to other fields, new insights can remain isolated to specific
domains and fail to disseminate. The two most common barriers are (i) heterogeneity of the data and (ii) conflicting
requirements for synthetic data in different use-cases.

Because research in one domain can benefit from insights from other domains, we need a common basis for discussing
generative models and guiding research, especially in domains in which research to date is sparse.

To facilitate this discussion, we propose a framework for deep generative models designed to generate synthetic data
based on high-level evaluation criteria. This framework addresses the barriers of heterogeneity in the data and the data
requirements via abstraction and allows researchers to put generative models into broader contexts. We present a critical
review of publications on deep generative models in the context of synthetic sequential data and apply the proposed
framework to those models.

We chose to focus on sequential data for two specific reasons. First, dynamic phenomena are particularly relevant
in many fields and pose significant challenges for modelers and analysts. Examples of uses of sequential data are
geo-locations [15]; shopping paths [16]; text [2]; videos [17]; music [3]; behavior in digital environments such as, music
[18] and video streaming [19], clickstreams [20], and internet browsing [21]; financial transactions [22]; and electronic
health records [5]. All of these types of data share some underlying correlational structures within sequences but also
are heterogeneous in terms of the dimensionality and cardinality of steps in a sequence. Our second reason for focusing
on the evaluation of synthetic sequential data generated by deep learning models is that it nicely complements previous
reviews in related fields, such as reviews of deep learning [23] and architectures of deep generative models [24, 25, 26].
Furthermore, a number of review articles have focused on specific model architectures, such as generative adversarial
networks [27], normalizing flows [28], and synthetic data in specific domains such as, molecular science [29] and graph
data [30]. The scope of those articles is narrow; they address specific domains and the disregard literature on other data
(see, for example, [31] on music and [32] on text). Thus, we aim to fill the gap between general and specific reviews of
deep generative models for sequential data.

The next section introduces our high-level evaluation framework for generative models. Then, in section 3, we give a
brief overview of popular deep learning architectures used to generate synthetic sequential data. In section, 4 we review
applications of synthetic data in different domains, compare strengths and weaknesses of the used models and their
architectures and critically reflect them according to the framework we propose in section 2.

2 Evaluation of generative models for synthetic data

Metrics to evaluate the performance of deep generative models are as diverse as the models’ objectives and specific
data structures involved. General-purpose metrics, such as the commonly used negative log-likelihood (NLL), average
log-likelihood (ALL) and maximum mean discrepancy (MMD) are rare and have limitations of their own [33]. Other
metrics are specific particular model architectures. [34, 35], for example, gives a thorough overview of metrics
commonly used to evaluate generative adversarial networks (GANs). Some metrics are domain-specific, such as the
classifier-based inception score (IS) for synthetic images proposed by [36]. [33] reviews metrics used to evaluate
generative models in the visual domain, and [30] for graph data. These metrics are effective for measuring progress in
specific domains and to compare models of a specific type, such as GANs; using them to compare different models and
domains can be challenging. Even when considering only sequential data, heterogeneity is quickly apparent. What
such heterogeneous data have in common are patterns of serial correlations within sequences. The cardinality and
dimensionality of the data illustrate its heterogeneity, being augmented only further by the lengths of sequences. For
example, text is one-dimensional and discrete since it is made up of single words in a discrete vocabulary. Video data,
on the other hand, is continuous and high-dimensional. At each step, there is a whole image that consists of many
pixels, each is described by real numbers between 0 and 255. Figure 1 illustrates the heterogeneity in the landscape of
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Figure 1: An illustration of the heterogeneity of sequential data based on cardinality and dimensionality.

sequential data by plotting the cardinality and dimensionality the data for several examples of sequential data relative to
each other.

To tackle the numerous challenges associated with heterogeneous data and applications, we propose five high-level
abstract criteria for evaluation of generative models: representativeness, novelty, realism, diversity, and coherence.
The criteria are designed to compare the original data to the synthetically generated sample and can be applied to
any generative model for synthetic data (see [37] for a recent example of a holdout-based framework for empirical
assessment). They reflect requirements that are imposed on synthetic data in specific use-cases.

Because the criteria can be imposed on numerous types of sequential data, obtaining high scores on all five will rarely be
the goal. Borji reviews qualitative and quantitative metrics for generative models in [34, 35], but there is no one-to-one
mapping between those criteria and ours. The two approaches share some aspects, reflected in what [34] defined as the
desiderata of evaluation measures.

Our proposed criteria are abstract in nature but capture different concrete metrics depending on the use-case. Fur-
thermore, some of our criteria conflict with each other. For example, we expect to see trade-offs between high
representativeness of the synthetic data-set and novelty. Figure 2 illustrates synthetic data that have high and low scores
on each criterion relative to a given data-set.

2.1 Evaluation Criteria

2.1.1 Representativeness

The representativeness of a generative model for synthetic data describes its ability to capture population-level properties
of the original data. Ideally, generative models distill abstract structures from a set of training data. Consequently, the
population-level properties of the synthetic and original data should be the same. For example, a data-set of face images
is likely to have a certain distribution of hair colors and eye distances, and those distributions and the dependencies
between the distributions (e.g., gray hair and the amount of wrinkles on a face) in the original and synthetic data should
match. Depending on the type of data, there can be a multitude of ways to measure and quantify the similarity of the
distributions.
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Figure 2: Illustration of synthetic data-sets that score high (top) and low (bottom) on the proposed criteria when
compared to the original data-set on the left. Coherence only captures the internal structure of the data and is illustrated
on the right.

Representativeness of synthetic data matters because statistical analyses and machine learning methods performed on
synthetic data should result in the same statistical findings as analysis of the original data. A lack of representativeness
despite all other criteria being fulfilled, indicates that the synthetic data provide a good representation only of a biased
subspace of the actual data distribution and miss potentially critical information.

In many cases, representativeness is evaluated by statistical measures. Common methods are ALL, MMD and Kullback-
Leibler divergence (KLD), which compare the probability distribution of the original data to the approximation of the
distribution by the generative model. Recently, representativeness has also been evaluated by comparing the performance
of classification models applied to the original and the synthetic data (see [38] for an example in healthcare).

2.1.2 Novelty

Evaluating the novelty of data from a generative model compares the original and synthetic data at an individual level.
Novelty is sometimes overlooked in explicit quality evaluations, but the value of synthetic data without novelty is
typically quite limited. The goal of using deep generative models usually is creation of entirely novel data-points.
Novelty means that the synthetic data-points are entirely new observations of the latent distribution of the original data
and should not closely resemble any original data-points.

Models that generate only novel data-points do not allow any individual-level information from the training data to leak
into the synthetic data. Thus, novelty is tightly linked to privacy, and a high novelty score indicates that the "inspiration"
behind the synthetic data-points is not identifiable at the individual level. The synthetic data records could just as well
have been a holdout subset of the original data. The opposite of high novelty is a model that memorizes and exactly
recreates the training data. Such synthetic data would fulfill the other four criteria (since a copy of the original training
data is obviously indistinguishable in many respects from that data).

In some cases, such as in NLP, novelty of the synthetic data is irrelevant. In other cases, however, such as creative
domains (e.g., music composition), the goal is to generate new creative content. For example, [39] used the average
Euclidean distance of a synthetic data-point from its nearest neighbor in the original data-set to measure the novelty of
synthetic music (see Section 4.2 for details). In other cases, such as healthcare, privacy is more important than novelty.
The generative models used to produce private synthetic data must not leak any sensitive information (see Section 4.4
for more details).

2.1.3 Realism

When considering an individual synthetic data-point generated by a highly realistic model on its own, it is difficult
to know whether it is synthetic or original. Realism is similar to representativeness of the data, but at the individual
subject level. A synthetic data-set can match all the statistics of the original data and still be unrealistic when individual
data-points share characteristics that make them easily identifiable as synthetic. Consider, for example, a representative
but unrealistic example obtained using a GAN trained on random cat images from the internet. Synthetic cat images
can contain captions reminiscent of online memes that look plausible from a distance but actually consist solely of
abstract symbols having shapes similar to letters.

Realism has been addressed in many publications in a variety of ways. The most common method is judgement
of realism of the synthetic data by humans, either qualitatively (e.g. [40, 41]) or using empirical evaluations (e.g.
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[42, 43, 44]). Evaluation studies present individuals with the original data-point and the synthetic data-point and ask
them to choose which is the most. In some publications, participants in the evaluation studies were restricted to experts
(e.g., medical experts in [45, 43] and music experts [46, 44]). In some cases, realism is quantitatively evaluated using
objective measures. These evaluations are usually domain-specific and use metrics such as IS [47, 48] and the evaluation
of synthetic music against theoretical music rules [49].

