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Abstract

We present a Markov-chain-Monte-Carlo technique for the exact estimation of multi-

factor models of the term structure of interest rates. We apply this method to the

Cox-Ingersoll-Ross-model which provides an interesting case because of the highly

non-normal structure of the underlying state space model. Our technique is based on

hybrid "Metropolis within Gibbs"-sampling and makes explicit use of the structure

of the underlying economic model when constructing the proposal densities for the

Metropolis-Hastings algorithm. In an empirical study using US interest rates we

�nd that the di�erence between approximate quasi maximum likelihood estimation

and exact estimation may be substantial.
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1 Introduction

The topic of this paper is the estimation of multi-factor models of the term structure

of interest rates from a multivariate time series of yields observed at discrete points

in time. The underlying unobservable stochastic process of the factors is assumed

to follow the multi-factor Cox-Ingersoll-Ross-model (Cox et al, 1985), CIR-model

hereafter. Such a model may be called an "econometric" term structure model

because it introduces observation errors which are not present in theoretical term

structure models. Estimation of econometric term structure models has become a

central research objective during the last few years. The CIR-model is studied by

Chen and Scott (1995) and Geyer and Pichler (1995), Lund (1994) estimates the

Vasicek-model (Vasicek, 1977), and Duan and Simonato (1995) obtain estimates

for the CIR- and the Vasicek model. The basic idea underlying these papers is to

rewrite the econometric term structure model as a state space model and to utilize

the framework of the Kalman �ltering (reviewed e.g. in Harvey, 1989) to estimate

the parameters of the term structure model as well as the unobservable factors.

Econometric term structure models based on the Vasicek-model lead to a Gaus-

sian linear state space model and Kalman �ltering provides an optimal, easily imple-

mentable estimation methodology. The simplicity of Kalman �ltering, however, is

lost for econometric term structure models based on the CIR-model since the tran-

sition density of the corresponding state space model is the product of non-central

�
2-distributions. By substituting this complicated transition density by an approx-

imate normal density, Chen and Scott (1995) perform approximate Kalman �ltering

in combination with quasi maximum likelihood (QML) estimation of the parameters

of the CIR-model. The merit of this approach is its simplicity, the approximation

error introduced by the normal approximation, however, is unknown. Till recently

exact estimation of non-normal state space models seemed infeasible. With the ad-

vent of new estimation methods such as Markov-chain-Monte-Carlo methods in the

early 90's (Gelfand and Smith, 1990), exact estimation tools for non-normal and/or

non-linear state space models became available. Among the Markov-chain-Monte-

Carlo algorithms designed for speci�c state space models we would like to mention

Carlin et al. (1992), Fr�uhwirth-Schnatter (1994), Carter and Kohn (1994), Shephard

(1994), De Jong and Shephard (1995) and Jacquier et al. (1995).

The main contribution of the present paper is to suggest exact estimation of

econometric term structure models based on the CIR-model by means of a Markov-
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chain-Monte-Carlo technique. Our Markov-chain-Monte-Carlo technique is based

on hybrid "Metropolis within Gibbs"-sampling (Tierney, 1995) and makes explicit

use of the structure of the CIR-model when constructing the proposal densities

for the Metropolis-Hastings algorithm. It should be pointed out that the normal

approximation suggested by Chen and Scott (1995) plays a central role for the

derivation of the proposal densities. A detailed case study for US interest rates

demonstrates that the di�erence between approximate QML estimation and exact

estimation may be substantial.

The paper is organized as follows. In section 2 we review the state space formu-

lation of the multi-factor CIR-model. In Section 3 we suggest Bayesian estimation of

the parameters and factors of the CIR-model via Markov-chain-Monte-Carlo meth-

ods. Section 4 contains a detailed discussion of empirical results for US interest

rates. Section 5 concludes the paper.

2 State Space Formulation of the Multi-Factor

Cox-Ingersoll-Ross-Model

The Cox-Ingersoll-Ross-model (Cox et al., 1985) frequently is presented as a one-

factor-model, but already Cox et al. (1985) show how to incorporate multiple fac-

tors. The nominal instantaneous interest rate is assumed to be the sum of K state

variables (factors) rt;j:

it =
KX
j=1

rt;j;

where the state variables rt;j are assumed to be independently generated by a square

root process:

d rt;j = �j(�j � rt;j)dt+ �j
p
rt;j � dzt;j; j = 1; : : : ;K; (1)

where zt;j is a Wiener process. �j is the long-term mean. rt;j is pulled towards �j

at a rate governed by the speed of adjustment coe�cient �j .