2.1.4 Diversity

While representativeness, novelty and realism capture similarities between the original and the synthetic data, diversity
measures similarities between each synthetic data-point and the whole synthetic data-set at the individual level.
Therefore, models that score well on diversity generate unique data-points even when data-sets are large. Models that
generate the same individual points over and over, such as some early versions of GANs, obviously lack diversity. For
instance, generators sometimes create a single image that the discriminator cannot distinguish from an original image.
Generating only that image is a local optimum, and the resulting effect is called mode collapse (see Section 3.6).

Many publications have not addressed the diversity of the generative models’ synthetic data. In most cases, it is
important that models achieve at least some diversity, and some models can generate only a small number of different
samples (e.g., the aforementioned GAN with mode collapse).

There are several ways to measure the diversity of a model. Donahue et al. [39] used the average Euclidean distance
of synthetic data-points to their respective nearest neighbors to evaluate the diversity of their model (see Section 4.2).
Others have used metrics based on classifiers. For example, to measure the diversity of their video-generation models,
the authors of [47] and [48] used the IS [36] (see Section 4.3). In other cases diversity has been captured only by
subjective qualitative evaluations by humans.

2.1.5 Coherence

Unlike the first for criteria, which are based on the structure of the synthetic data at an individual or population level,
coherence captures the internal structure of single synthetic data-points, specifically their consistency. Coherence is
particularly relevant for sequential data, that reflect sequential orders of events and for data such as images. Coherence
requirements depend on the use-case and original data and can differ in terms of coarseness. For example, music should
sound smooth and natural note-by-note and measure-by-measure, but also should stay within a certain genre overall.
In images when multiple objects cast shadows from a single light source, the shadows must be coherent in terms of
the direction in which they point and their length. While some incoherence in the data can lead to greater novelty or
diversity, too much results in unrealistic data. For example, a music sample that frequently changes its genres would
certainly sound creative but also would sound unrealistic.

Some studies have measured the coherence of synthetic data implicitly when evaluating its realism. In [46], for example,
experts evaluated the naturalness of transitions in synthetic music. In many cases, however, domain-specific objective
metrics have been used to judge coherence. In [48] coherence was computed using the average content distance between
frames in synthetic videos (see Section 4.3).

3 Generative architectures for sequential data

Before we discuss the relevance of our proposed criteria for assessing the quality of synthetic data in various domains,
we briefly introduce the architectural elements most frequently used in deep learning models for generating synthetic
sequential data. Figure 3 provides an overview of the popularity of these architectural elements based on our review of
articles reviewed for the current study.

At its core, synthetic data generation amounts to sampling from a distribution over a complex, high-dimensional data
space. In addition to complexity arising from high dimensionality, the distribution is observed only indirectly via a set
of training examples that only sparsely cover the space. Nonetheless, early work on generative deep learning models
has already successfully dealt with both of these issues, thanks in part to transfers of proven architectural elements from
other tasks applied to similar types of data. For instance, one of the earliest notable successes of deep-learning-based
synthetic data generation was the creation of images using GANs. The adversarial networks were based on convolutional
neural networks (CNNs), which were already well established for deep learning on images at this point.

Along similar lines, generative networks for sequential synthetic data were based on elements already successfully
used for other deep learning tasks and sequential data of a similar type. Besides CNNs, these include recurrent neural
networks (RNNs) and attention mechanisms, which are covered in the first half of this section. In addition to challenges
associated with structuring of the network layers when synthesizing synthetic data is how to actually perform sampling
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Figure 3: Popularity of various architectural elements in deep learning models used to generate synthetic sequential
data. The graph shows the percentage of each architecture found to be the basis for models used in the reviewed studies.
Note that a single model can be based on multiple architectures.
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Figure 4: General principle of an RNN. In each time step, one RNN cell uses the input xt at that time step and the
previous time step’s hidden state ht−1 to compute the new hidden state ht and output yt. It is possible to stack multiple
RNN layers by using the sequence of outputs of one layer as the input sequence for the next one.

in the data space. At a high level, two main approaches are used: (i) estimating the distribution explicitly and sampling
from it (usually iteratively, as in autoregressive networks) and (ii) sampling from more straightforward distributions and
mapping from that space to the more complex data space (autoencoders (AEs), GANs). These approaches are covered
in detail in the second half of this section.

3.1 Recurrent Neural Networks

The network architecture most strongly associated with sequential data is RNNs, which are defined by sequential
connections of cells that each take, as inputs, one element of the sequence and some output of the cell that processed
the previous element in the sequence [50]. In this way, a chain of RNN cells can process sequences of arbitrary lengths
(see Figure 4 for a sample schematic). The information passed from one cell to the next is called the hidden state of the
network, and various types of RNNs can be defined by how this state is computed.

One of the most widespread types of RNNs is the long short-term memory (LSTM) network invented by Hochreiter
and Schmidhuber [51] and improved by introduction of a ”forget gate” by [52] to better handle long-term dependencies.
See Figure 5 for a full schematic of this most canonical definition of the LSTM. Though extensions and variations
have been introduced, this plain LSTM is the cornerstone for processing sequential data. It has been used with speech
recognition [53], language translation [54], and natural language modeling [55].

Gated recurrent units (GRU) represent a relatively recent development in the RNN class. They were introduced in
2014 by Kyunghyun Cho et al. [56] and were inspired by LSTMs, with which they have much in common. They are
characterized by requiring a smaller number of trainable parameters, because they have only three trainable layers per
cell. Though GRUs perform similarly or slightly better than LSTMs in many applications involving relatively small
data-sets, GRUs cannot perform unbounded counting. Thus, LSTM networks outperform GRU cells complex tasks
including neural machine translation [57].
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Figure 5: Diagram of an LSTM cell. Information passed from one time step to the next consists of a hidden state, h,
that is equivalent to that cell’s output and the cell state c responsible for longer-term information storage. There are four
trainable layers in each cell. The first is found in the forget gate and is used to determine any information in the cell
state to be ”forgotten” by multiplying it with the output of a sigmoid activation function (thus, between 0 and 1). The
input gate is composed of two trainable layers and defines the new information to be written in the cell state. The final
layer is in the output gate, which, together with the cell state, is used to compute the output of the cell.

Convolutions (filter)

Input Data Feature maps

Filter of feature

Pooling (subsampling)

Feature maps Feature maps

ReLu

Concatenate

❌

Fully connected NN

✔

Figure 6: Structure of a CNN deciding whether an image belongs to a certain category. High-level features of the image
are extracted via feature maps and are then pooled together. Finally, a fully connected layer decides whether the image
belongs to the category based on the high-level features.

In the context of sequence generation, RNNs are most often employed in autoregressive architectures (see 3.4) and
are trained by having them predict the next element of the input. Then, the trained layers are used to generate new
sequences one step at a time. It is also common to use RNNs as elements of autoencoders (see 3.5). The hidden state is
used as the bottleneck such that new sequences can be sampled by initializing predictions of a sequence with a seed in
the latent space. Some GAN architectures have used RNNs, but it is not a common combination.

While RNNs can be powerful tools in sequence generation, they have limitations. Though the span of long-range
dependencies they can capture is theoretically unlimited, RNNs can suffer from vanishing gradients and practical
limitations regarding extremely long-range dependencies [58]. Furthermore, the computational effort required by RNNs
can be intense, and RNNs do not scale well as sequence length increases.

3.2 Convolutional Neural Networks

Inspired by functioning of the visual cortex in mammals’ brains, CNNs are one of the earliest modern deep learning
patterns to be formalized [59]. They were instrumental to breakthroughs in deep learning for computer vision [60],
used to solve tasks such as recognition of handwriting [61], faces [62] and documents [63]. Despite their origin, CNNs
are not limited to images. They have been successfully applied to sequences and generative modeling.