Based on Cox et al. (1985), Chen and Scott (1995) derive the solution for the

nominal price Pt(T ) at time t for a pure discount bond with face value 1 maturing

at time t+ T as follows:

Pt(T ) = A1(T ) � � �AK(T ) � exp (�B1(T )rt;1 � : : :�BK(T )rt;K) ; (2)
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where

Aj(T ) = Cj(T )

2�
j
�
j

�
2

j ; Cj(T ) =
2�j � exp (T=2 � (�j + �j + �j))

2�j + (�j + �j + �j)(exp(�jT )� 1)
; (3)

Bj(T ) =
2(exp(�jT )� 1)

2�j + (�j + �j + �j)(exp (�jT )� 1)
; (4)

with �j =
q
(�j + �j)2 + 2�2j . Each state variable is associated with a parameter �j

which is negatively related to the risk premium. The yield to maturity at time t of

a pure discount bond which matures at time t+ T is de�ned as:

Yt(T ) = �
lnPt(T )

T
; (5)

which is a linear function of the state variables rt;1; : : : ; rt;K.

Let yt = (yt;1; : : : ; yt;nt)
0

= (Y (Tt;1); : : : ; Y (Tt;nt))
0

be the nt-dimensional vector of

yields observed at time t, where nt is the number of observed yields which need not

be the same at each date. Let Tt;i; i = 1; : : : ; nt; be the associated times to maturity.

To estimate the unobservable state variables from yields observed at discrete time

intervals, Chen and Scott (1995) and { independently { Geyer and Pichler (1995)

suggest to use a state space formulation of the CIR-model. However, none of the

above cited studies uses the exact state space formulation. The exact state space

formulation with state variable xt = (rt;1; : : : ; rt;K)
0

and observation vector yt is

given by the following model assumptions:

I x0; x1; x2; : : : ; xt is a Markov process with x0 � p(x0) and xtjxt�1 � p(xtjxt�1).

p(x0) is called the prior and p(xtjxt�1) is called the transition density.

II y1; y2; y3; : : : ; yt are conditionally independent given x0; x1; x2; : : : ; xt and yt is

independent of xs; s 6= t given xt with ytjxt � p(ytjxt). p(ytjxt) is called the

observation density.

For the CIR-model the exact transition densities are known to be the product of K

non-central �2-densities (Cox et al., 1985; Chen and Scott, 1993):

p(xtjxt�1) =
KY
j=1

p(rt;jjrt�1;j); (6)

p(rt;j jrt�1;j) = cje
�cj(rt;j+e

��
j
�t
rt�1;j) � (7)

�
 

rt;j

e��j�trt�1;j

! qj

2

� Iqj(2cj
q
rt;je

��j�trt�1;j);

cj =
2�j

�
2
j (1 � e��j�t)

; qj =
2�j�j

�
2
j

� 1; (8)
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where Iqj(�) is the modi�ed Bessel function of the �rst kind of order qj.

The observation density p(ytjxt) is based on the linear relationship (5) between

yields and the state variable xt. The distribution of observed yields given the state

variable ytjxt is derived from the following measurement equation:

yt = at +Bt � xt + "t; "t � N(0; Vt); Vt = Diag(Vt;11 � � �Vt;ntnt); (9)

where at is a nt-dimensional vector and Bt is a nt �K matrix. Both quantities are

derived from (2) { (5):

at;i = �
KX
j=1

lnAj(Tt;i)

Tt;i
; 1 � i � nt; Bt;ij =

Bj(Tt;i)

Tt;i
; 1 � i � nt; 1 � j � K: (10)

"t is a nt-dimensional random vector re
ecting pricing errors caused by market

imperfections. Geyer and Pichler (1995) assume that the errors of each maturity

have the same variance �
2
h, whereas Chen and Scott (1995), Duan and Simonato

(1995) and Lund (1994) assume di�erent variances �2"i for di�erent maturities. The

following choice combines individual variances for n maturities which are identical

for each t, and a common variance for the remaining ones:

Vt;ii =

8<
: �

2
"i
; 1 � i � n;

�
2
h; n+ 1 � i � nt:

(11)

The observation density p(ytjxt) is then the product of nt normal densities

p(ytjxt) =
ntY
i=1

pN (yt;i; ŷt;i; Vt;ii); ŷt;i =
KX
j=1

 
�
lnAj(Tt;i)

Tt;i
+
Bj(Tt;i)

Tt;i
rt;j

!
: (12)

To complete the state space formulation the prior p(x0) has to be chosen. We

assume that r0;1; : : : ; r0;K are independent apriori:

p(x0) =
KY
j=1

p(r0;j): (13)

For the distribution of the individual components r0;j one may either assume a

vague normal prior pN (r0;j;E(r0;j); V (r0;j)) for each state variable r0;j with V (r0;j)

being large, or assume { like Chen and Scott (1995) { that each state variable r0;j is

distributed according to the stationary gamma distribution (see Cox et al., 1985):
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p(r0;j) = pG(r0;j; qj + 1;
2�j

�
2
j

) = r
qj

0;je

�

2�
j

�
2

j

r0;j

 
2�j

�
2
j

!qj 1

�(qj + 1)
; (14)

E(r0;j) = �j; V (r0;j) = �j

�
2
j

2�j
: (15)

3 Bayesian Estimation of the CIR-Model via

Markov-chain-Monte-Carlo Methods

3.1 Bayesian Estimation of state space models via Markov-

chain-Monte-Carlo Methods

Estimation of the unobservable factors xt within the exact state space model is not

simple because of the non-normal transition density p(xtjxt�1). Furthermore, the

multi-factor CIR-Model depends on the D-dimensional model parameter �, D =

4K + n + 1, � = (�1; : : : ; �K ; �1; : : : ; �K; �
2
1; : : : ; �

2
K; �

2
1; : : : ; �

2
K ; �

2
"1
; : : : ; �

2
"n
; �

2
h)
T ,

which, too, has to be estimated from the observations. Estimation with approximate

Kalman �ltering in combination with QML estimation of the model parameters can

be carried out by substituting the exact transition density by a normal density:

xtjxt�1 � N(Ftxt�1 + ut; Qt) (16)

Chen and Scott (1995) determined Ft; ut and Qt in such a way that the �rst two

moments of the approximate normal and the exact transition density are equal:

Ft = Diag
�
e
��1�t � � � e

��K�t
�

(17)

ut =
�
(1� e

��1�t)�1 � � � (1 � e
��K�t)�K

�0
(18)

Qt = Diag
�
Qt;11 � � � Qt;KK

�
;

Qt;jj = �
2
j

1� e
��j�t

�j

 
(1� e

��j�t)
�j

2
+ e

��j�trt�1;j

!
; j = 1; : : : ;K:(19)

In this section we are going to discuss exact joint estimation of the whole state

process xN = (x0; : : : ; xN) and the model parameters � from the whole batch of data

y
N = (y1; : : : ; yN). The Bayesian solution to the estimation problem is to derive the

joint posterior distribution p(xN ; �jyN) of xN and � given y
N . This "smoothing

density" uses all observations to infer on xt with t � N and is to be distinguished
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from the �ltering density p(xtjyt) which uses only observations y
t = (y1; : : : ; yt).

From this joint posterior the marginal p(�jyN) may be derived to infer on the model

parameter �. The marginal p(xN jyN) is the solution to the problem of inference

about the unobservable state process, given all the data. Note that this marginal

also accounts for the uncertainty associated with �. The joint posterior distribution

p(xN ; �jyN) is given by Bayes' theorem:

p(xN ; �jyN) / ~p(xN ; �jyN)

~p(xN ; �jyN) = p(yN jxN ; �)p(xN j�)p(�); (20)

and is proportional to the following three densities:

� the "complete data likelihood" p(yN jxN ; �) which due to assumption II is equal

to the product of the observation densities p(ytjxt; �) given by (12):

p(yN jxN ; �) =
NY
t=1

p(ytjxt; �)

� the "prior density" p(xN j�) which due to assumption I is equal to the product

of the transition densities p(xtjxt�1; �) given by (6) times the prior p(x0j�)

given by (13):

p(xN j�) =
 

NY
t=1

p(xtjxt�1; �)
!
� p(x0j�)

� the marginal prior p(�) of the model parameter �.