The basic building block of a CNN are convolutional layers that consist of filters of equal weights being applied
repeatedly to different segments of the data. The weights in the filters converge so each filter learns to compute
particular features of the data without requiring explicit feature engineering beforehand. When one combines multiple
layers together, the layers compute abstract features from low-level features like edges to high-level features such
as facial patterns. Convolutional layers usually are connected using pooling layers that summarize and reduce the
dimensionality of the previous layer by, for example, outputting the maximum of multiple input neurons. The last
convolutional layer is then typically connected to a fully connected layer that takes the higher-level features as input to
compute the desired information, such as classifying text. See Figure 6 for an illustration of the structure of a CNN
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used with images. The result of this process is a neural network that is more resistant to noise than other architectures
and invariant under spatial translation. The CNN uses a smaller number of trainable parameters and thus requires less
memory and computational power, making it typically faster to train than RNNs.

These attributes make CNNs attractive for other tasks, including generative modeling of sequential data using convolu-
tions on one dimension instead of two. However, causality constraints on many tasks in this area can require setting
up the model so that each step depends on only past steps in the sequence in the previous layer, a pattern known as
a temporal convolutional network (TCN) [64]. TCNs coupled with dilated convolutions [65, 40] have successfully
captured long-term dependencies and proven successful in tasks as varied as weather prediction [66], traffic prediction
[67], and in natural language processing [68, 69, 70].

When using CNNs to generate synthetic sequences, two approaches can be taken. The first is to predict the time steps
one-by-one autoregressively (see Section 3.4), as demonstrated most prominently by WaveNet’s text-to-speech approach
[40]. Alternatively, deconvolutional neural networks [71] can be used to generate whole sequences at once based on a
seed. Deconvolutional networks can be applied when using CNNs as part of an autoencoder or GAN (see Sections 3.5
and 3.6). For a recent survey of CNNs see [72].

3.3 Attention

The attention mechanism is a technique developed to improve sequence-to-sequence models by changing how informa-
tion is transferred from the input sequence to the output sequence [73]. Instead of a strict encoder-decoder model in
which an input sequence (x1, ..., xn) is staticly mapped to a latent representation z, before z is decoded to generate the
output sequence (y1, ..., ym), the attention mechanism allows the network to learn which parts of the input are relevant
for specific parts of the output and to use information more selectively.

Attention layers were initially developed to complement RNNs and address one of their core limitations. In RNN
networks, information that must be memorized over long stretches of a sequence being processed must be stored
(and left untouched) in the cell state over numerous time steps, leading to information potentially being lost when
updates delete or overwrite the information. The capacity of the cell state is limited and the model must decide
which information to store and which information to replace without knowing which information will be needed later.
The attention mechanism instead retrieves information from the past based on relevance, thus keeping the depth of
back-propagation low compared to RNNs with no attention mechanism.

Today, attention layers are also used independently in so-called transformer networks [74] that consist of of layers of
self-attention (i.e., inputs are copies of a single sequence instead of multiple sequences). The attention mechanism
has also been successfully integrated in different types of networks. For example, Zhang et al. added an attention
mechanism to their self-attention GAN [75] to improve the quality of generated images. The attention mechanism
allows both the generator and the discriminator to connect image regions that are far apart, something CNNs are usually
not capable of doing because of their focus on local properties (see Section 3.2). For a thorough introduction to attention
mechanisms and review of their applications see [76].

3.4 Autoregressive Neural Networks

Autoregressive neural networks (AR-NNs) were the earliest network architecture used for sequence generation. These
networks use the same data as input and output and thus predict the future of a sequence based on its past. Generally
speaking, any network that models conditional probabilities (p(xi|x1, x2, ..., xi−1)) can be called autoregressive, but
the term is sometimes used specifically for networks that do not include any of the types of layer previously mentioned
(RNNs, TCNs, transformers). Such networks sometimes only use dense layers to connect various time steps. For our
purposes, we use the word in its wider sense as a generative strategy that is distinct from autoencoders and GANs. A
distinguishing feature of the AR-NN strategy is that randomness in the input is not required to generate sequences.
Rather, because the model predicts conditional probabilities, randomness is introduced immediately before the output
layer by drawing from the probabilities.

The inner structure of AR-NNs as proposed by Bengio and Bengio in [77] is illustrated in Figure 7. Prediction for
the i-th variable xi depends on the previously seen i − 1 inputs. Thus, the functions of the hidden layer are trained
step-by-step, but are reused for subsequent variables xi+1, xi+2, ....

One popular autoregressive approach is the neural autoregressive density estimator (NADE) [78]. It uses the same prin-
ciple but incorporates a weight sharing scheme (inspired by restricted Boltzmann machines) to improve generalization
performance. Autoregressive networks can incorporate all of the structural building blocks previously described (RNNs,
TCNs, transformers) as illustrated by autoregressive CNNs applied to pixel prediction [79] and sound generation [40].
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P(x2|x1)

x1 x2 x3 x4

h1 h2 h3

P(x3|x1,x2) P(x4|x1,x2,x3)

Figure 7: Simple example of an AR-NN based on [77]. This network uses dense layers to predict conditional
distributions of later time steps based on previous ones.

Figure 8: Architecture of an autoencoder. The encoder maps the input to a lower-dimensional representation. The
decoder tries to optimally restore the input from that latent representation.

3.5 Autoencoders

Like autoregressive networks, autoencoders use the same data as input and output, but use a different strategy to prohibit
the network from learning the trivial solution of simply passing through the full input. While autoregressive networks
use a time lag to hide the critical bit of information (the last time step whose probability distribution is predicted),
AEs feed the full input sequence into the model and use a bottleneck to make it impossible to pass through the full
information from the input. Structurally, AEs can be split into encoders and decoders that designate the steps before
and after the bottleneck, respectively. The encoder maps the input to an internal, lower-dimensional representation in
a latent space in the bottleneck layer, and the decoder tries to restore the original data from that lower-dimensional
representation. The loss function used to train the network is the dissimilarity between the input and output. See Figure
8 for an illustration of the architecture.

To create new data, the trained decoder is used in isolation with random values in the latent space as input. Crucially,
the quality of the results depends on the structure and regularity of the latent space, and irregularities result in two
common problems. First, points sampled from the latent space can lead to meaningless data once decoded, especially
if the encoder leaves gaps in the latent space that are never covered by the original input data, forcing the decoder to
extrapolate. Second, two points that are close together in the latent space can result in significantly dissimilar outputs in
the original data space if the latent space is not smooth enough.

Variations of the AE have been proposed to overcome these problems that construct a latent space that has an adequate
degree of regularity and typically forces the latent distribution to match a certain prior distribution [80, 81, 82, 83]. The

Figure 9: Architecture of a variational autoencoder. The encoder maps the input to a distribution in the latent space
instead of to a latent variable as in normal autoencoders. For decoding, a latent variable is sampled from the distribution
and, again, the decoder tries to optimally restore the original input.
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Figure 10: Architecture of a GAN. The generator outputs synthetic data to fool the discriminator, and the discriminator
tries to distinguish between original and synthetic data as accurately as possible.

most widespread of the improved approaches is the variational autoencoder (VAE) [84, 85] in which the encoder maps
each input to a distribution over the latent space (typically Gaussian, see Figure 9 for a schematic) instead of mapping
inputs to specific points deterministically. A point is then sampled according to the distribution and handed over to the
decoder to obtain the output. As with standard AEs, the network is optimized to minimize dissimilarity between the
input and output. The encoder and decoder can be any type of network; in particular, when RNNs are used, the cell
state is a natural choice for the bottleneck / latent space.

3.6 Generative Adversarial Networks

The GAN [86] takes a unique approach to generating data. Its basic architecture consists of two networks working
against each other: a generator network that transforms a noise vector into output in the original data space and a
discriminator that tries to distinguish between the generator’s output and the original data (see Figure 10). The generator
and the discriminator are trained in an alternating pattern, leading to a minimax game between the opposing parts of the
network. The generator is optimized to maximize the error rate of the discriminator, and the discriminator is optimized
to minimize the error rate.

Many different architectures can be used in GANs. For example, CNNs have successfully generated of images [87],
and RNNs are often applied to sequential data [88]. It is possible to add further covariates to the generator (which are
added as input to the discriminator) in addition to the random input vector, allowing for conditional generation [89].

Though successful in capturing continuous distributions GANs present some difficulties when dealing with discrete
data such as text [86]. The underlying reason is the non-differentiability of the loss function with respect to discrete
random variables and, subsequently, back-propagation through time in the learning phase. Potential solutions include
approximating the discrete distribution with a continuous one [90] and modifying the loss function [91]. In [92], the
generator is modeled as a stochastic policy in reinforcement learning and overcomes the differentiability issue by
adapting the optimization scheme. Section 4.1 discusses GAN-based architectures for generating text in detail.