Among all the densities envolved, the marginal prior p(�) of the model parameter

is the only one which is not de�ned by the state space model. To complete the spec-

i�cation of the CIR-model, we assume that the components �d of � are independent

a priori with the following un-informative priors:

p(�j) / c; p(�j) / c; p(�2j ) / 1=�2j ; p(�j) / c; j = 1; : : : ;K;

p(�2"i) / 1=�2"i ; i = 1; : : : ; n; p(�2h) / 1=�2h: (21)

Because of the non-normality of the transition densities p(xtjxt�1; �), the joint

posterior distribution p(xN ; �jyN) has no simple analytical form. During the last

years, Bayesian analysis of models with complicated posterior distributions increas-

ingly has been carried out by Markov-chain-Monte-Carlo (MCMC hereafter) meth-

ods (for a general review see e.g. Smith and Roberts, 1993; Tierney, 1995). These
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techniques include the Gibbs sampler (Gelfand and Smith, 1990) and the Metropolis-

Hastings algorithm (Hastings, 1970; Chib and Greenberg, 1994). Instead of trying

to �nd an analytical approximation to a complicated posterior distribution such

as p(xN ; �jyN), a (dependent) sample (xN ; �)(m), m = 1; : : : ;M is drawn from

p(xN ; �jyN) and quantities of interest such as parameter estimates or marginal den-

sities are computed from this sample.

To start a MCMC technique an initial value (xN ; �)(0) has to be assigned to

(xN ; �). The next value (xN ; �)(m) is generated from (xN ; �)(m�1) via a Markov

chain. The transition kernel of this Markov chain is chosen in such a way, that the

stationary distribution of the Markov chain is equal to p(xN ; �jyN). If the kernel is

ergodic, (xN ; �)(m) will be { usually after a burn-in phase to reach equilibrium { a

(dependent) sample from p(xN ; �jyN) and the posterior expectation of any function

g(xN ; �) can be estimated as the ergodic average of g((xN ; �)(m)).

For the Gibbs sampler the density of the transition kernel is chosen as the product

of the full conditional densities p(�dj��d; xN ; yN) and p(rt;jjrt;�j; xN�t; �; yN):

K((xN ; �)(m)j(xN ; �)(m�1)) =
NY
t=0

KY
j=1

p(r
(m)
t;j jr

(m)
t;<j; r

(m�1)
t;>j ; (xN

<t
)(m)

; (xN
>t
)(m�1)

; �
(m�1)

; y
N) �

�
DY
d=1

p(�
(m)

d j�(m)

<d ; �
(m�1)

>d ; (xN)(m)
; y

N); (22)

where ��d denotes all components of � except �d, �<d and �>d denotes all components

�d0 of � with d
0
< d and d

0
> d, respectively, with a similar meaning for rt;�; x

N
�t, x

N
<t

and x
N
>t is the whole state process except, before and after t, respectively. (22) is

{ in principle { a simple procedure to determine (xN ; �)(m) from (xN ; �)(m�1): �rst

sample the components x
(m)
t of the state process starting from t = 0; for each t,

sample the state variables r
(m)
t;j starting from j=1. Then sample the components

�
(m)

d of � starting from d = 1. Whenever a component has been updated from m� 1

to m, we use this value in the conditioning argument of the full conditional densities

instead of the value at m� 1.

To implement the Gibbs sampler we need to sample from the full conditional

densities, p(�dj�) and p(rt;j j�) for short, which are proportional to p(xN ; �jyN) which

in turn is proportional to ~p(xN ; �jyN) (see (20)):

p(rt;jj�); p(�dj�) / p(yN jxN ; �)p(xN j�)p(�): (23)

For the CIR-model only the full conditionals of the variances �
2
"i
and �

2
h of the

observation density have a standard form and are straightforward to sample from.
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For all other full conditionals the right hand side of (23) is a density with unknown

normalizing constant and is not standard to sample from. For such cases it is quite

common to use a step of the Metropolis-Hastings algorithm for sampling. Such a

hybrid method is sometimes called "Metropolis within Gibbs" (Tierney, 1995).