Another challenge associated with GANs is convergence. The minimax nature of GAN training can cause the training
to diverge, or converge to a degenerated optimum. Convergence is particularly noteworthy because it is a characteristic
of GANs: a common outcome of GAN training is an optimum in which the generator maps all inputs to only one or
a few specific images that the discriminator cannot distinguish from original data. Under our proposed criteria, the
outcome would lack diversity (see Section 2.1.4) and be of little practical use. Various modifications to the architecture
and especially to the loss functions have been proposed to overcome convergence issues (e.g., [36, 93, 94, 95, 96]). In
recent years, GANs have become more popular and are the architecture used in numerous models. For an extensive
review of this body of literature see [97, 27, 98, 99, 100].

4 Applications

We next review applications of deep generative models to generate synthetic sequential data in a variety of domains.
We critically analyze the contributions to this fast-growing literature, evaluate them using our proposed criteria, and
demonstrate that the criteria individually are not equally relevant in all domains and are not measured the same way.
Each subsection discusses the applications in their focal domain and summarize a few representative contributions in
terms of the proposed assessment criteria (see Tables sections 4.1 to 4.5). Additionally, we analyze the architectures of
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Figure 11: Prevalence of architectures discussed in Section 3 in five domains. A lighter color means that the elements
are less prevalent and a darker color indicates a greater prevalence.

the models used in the selected publications. Figure 11 presents an overview of the prevalence of architectural elements
used in the reviewed articles in different domains.

4.1 Natural Language Processing

Study
Represen-
tativeness Novelty Realism Diversity Coherence

Guu et al. [101] Perplexity Qual. Human eval. Qual. Human eval.

Shen et al. [102]
NLL /

perplexity Human eval.

Self-BLEU /
unique n-grams /
2-gram entropy Human eval.

Fedus et al. [88] Perplexity Human eval. Unique 2,3,4-grams Human eval.

Table 1: Excerpts of studies of generative models for natural language processing and metrics used for evaluation.

NLP is a broad field devoted to computers interacting with human language. Common tasks in NLP include language
modeling, text translation, human-machine dialog generation, and natural language generation (NLG). Thanks to
widespread adoption of machine learning and deep neural networks in recent years, the research community has made
significant progress in accomplishing these tasks. Today, highly capable language models can generate texts that are
almost indistinguishable from human-generated text.

Most language data-sets are comprised of text, which can come in many different flavors - news articles, product
reviews, medical diagnoses, and music lyrics. However, all text can be represented as a combination of tokens from a
discrete vocabulary. The tokens are the most basic components of text, commonly single words complemented with
punctuation.

Sentences, paragraphs, and longer texts are then merely sequences of such tokens. But the sequences must obey certain
grammatical, semantic, and logical rules. And since sentences are not just loosely strung together, later sentences and
words in text can be highly dependent on words that appeared multiple sentences before. For example, a character in a
short story that disappears in the beginning can reappear paragraphs later. The rules and contextual dependencies of a
text pose significant challenges on language models and on the generation of synthetic text. A model must be capable
of capturing the right setting of various linguistic features such as syntax, semantics, pragmatics, and morphology.
Otherwise, the resulting text can quickly become incoherent or unrealistic.

Guu et al. proposed a particularly interesting language model in [101]. It was inspired by how humans create complex
texts, which rarely arise from scratch in a single pass. Instead, humans rather create initial drafts and revise the drafts
incrementally. [101] adopted this idea in their neural editor model by sampling a prototype sentence from the training
corpus, combining it with a random parameter for editing the sentence, and generating a modified, new sentence. Their
edit parameter can lead to changes such as altered wording, shorter or longer sentences, and change from active to
passive voice. Architecturally, the model is based on a VAE with an attention-based LSTM encoder and an LSTM
decoder. The prototype sentence and the edit parameters are randomly sampled and then used to transform the sentence
in a sequence-to-sequence fashion.
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A metric commonly used to evaluate the quality of language models is the perplexity [103], which captures how
”surprised” a language model is to see the words the original training corpus in terms of probabilities it assigns to each
word. Looking at language models as generative, perplexity measures the representativeness of the generative model.
[101] evaluated their neural editor using a data-set of restaurant reviews from Yelp and a more-general text data-set. In
both cases, they found that the synthetic texts were representative when measured by perplexity. Though they were able
to generate novel sentences that were significantly different from the prototype sentences, each synthetic sentence still
originated from a single prototype sentence and thus was somewhat close to the prototype.

The edit parameter can be used to perform similar edits on multiple sentences or to smoothly vary the degree to which
editing is performed on a single sentence. [101] used these properties to generate a variety of sentences, qualitatively
suggesting that generation of diverse data-sets is possible. Individuals deemed the synthetic sentences to be realistic
and coherent according to their ratings of overall quality, grammaticality, and plausibility.

Though the neural editor is effective in generating synthetic sentences, the task of creating longer text samples composed
of several coherent sentences that are non-repetitive, grammatically correct and non-contradictory remains challenging.
Models capable of that task require greater capacity to capture the long-term dependencies in such texts. In [102], Shen
et al. proposed such a model. They chose a hierarchical VAE architecture given the inherent hierarchical paragraph
structure of longer texts. The encoder network consists of one low-level CNN that maps each sentence to a latent
variable and one high-level CNN that maps all the latent variables for each sentence into one latent variable for the
entire text input. On the decoding side, two hierarchical LSTM networks operate the other way around at the sentence
and on word level. The decoder obtains a latent variable for a text and transforms it via the sentence-level LSTM into
latent sentence variables. The sentence-level latent variables are then passed down to the word-level LSTM, which
generates the words for the synthetic sentences. By putting all the words together into sentences and the sentences into
paragraphs, the model can output longer synthetic paragraphs. Passing the latent variables down the LSTM hierarchy
allows the decoder to capture relatively coarse characteristics of text and sentences, such as the topic and sentiment.

Shen et al. [102] evaluated their model using Yelp reviews and abstracts from arXiv papers and found that their
multilevel-VAE (ml-VAE) model improved representativeness of the output relative to a flat VAE model (the baseline).
They evaluated representativeness by measuring the perplexity of the language model and calculating the corpus-level
bilingual evaluation understudy (BLEU) score of the output. The BLEU score was originally developed for in text
translation and has proven to be a good metric for measuring translation quality that correlates well with human
evaluations. It measures similarities between the generated text and a set of references by comparing their n-grams: n
consecutive words/tokens in a text. When the set of references is the whole synthetic data-set, the BLEU score is called
self-BLEU.

The average BLEU score of the ml-VAE model obtained by comparing generated text to the training corpus also
indicated that representativeness was improved relative to the baseline. The authors also reported an acceptable diversity
score. Diversity was especially important to them because VAEs used for NLG often suffer from mode collapse. They
evaluated diversity by calculating self-BLEU scores, the percentage of unique n-grams, and 2-gram entropy of a set of
synthetic texts. They further evaluated the coherence and realism of the synthetic text by asking individuals to compare
text generated by the baseline model to the ml-VAE synthetic text and choose the one that seemed most ”real” to them.
Individuals rated the texts’ fluency, grammar, and consistency to measure its coherence. These human evaluations also
showed that, in terms of realism and coherence, the ml-VAE yielded results that were superior to the results of the
baseline model and acceptable when compared to human-generated text.

Likelihood-based models such as VAEs have their critics, who suggest that the models are well suited to optimizing
perplexity and representativeness but lack the ability to generate realistic, coherent high-quality samples. Fedus et al. in
[88] attempted to generate higher-quality samples using a GAN-based model that incorporated LSTM encoder-decoder
networks in the generator and discriminator. To improve overall training, they masked the sentences by blanking words
and asking the generator to predict the missing words based on the rest of the sentence. In that case, the networks knew
the entire context of the sentence; most other models condition a word solely on the preceding words in the sentence.
They found that their hybrid GAN model improved perplexity and thus representativeness relative to a likelihood-based
baseline model. Still, they claim that low perplexity alone is not indicative of high-quality synthetic text, their primary
focus. Their human evaluations also showed that the hybrid GAN model produced more realistic samples than the
baseline model in most cases, distinguishing between the synthetic and human-generated texts seems to be relatively
easy for the participants. Since mode collapse is a common issue in GANs, the authors also took a narrow look at the
diversity of the synthetic results. They evaluated the percentages of unique 2-, 3-, and 4-grams and found some mode
collapse, indicating that the text generated by their model lacked diversity relative to the text generated by the baseline
model. In addition the synthetic sentences sometimes lacked coherence because they lost the global context. However,
the authors expected to be able to improve coherence by increasing the capacity of the model.
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NLP is a heavily researched domain that has produced a wide range of applications. The primary concern of most
studies of generative models is generation of representative and realistic synthetic texts with realism implicitly used as a
metric for coherence in most cases. Researchers also are concerned about mode collapse in generative models; when
their models are prone to that failure, diversity is investigated in detail. However, novelty is rarely addressed and could
be of interest primarily in privacy-sensitive cases such as medical patients’ chief complaints [104]. Interestingly, for
most of our high-level evaluation criteria (Section 2) some metrics have been established for NLP. NLL, BLEU, and
perplexity are often used to measure representativeness. Realism and coherence are mostly evaluated together as parts
of human evaluation studies with participants choosing between synthetic and human-generated text based on a variety
of properties. Finally, to assess the diversity of synthetic results, studies used either self-BLEU or statistics such as the
percentage of unique n-grams.

4.2 Speech and Audio Processing

Study
Represen-
tativeness Novelty Realism Diversity Coherence

Van den Oord
et al. [40] Qual. Qual. Qual.

Dieleman et
al. [105] Human eval. Qual.

Mehri et al. [106] ALL Qual.

Dong et al. [107]

Music-
theoretical
measures Human eval.

Tonal
distance /

Human eval.

Donahue
et al. [39]

Avg. Eucl.
distance

to original set
IS /

Human eval.

Avg. Eucl.
distance

to synth. set

Table 2: Excerpt of studies of synthetic speech and audio data and metrics used to evaluate the output.

Generation of audio data has a long history. It originated in several quite different domains and relied on completely
different theories. Most notable the generation of synthetic music and speech. Both ultimately make data audible by
converting it to sound. As different as these origins and the rules used to generate synthetic sound are, both are specific
types of digital audio data that eventually yield the same result.

Following the success of deep neural networks in generating content such as images, video,a and text and the availability
of vast quantities of audio data, researchers began to apply the techniques to audio-synthesis. The resulting models
learned either from raw audio signals or from intermediary representations such as musical scores and linguistic speech
parameters. The models can grasp the underlying structure of the data to create realistic-sounding synthetic audio data.

The most general representation of sound is the amplitude of sound waves over time sampled at a constant rate (i.e., raw
audio). Consequently, the sound signal is continuous and one-dimensional. Still, because of the high frequencies of
natural sounds, the sequences are long and complex. Typical sampling rates are at least 16kHz, resulting in signals with
thousands of steps per second.

Models designed to work with raw audio generally are the most adaptable. Unlike models that use intermediary
representations, their results do not have to go through one or more conversion steps before becoming audible [44]. The
drawback of raw audio is the need high-capacity models that can learn certain rules on their own instead of having
to encode the rules in specific representation. For example, to generate realistic speech, models have to learn how
intonation affects meaning to generate realistic speech. Speech parameters already encode intonation rules to some
extent.

Deep learning models can leverage some aspects of audio data by choosing appropriate representations. But, as
previously mentioned, there are drawbacks. Musical scores, for example, require multiple conversion steps to become
audible. Additionally, representations can abstract away relevant nuances of music and speech. For example, timing and
volume can be important when generating synthetic music, but often cannot be represented accurately in musical scores.
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When generating music and speech, use of raw audio signals in generative models is in the minority. Applications such
as WaveNet [40] show that raw audio models can succeed in multiple domains by leveraging the flexibility of deep
learning models. WaveNet is an autoregressive model that predicts one step of a sequence at a time conditioned on
previous steps. Multiple layers of causal convolutions incorporate causality into the network. These are one-dimensional
convolutions that depend only on present and past time steps. A key problem of networks involving causal convolutions
is that, when the convolutions depend on the present and previous time steps, the network has to be quite deep to capture
long-term dependencies. WaveNet [40] overcomes this obstacle by dilating the convolutions in each layer. Therefore,
instead of using the output of the preceding time step as input, WaveNet skips multiple time steps (see Section 3.2).

The WaveNet [40] model has been evaluated in numerous experiments. Most important for this review is the uncondi-
tional generation of polyphonic single-voice piano music and of speech for a single speaker. WaveNet made a significant
leap forward in the ability to generate of synthetic audio data by adopting deep learning models and still serves as a
baseline for evaluation of new models. [40] addressed novelty, realism, and coherence of the sample output of WaveNet
only qualitatively and did not address representativeness or diversity. Qualitatively, the synthetic music was rated as
harmonious and aesthetically pleasing. Their synthetic speech samples consisted of non-existent words that resembled
actual words and were spoken with realistic intonations. The authors argue that conditioning on information such as a
speaker’s ID for speech and genre for music, yields better results. Additionally, because the input size was limited,
WaveNet’s synthetic outputs lacked long-term coherence and synthetic music samples sometimes changed genre and
volume from one second to another.

The structure of raw audio makes generation of long coherent audio signals challenging. The signal at one time step can
depend on the values of neighboring time steps and on the values of thousands of preceding time steps. WaveNet lacks
this long-term coherence but yields short audio samples of good quality. To overcome this limitation, WaveNet has
been incorporated into higher-level architectures (e.g., [105, 106]). Dieleman et al. [105] transformed raw audio signals
into a more-abstract, higher-level representation and train WaveNet on the representation.

In their SampleRNN model, Mehri et al. [106] addressed the problem of coherence by hierarchically stacking networks
that operated at different timescales. The lowest layer of the SampleRNN is a WaveNet network operating on the raw
audio signal. Higher layers operate on coarser timescales by collating multiple time steps of the signal into the state of
an RNN. As a result, the higher layers can capture long-term dependencies and pass that information down the network
hierarchy, allowing WaveNet to obtain aggregated dependency information from numerous preceding time steps. The
SampleRNN was evaluated on speech data, human sounds, and music data. The authors reported that it generated
more-representative synthetic audio samples than a simple WaveNet, based on the NLL of the synthetic samples. Also,
participants who evaluated the results of SampleRNN in an empirical study perceived the synthetic output more realistic
than the output of WaveNet.

Donahue et al. [39] also worked with raw audio but applied an interesting approach. They transferred the DCGAN
network [87], a model prominently known for its success in image synthesis, to audio generation. They created two
models: WaveGAN for raw audio and SpecGAN for spectrograms of sound data. Both are GAN models with a
convolutional generator and discriminator and a structure similar to DCGAN. However, since as raw audio is one-
dimensional and images are two-dimensional, the convolutions are flattened. For example, two-dimensional filters
sized 5x5 in DCGAN become one-dimensional filters of length 25 in WaveGAN and WaveGAN’s output is a raw
audio sample of length 16,384 instead of an image of size 128x128. SpecGAN, on the other hand, operates on the
two-dimensional spectrograms of raw audio data. The raw audio samples are first transformed into intensity distributions
of different frequencies at each timestep, creating spectrograms. SpecGAN then generates synthetic two-dimensional
spectrograms that are inverted back to raw audio to obtain audible sound.

With a sampling rate of 16kHz WaveGAN and SpecGAN generate synthetic audio samples that have a duration of about
one second. The models are applied to data-sets with similarly short sounds, such as intonations of the numbers zero
through nine in speech, short drum and piano sounds, and bird vocalizations. The authors thoroughly evaluated the
two models using IS, nearest-neighbor comparisons, and human judgement. Donahue et al. [39] used the IS, which
was originally developed to evaluate of synthetic images, to determine the realism and diversity of their synthetic
sounds. To evaluate diversity, they measured the mean Euclidean distance between a synthetic sound and its nearest
neighbors. Novelty was determined by the mean Euclidean distance between a synthetic sound and nearest neighbors
in the original data-set. Additionally, study participants evaluated the quality, diversity, and realism of the synthetic
vocalizations of the numbers. The authors report better results in terms of novelty, diversity and realism than achieved
using SampleRNN [106] and WaveNet [40].

The limitations associated with using raw audio data in terms of sequence length make use of higher-level representations
of sound such as musical scores and the Musical Instrument Digital Interface (MIDI) standard for music beneficial in
some scenarios. Higher-level representations can encode important information but abstract away some aspects of raw
audio. Less capacity is needed for these models, but the representations cannot be made audible directly. Often, some
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interpretation is to musicians or to computer programs. Additionally, abstraction reduces sequence length while usually
increasing dimensionality.