Instead of sampling directly from p(�dj�) and p(rt;jj�), respectively, the Metropolis-

Hastings algorithm samples candidate values �?d and r
?
t;j from a proposal density

q(�dj�
0

d; �) and q(rt;jjr
0

t;j; �) with �
0

d = �
(m�1)

d and r
0

t;j = r
(m�1)
t;j . The proposed val-

ues �?d and r
?
t;j, however, are not accepted with probability one, but �?d only with

probability �(�?dj�
(m�1)

d ; �) and r
?
t;j with probability �(r?t;jjr

(m�1)
t;j ; �):

�(�?dj�
(m�1)

d ; �) = min

8<
: ~p(xN ; �?d; ��djyN)q(�

(m�1)

d j�?d; �)

~p(xN ; �
(m�1)

d ; ��djyN)q(�?dj�
(m�1)

d ; �)
; 1

9=
; ; (24)

�(r?t;jjr
(m�1)
t;j ; �) = min

8<
:

~p(r?t;j; rt;�j; x
N
�t; �jyN)q(r

(m�1)
t;j jr?t;j; �)

~p(r
(m�1)
t;j ; rt;�j; x

N
�t; �jyN)q(r?t;jjr

(m�1)
t;j ; �)

; 1

9=
; : (25)

If the proposed value �
?
d is accepted { e.g. by sampling u uniformly from [0; 1]

and accepting if u � �(�?dj�
(m�1)

d ; �) { �
(m)

d is de�ned to be equal to �
?
d: �

(m)

d = �
?
d.

Otherwise the Markov chain remains in the old state: �
(m)

d = �
(m�1)

d . The same holds

for r
(m)
t;j . A convenient property of this procedure is that the unknown normalizing

constant of the posterior density p(xN ; �jyN) cancels in (24) and (25), and therefore

need not to be known. In order to implement the Metropolis-Hastings algorithm,

suitable proposal densities have to be speci�ed. In Subsection 3.2 we will discuss

in detail how to choose proposal densities for sampling from the full conditionals

within the CIR-model.

3.2 Sampling from the Full Conditionals for the CIR-Model

For the CIR-model only the full conditionals of the variances �
2
"i
and �

2
h of the

observation density have a standard form. For all other full conditionals we use a

step of the Metropolis-Hastings algorithm. In order to implement the Metropolis-

Hastings algorithm, suitable proposal densities have to be speci�ed. Considerable

recent work has been devoted to the question of how these choices should be made

(e.g. Tierney, 1995; Chib and Greenberg, 1994) and still there does not seem to be a

clear answer. An e�cient solution appears to be the construction of model speci�c

proposal densities by modifying the full conditional densities (23) in such a way that

simple densities are obtained. Such proposal densities will be suggested below. In

what follows we will make extensive use of the following lemma:
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Lemma 1. If a density p(Zj � ) is proportional to the following product of "normal

kernels":

p(Zj � ) /
SY
s=1

exp

�
�

1

2cs
(asZ � bs)

2

�
; (26)

with as, bs and cs being independent of Z, then Z has a normal distribution with

the following moments:

p(Zj � ) = pN (Z; ��;�); (27)

� =
SX
s=1

asbs

cs
; ��1 =

SX
s=1

a
2
s

cs
:

A proof is obtained by completing squares.

Sampling of �
2
"i

and �
2
h. It is easy to verify that given the un-informative priors

(21) for �2"i and �
2
h, the full conditional posteriors p(�

2
"i
j � ) and p(�2hj � ) of �

2
"i
and �

2
h

are inverse gamma densities:

p(�2"i j � ) = pIG(�
2
"i
;N=2; 1=2

NX
t=1

(yt;i � ŷt;i)
2); (28)

p(�2hj � ) = pIG(�
2
h; 1=2(

NX
t=1

nt �N � n); 1=2
NX
t=1

ntX
i=n+1

(yt;i � ŷt;i)
2); (29)

with ŷt;i given by (12).