Piano rolls are an example of a higher-level representation of music. They were inspired by the rolls used in automated
pianos that triggered playing of a note for a certain duration. Similarly, piano roll representations encode whether a note
—or multiple notes in polyphonic cases —is played in a particular time step of a song. The duration of the time steps is
constant for a single piano roll and across a data-set. The duration is much longer than in raw audio data so piano rolls
can encode multiple seconds of melodies using shorter sequences and thus make it easier to capture intra-sequence
dependencies. However, piano rolls slightly increase dimensionality because each note in a track is encoded instead of
amplitudes of sound waves. There are several other representations used for music, and the literature on deep learning
models for generating symbolic music is extensive [46, 108, 49, 41, 107, 109, 110, 44, 111, 112, 113, 14, 114, 115]. It
is partially reviewed in a survey by Briot et al. [31].

In [107], Dong et al. described a model designed to generate multi-voice polyphonic rock music called MuseGAN
operating on piano rolls. Multi-voice music consists of multiple tracks for the instruments (e.g., piano, guitar, and bass).
Each track is represented by a piano roll. The challenge in modelling multi-voice polyphonic piano rolls is capturing
the intra-dependencies of notes in a track and the inter-dependencies of notes played in different tracks.

MuseGAN [107] uses the intra- and inter-dependencies of tracks to compose synthetic music, further separating the
dependencies into time-dependent and time-independent parts. The network is a GAN that uses a generator partly
inspired by generative video models [42, 47, 48] (see Section 4.3 for details on these models). The synthetic music is
sampled from the generator by track. Each track is generated from two random numbers representing all tracks and two
random numbers representing individual tracks encoding time-dependent and time-independent intra- and inter-track
dependencies. The track-generator captures dependencies in time and between notes played using a CNN structure.
Similarly, the MuseGAN discriminator is a CNN that judges whether a melody is real or synthetic based on the structure
of the notes played in a single track over time and in multiple tracks at the same time.

Dong et al. [107] leveraged symbolic representation to reduce the complexity of the problem and to assess the quality
of the generated music samples. To evaluate the representativeness and coherence of the meusic they compared the
training data and synthetic data based on music-theoretical measures. For example, they computed the ratio of bars in
which no notes were played, the number of pitch classes used in a bar, and the ratio of notes lasting longer than a 32nd
note to evaluate representativeness. The model captured drum patterns observed in the training data fairly well, but
the synthetic melodies were more fragmented and used a larger number of pitch classes than the original melodies,
indicating noise in the synthetic data. The tonal distance [116] between tracks in the generated samples generally
showed a strong harmonic relation, indicating strong coherence. In addition to these objective measures, the authors
evaluated the synthetic samples’ harmonicity, rhythmicity, musical structure, and coherence based on responses by
study participants, who also gave the samples overall ratings that measured coherence and realism as defined in our
proposed framework. The study participants rated the samples as 2.3 to 3.5 on a 1–5 scale; they did not compare the
samples to baseline samples from other models or to the original music.

Speech also can be generated using representations. One of the most studied paradigms is statistical parametric speech
synthesis (SPSS) [117], which uses linguistic features of speech such as phonemes, cadence, and word frequency
to synthesize spoken words. Considerable research has been conducted on SPSS, but unconditional generation of
synthetic speech data-sets is uncommon. Common tasks are text-to-speech, voice conversion, and vocoding (making
speech parameters audible). In all three, cases speech is being generated from an input (text, speech fragments, speech
parameters). Though these tasks fall outside the scope of our literature review it is important to note that deep learning
based models for speech data are emerging (see [118, 119, 120] for example).

Evaluation of synthetic audio data poses a challenge that cannot adequately be addressed in general: the significance
of our proposed criteria and validity of metrics used to measure the criteria vary with the type of audio (e.g., speech
versus music). For example, rhythms and harmony are highly relevant for music but only somewhat relevant for speech.
Reasonable evaluations are often based on domain-knowledge. In the case of music, the relevant domain is music
theory, for which metrics such as the ratio of pauses, fragmentation of a sample, and the tonal distance, as used in [107],
are reasonable. For a review of objective metrics for evaluating synthetic music, see [121]. For all kinds of audio and
for music and speech in particular, subjective evaluations of realism and coherence by humans are a significant part of
evaluations.

4.3 Visual Data Processing

Today, thanks to the prevalence of smartphones, images and videos are produced and consumed en masse. Access
to such a vast amount of data has led to dramatic advances in processing and classification of existing images and in
models to generate synthetic ones (see for example [87, 1]). Since videos are merely sequences of images, the ability
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Study
Represen-
tativeness Novelty Realism Diversity Coherence

Vondrick et al. [42] Qual. Human eval.

Saito et al. [47] IS IS

Tulyakov et al. [48] Qual.
IS /

Human eval. IS ACD

Table 3: Excerpt of models for synthetic videos and metrics used to evaluate them.

to generate synthetic videos also has advanced. The ongoing challenge is capturing a smooth dynamic motion in the
transitions between images.

Models based on CNNs (Section 3.2) and GANs (Section 3.6) have been highly successful in generating images.
Consequently, many successful generative models for synthetic videos have been based on them [42, 47, 48]. The
primary challenge in designing such models is incorporation of the temporal dimension with videos’ two spatial
dimensions of the video.

The VGAN model proposed in [42] tackles this challenge by decomposing the dynamic foreground from the static
background, reducing the complexity of the problem. The dynamic foreground is captured by a three-dimensional
spatio-temporal CNN, and the static background can be captured by a two-dimensional spatial CNN. Both CNNs
are incorporated into the generator of a GAN that is then optimized against a three-dimensional spatio-temporal
discriminator that judges the realism of the scene and the motion.

The VGAN model has been applied to small short videos of 64x64 pixels with 32 frames and duration of around one
second from Flickr in different categories collected such as beaches, golf courses, and train stations. The authors [42]
assessed the representativeness of the resulting synthetic videos qualitatively and reported generally correct motion
patterns for scenes in the various categories. For example, synthetic videos of beaches contained crashing waves and
synthetic videos of trains contained train tracks and train cars with windows moving by quickly. The generated scenes
were sharp overall, but individual objects such as people in the synthetic beach scenes tended to lack resolution. The
realism of the resulting videos was evaluated by participants in an empirical study who were asked to view the synthetic
and original videos and choose which seemed most realistic. Though the participants overwhelmingly chose the original
videos, the synthetic scenes were chosen in 18% of the comparisons.

The VGAN architecture [42] is optimized for videos with static backgrounds. Saito et al. [47] relaxed this restriction
in their TGAN model by decoupling the temporal dimension from the spatial dimensions. First, a one-dimensional
temporal generator produces a sequence of temporal codes that are then mapped one-by-one to an image by a two-
dimensional image generator. The discriminator, a three-dimensional spatio-temporal CNN, then distinguishes real
videos from synthetic ones. According to the IS, the synthetic videos generated by TGAN are more diverse and realistic
than those generated by VGAN.

Tulyakov et al. [48] argued that the straightforward decomposition of a video into temporal and spatial dimensions, as
done in TGAN, unnecessarily increases the complexity of the problem by ignoring similar motion patterns. In [48], they
proposed a decomposition of the content of a video and the motion therein, which they incorporated into a generative
model called MoCoGAN. Consider, for example, various facial expressions presented by a person in a video. In such a
video, the person’s face is the content and performance of an expression is the motion. This disentanglement allows
the model to generate videos with the same content but different motions and vice versa —that is, videos of a person
performing different facial expressions.

MoCoGAN incorporates this decomposition in the latent space of the generator. The input to the generator is split into a
content variable and a sequence of motion codes. An RNN generates the motion codes and connects them to subsequent
codes to ensure a coherent motion. Then, given the fixed content variable for all frames and a motion code, each frame
in the video is synthesized by a two-dimensional CNN image generator. Similarly, the discriminator judges the realism
of the content and motion of a video separately using a two-dimensional CNN for the content and a three-dimensional
spatio-temporal CNN for the motion.

The authors evaluated the MoCoGAN’s performance synthesizing small short videos of various scenes, including
tai-chi movements and facial expressions. They qualitatively assessed the ability of the model to decompose content
from motion by fixing a person as the content and generating videos of that person performing different motions. The
results demonstrated MoCoGAN’s ability to generate novel content by adjusting the input variables of the generator.

16



A PREPRINT - NOVEMBER 23, 2021

They found that the synthetic videos generated by MoCoGAN were more diverse and realistic than synthetic videos
generated by VGAN [42] and TGAN [47] based on the IS. Additionally, participants in an empirical study viewed the
videos generated by MoCoGAN as more realistic than videos generated using VGAN [42] and TGAN [47]. Tulyakov
et al. [48] also quantitatively evaluated the coherence of synthetic videos of facial expressions using the classifier-based
average content distance (ACD), which quantifies the difference between two frames in a video in terms of content.
OpenFace [122] is applied to each frame of a video presenting a facial expression to extract facial features that identify
the person. Small differences (distances) in the features between frames indicate that the same person is displayed
throughout the video and, therefore, a small ACD. The MoCoGAN obtained higher coherence scores than the VGAN
[42] and TGAN [47] videos.

When generating synthetic videos, many concepts from image generation carry over. We see this in the prevalence of
CNN and GAN models and in the metrics used to evaluate synthetic videos. Specifically, the IS is often used to measure
realism and diversity of synthetic videos and [48] uses ACD to measure coherence; both rely on image classifiers. When
evaluating reaslism, human studies are heavily used in addition to IS and ACD. Human evaluations of realism also
capture coherence to some extent. The representativeness and novelty of synthetic videos are rarely evaluated explicitly.
Altogether, the results so far are promising for synthetic videos that are short and relatively low resolution. The large
number of dimensions associated with high-quality videos combined with the large number of frames needed even for
short videos continue to thwart efforts to synthesize more complex videos.

4.4 Healthcare

Study
Represen-
tativeness Novelty Realism Diversity Coherence

Esteban
et al. [123] MMD/TSTR NN distance TRTS Qual.

Choi
et al. [45] Qual.

Disclosure
risk Human eval. Qual. Qual.

Baowaly
et al. [5]

K–S test/
dim.-wise stats. Qual.

ML predictions/
ARM Qual. ARM

Table 4: Excerpt of models to generate synthetic medical data and metrics used to evaluate them.

Generative models for synthetic medical data have gained attention in recent years. The sensitivity of medical data and
strict access restrictions make sharing of original medical data from patients extremely challenging [43]. A promising
solution is to use generated synthetic data instead. Synthetic medical data can be shared and published for secondary
analyses since the privacy of patients is guaranteed.

Data from intensive care units (ICUs), where patients with severe and life-threatening conditions first receive treatment,
are especially valuable for clinical analysis [124]. The data can include real-valued monitoring information, such as
measured oxygen saturation, heart rate, and respiratory rate.

Esteban et al. [123] generated such synthetic medical data based on information collected from the first four hours of
patients’ stays in an ICU. They employed an LSTM as the generator in a GAN and another LSTM as the discriminator
of real and synthetic data sequences. They evaluated representativeness of the generated data using MMD and by
training a classifier model on the synthetic data-set and testing it on a real holdout data-set (train on synthetic, test on
real (TSTR)). They evaluated realism by training a classifier model on the real data-set and testing it on the synthetic
data-set (train on real, test on synthetic (TRTS)). In both cases, the classifier models achieved results comparable to
models trained and tested solely on original data.

Novelty is especially important in privacy contexts; that is, it must be impossible to reconstruct the original data-points
from the synthetic ones. Overall, Esteban et al. [123] found that the synthetic data-points were not close to original
single data-points based on the evaluation of the distances between the synthetic data-points and their real nearest
neighbors. Their qualitative exploration of the latent space —conducted by interpolating between generated points
—also showed that the model yielded diverse results. To account for the importance of privacy, they adapted the training
of the original model to incorporate differential privacy [125, 126]. Under the stricter privacy conditions, they reported
that the synthetic data were highly representative and slightly less realistic.

17



A PREPRINT - NOVEMBER 23, 2021

The real-valued time-series data used by Esteban et al. [123] are important in healthcare but are one of many types
of electronic health records (EHR). EHR data has been the main focus of recent studies [127] and turns out to be
quite diverse. EHRs include patients’ demographic information, diagnoses, laboratory test results, medication history,
clinical notes, and medical images, and other medical records [128] and disclose discrete-valued codes for diagnoses,
medications, and procedures.

Choi et al. [45] studied synthetic sequences of discrete-valued multi-label EHR data containing information on
diagnoses and treatments. The sequences in the data were long and high-dimensional, thus presenting significant
challenges for generation of synthetic data. The authors addressed these challenges by combining an AE and a GAN in
their generative model, medGAN. The AE was used to reduce the complexity of the output data of the generator, which
learns salient features of the samples by projecting them to a lower dimensional space and then projecting them back
to the original space [129, 130]. Thus, medGAN generates synthetic data in the lower dimensional space. Then, the
pre-trained decoder converts the generated output to synthetic EHR data in the original space.

The authors evaluated medGAN and found that it outperformed several generative models, including random noise, in-
dependent sampling [45], stacked restricted Boltzmann machines [131] and VAEs (see Section 3.5). Representativeness
and diversity are only evaluated qualitatively, but the authors argued that significant improvements were accomplished
by applying the minibatch averaging method [45] to reduce overfitting and mode collapse. Novelty was evaluated by
conducting two privacy risk evaluations. One measured the risk of disclosure of personally identifiable information
and the other measured the risk of disclosure of personal sensitive medical data. The evaluations determined that
medGAN can generate novel private synthetic data that reveal little information to potential attackers rather than
simply reproducing the training samples. Overall, medGan’s synthetic data were reported to be realistic, but qualitative
evaluation by a single doctor is not entirely convincing.

Since introduction of medGAN, other researchers have extended it in different directions. Two that have outperformed
medGAN in all experiments were proposed by Baowaly et al. [5]. The medWGAN model combines medGAN with the
Wasserstein GAN model, which uses a gradient penalty [93, 96] to minimize divergences in Wasserstein distances. The
medBGAN (medical boundary-seeking GAN) model trains the generator to obtain a distribution of samples located
on the decision boundary of the discriminator. To evaluate the models’ representativeness, the authors conducted the
Kolmogorov–Smirnov (K-S) test and compare the dimension-wise probabilities and averages of the real and synthetic
data. Realism was evaluated by comparing predictions made by machine learning models for the real and synthetic data.
Association rule mining (ARM) is often used to identify associations and patterns in clinical concepts in EHR data
[132] and was used by [5] to evaluate realism and coherence. Another extension of medGAN for generating real-valued
time-series data, has been proposed by Yahi et al. [133].

Medical text and images also have attracted attention. Medical text consists of clinical notes and patients’ chief
complaints, which share characteristics of other types of text data (see Section 4.1) but typically are short and are
composed of a limited number of words from medical vocabularies. Lee [104] applied an encoder-decoder model to
generate synthetic natural-language chief complaints using EHR data from around 5.5 million records of emergency
department visits. Guan et al. [134] proposed a GAN model to generate Chinese EHR text data. Both models use
demographic and disease features as inputs and generate corresponding EHR text data. However, they are conditional
models that fall outside the scope of this survey.

In healthcare, synthetic EHR data is primarily used to protect patients’ privacy while enabling data sharing and secondary
data analyses. Thus, most studies in the field are concerned mainly novelty, representativeness, and realism. Novelty is
particularly important to protecting privacy and, thus, is often evaluated using privacy tests. Tests for representativesness
and realism in EHRs are not necessarily domain-specific; TSTR and TRTS have most often been used to evaluate those
criteria.

4.5 Mobility

Everyday, massive quantities of data on human mobility are collected. Mobile devices such as smartphones are equipped
with GPS functionality and transportation systems (car sharing, logistics, public transports) usually incorporate
automatic tracking. Mobility data are used in a wide range of tasks, including urban traffic predictions [137], shared
mobility services [138], marketing services [16], and transportation of people and goods [139]. However, the risk
of re-identification of individuals makes sharing of such data highly sensitive. The relevance of this risk has been
demonstrated even for aggregated mobility data [140]. Synthetic mobility trajectories do not present this risk and thus
enable sharing, by either obfuscating the original path data or generating completely synthetic trajectories that cannot
be related to individuals.

Ouyang et al. [135] studied generation of synthetic realistic human location trajectories for privacy-sensitive secondary
data analyses. Usually, mobility trajectories are represented as sequences of continuous coordinates (x, y) consisting of
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Study
Represen-
tativeness Novelty Realism Diversity Coherence

Ouyang
et al. [135]

absol. semantics,
marg. distributions rel. semantics

Kulkarni
et al. [6]

absol. semantics,
MMD

location
hiding

temporal
dep. decay

Lin et al. [136] counting stat.

Table 5: Excerpt of models for generating mobility data and applied metrics.

a longitudinal and latitudinal component over time t. Ouyang et al. converted this time-major representation into a
location-major representation in the form of maps corresponding to times of stays at each coordinate (x, y). The maps
were then fed into a GAN consisting of a deconvolutional generator and a convolutional discriminator.

The authors evaluate the model results primarily in terms of representativeness and coherence. Representativeness was
evaluated by comparing geographical statistics describing the real data with the same statistics for the synthetic data.
They compare the marginal probabilities of visiting a certain location at a certain time and of remaining there for a
certain duration using Jensen-Shannon divergence (JSD).

The so called semantics of the trajectories play a key role in producing representativeness and coherence. The semantics
give a trajectory intrinsic meaning, which can be difficult for generative models to capture. Consider, for example,
the path "home-bus-work-bus-home". It intuitively makes sense whereas "airport-home-work-train" does not make
sense and semantically is unlikely to be true. Ouyang et al. further distinguished between absolute and relative
semantics. Absolute semantics captures the meaning of each location in a trajectory; relative semantics capture the
meaning of a location in a trajectory relative to other visited locations in the trajectory. To evaluate representativeness,
the authors compared the absolute semantics of the real and synthetic data at the population level. Likewise, they
measured coherence using a comparison of the relative semantics measured by the pair-wise semantic distance which
was originally introduced by Bindschaedler and Shokri [141]. This metric accounts for trajectories of people who can
live in geographically different locations but still share semantic patterns. Their results showed that the GAN-based
approach preserved both the statistical characteristics of the original data and their relative semantics.

Ouyang et al. [135] did not conduct any privacy tests and limited the evaluation to one GAN-based model. Kulkarni et
al. in [6] extended their study by testing the performance of seven generative models that used different architectures
and conducting privacy tests to measure the novelty of the results. They compared deep generative models based on
GANs, LSTMs, and other variations of RNNs with each other and with a statistical model, Copulas. Interestingly,
Copulas and the GANs performed best in terms of representativeness, which was evaluated by comparing geographical
statistics and absolute semantics (similar to [135]) and by measuring MMD. The RNNs and Copulas generated the most
coherent synthetic trajectories. The long-range temporal dependencies throughout the generated trajectories, which
measure coherence, decayed most slowly.

Interestingly, Kulkarni et al. measured the novelty of the synthetic data by conducting two specific privacy tests. They
applied a location-sequence attack, which determines the level of accuracy to which trajectories in the original data can
be reconstructed, and a membership interference attack, which measures the accuracy of an inference that an individual
contributed to a specific trajectory. In both tests, the RNN and GAN models outperformed the other models by a
considerable margin.

The synthetically generated data in [135] and [6] were intended to be used in privacy-sensitive secondary data analyses.
This is an important use, but the value of synthetic mobility data extends far beyond that. In [136] Lin et al. used
labeled cellular geo-location data collected from mobile devices to generate synthetic mobility data for traffic volume
simulations. Actual high-quality data on traffic volumes are difficult to collect. The simulations were applied to
a super-district in the San Francisco Bay Area in California and were used to provide decision support for several
transportation projects designed to improve urban transportation planning. The authors employed an LSTM model and
evaluated its representativeness by comparing the vehicle traffic counts and public transit boarding and alighting counts
of the simulated results and the actual counts. They argue that transportation policy-makers and planners can benefit
from using synthetic location data to improve their understanding of urban mobility.

The literature on models for generating mobility data is not vast, and the quantitative approaches used to validate such
models vary greatly. In reviewing different applications to mobility data, we observed that representativeness was
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particularly important in all of the studies. Consequently, the studies provide reliable metrics for representativeness , such
as MMD, JSD, absolute semantics, and count variables. Coherence seems to be important in many cases but is evaluated
in various ways, including relative semantics of the trajectories and observations of decays of temporal dependencies
throughout the trajectory. Privacy, of course, is a significant issue. [6] especially stands out its consideration of privacy
as the authors conducted robust privacy tests on their synthetic data. We also find that all of the reviewed studies related
to mobility presented a strong use-case for the generative models.

5 Summary & Conclusions

Synthetic data allows governments, businesses and researchers to easily access and share sensitive data without the
risk of violating privacy regulations. The importance of having access to highly sensitive data was highlighted once
again through the COVID pandemic, where governments and researchers rely on high quality sensitive medical data.
Furthermore, the decomratizing effect of accessible synthetic data mitigates the power of large data aggregators, such as
Google and Facebook, and reduces limitations of real world data-sets, such as inherent biases, insufficient quantities,
and class imbalance. Deep generative models, with their ability to capture complex data and their relationships, has
boosted progress in synthetic data generation significantly.

This article discusses deep generative models for synthetic data and introduces a set of high-level evaluation criteria for
a data-driven assessment of the quality of generated data. We examine their use and applicability to synthetic sequential
data in the fields of natural language, speech, audio and visual data processing as well as healthcare and mobility.
The proposed evaluation framework allows for clear and easy communication of the requirements posed on synthetic
data in different domains and use-cases. We find that synthetic texts in NLP applications are primarily evaluated for
representativeness and realism. Synthetic music, speech and video data mostly need to be realistic and coherent. Studies
in healthcare are mostly concerned with generating private synthetic EHRs that still allow for secondary data analysis
and, thus, assess the data’s representativeness, novelty and realism. Synthetic mobility trajectories are generated for
similar purposes with an additional focus on their coherence. However, not all mobility studies examine the synthetic
data’s novelty, potentially leading to privacy risks when sharing such data.

We also find that the nature of metrics used to evaluate the criteria can vary significantly. Some studies evaluate criteria
only qualitatively, for example, by looking at synthetic text samples or listening to synthetic music samples. In most
cases only the individual-level criteria (i.e., novelty, realism, and coherence) are evaluated in this subjective way, but
sometimes also representativeness and diversity are. Other studies rely on human evaluations by laypeople or experts to
judge realism and coherence of synthetic data. Human evaluations often also contain subjectivity either by the designer
or the participants of the study. Thus, the most objective measures are formal computational metrics. Such metrics are
primarily used to evaluate representativeness (e.g., by MMD or NLL) and diversity (e.g., self-BLEU or distances) of
synthetic data. In many cases novelty is not evaluated at all and coherence is assessed as part of evaluating the data’s
realism.

Our review highlights that the generative architectures discussed in Section 3 are used in a variety of applications and,
in particular, GANs receive a lot of attention. Most often the architectural elements are used in conjunction with each
other. In many cases, at the core of the networks RNNs or CNNs are involved to ensure causally coherent generation of
synthetic sequential data. Autoregressive elements and attention mechanisms are also applied to some use-cases.

For the future, our proposed evaluation framework for unconditionally generated synthetic data has potential to be
extended for the evaluation of conditionally generated data. That kind of data is always generated within a given context,
such as categories of videos or genres of songs. An evaluation framework for conditionally generated synthetic data has
to account for that context. We expect conditionally generated synthetic data need robustness within a context and it’s
variability to be more nuanced depending on the context.

With more jurisdictions passing privacy laws, in the future, we expect synthetic data to gain more attention. We expect
more advanced and more objective metrics that allow a better and more objective assessment of synthetic data quality,
in particular on the individual level. The development of the IS, used for synthetic images and videos, and other metrics
that correlate well with human judgement of realism point in that direction. In depth research of objective metrics
allows systematic assessment of synthetic data quality with more robustness and less subjectivity in it. Meanwhile, we
expect a continuation of the coexistence and combination of quality assessment based on expert judgement and formal
computational metrics.

Another potentially interesting area worth further exploring is to complement a purely data-driven approach to assess
the quality of synthetic data with a decision-oriented view. Credible decisions made on the basis of data can require
certain properties of the data. For example, biased data with underrepresented minority groups can be a weak basis for
decisions influencing all individuals, including the minority group. Other decisions can be sensitive to recent events
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in the data. The decisions made during the COVID pandemic, for example, are highly sensitive to the recency of the
data. A decision-oriented evaluation approach could help improving decision making (or avoiding weak decisions) by
contrasting the decisions derived from synthetic data-scenarios with those based on the original, real-life data. Recent
research into fairness and debiasing using synthetic data are promising starting points towards this direction.
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