Proposal densities for �j . As p(x
N j�) is independent of �j and the prior p(�j) in

(21) is un-informative, the full conditional p(�j j � ) in (23) simpli�es to:

p(�j j � ) /
NY
t=1

ntY
i=1

pN (yt;i; ŷt;i; Vt;ii); (30)

where ŷt;i depends on �j in a non-linear manner (see (12)). A normal proposal

density q(�j j�
0

j
; �) is derived by linearizing ŷt;i around the "old" value �

0

j and applying

Lemma 1:

q(�jj�
0

j; �) = pN (�j; �̂
N

j ;�
N

j ); (31)

�̂
N

j = �
0

j + �N

j �
NX
t=1

ntX
i=1

yt;i � ŷt;i(�
0

j)

Vt;ii
�
@ŷt;i

@�j
(�

0

j);

(�N
j )

�1 =
NX
t=1

ntX
i=1

(
@ŷt;i

@�j
(�

0

j))
2

Vt;ii
:
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Proposal densities for �j; �j; �j. Let 
j be the following parameter vector: 
j =

(�j; �j; �j)
0

, ��1j = �
2
j . If we exploit the transition density (6), we �nd that it

factorizes into K products, each of which just depends on 
j . Therefore the full

conditional densities p(
j;kj � ), 1 � k � 3, in (23) simplify to:

p(
j;kj � ) /
NY
t=1

ntY
i=1

pN (yt;i; ŷt;i; Vt;ii) �
NY
t=1

p(rt;jjrt�1;j; 
j)p(r0;jj
j) � p(
j;k): (32)

p(
j;k) is the un-informative prior (21) of 
j;k.

First, when constructing the proposal density for 
j;k, we modify the observation

densities in (32) by linearizing ŷt;i around the "old" value 

0

j;k. Note, that ŷt;i is al-

ready linear in �j and no modi�cations are necessary when constructing the proposal

density for �j. Our second step is to substitute in (32) the exact transiton densities

by the approximate normal transition densities (16) (Chen and Scott, 1995),

p(rt;jjrt�1;j; 
j) � pN (rt;j;Ft;jjrt�1;j + ut;j; �
2
j
~Qt;jj); (33)

with Ft, ut and Qt given by (17) - (19) and ~Qt;jj = Qt;jj=�
2
j being independent of

�
2
j . Finally, in case we work with the stationary prior (14), the density p(r0;jj
j) is

approximated by a normal density with the same �rst and second moment as the

exact prior (13):

p(r0;jj
j) � pN (r0;j;�j; �j
�
2
j

2�j
): (34)

In case we use a vague normal prior, p(r0;jj
j) is independent of 
j and drops from

(32).

It is easy to verify that the product of the approximate normal transition densities

(33) times the approximate normal prior (34) times the un-informative prior (21)

is a Gamma density in �j = �
�2
j . This suggests a gamma proposal density for �j.

The information in the observation densities is exploited in the following way: as

mentioned above, we linearize each ŷt;i { considered as a function of �j { around the

old value �
0

j . Applying Lemma 1 we obtain a normal approximation to the products

of observation densities:

p(�j jxN ; yN) � pN (�j ; �̂
N

j ; T
N

j ); (35)

�̂
N

j = �
0

j + T
N

j �
NX
t=1

ntX
i=1

yt;i � ŷt;i(�
0

j)

Vt;ii
�
@ŷt;i

@�j
(�

0

j);

(TN
j )�1 =

NX
t=1

ntX
i=1

(
@ŷt;i

@�j
(�

0

j))
2

Vt;ii
:

11



To this normal we �t a gamma density with the same �rst and second moment and

combine it with the gamma density obtained from (33), (34) and (21). Finally, we

end up with a gamma proposal for �j with the following parameters:

q(�jj�
0

j ; �) = pG(�j; �
N

j ;�
N

j ); (36)

�
N

j =
(�̂Nj )

2

T
N
j

+
N

2
+ �

0
j

�N

j =
�̂
N
j

T
N
j

+ 1=2
NX
t=1

(rt;j � Ft;jjrt�1;j � ut;j)
2

~Qt;jj

+ �0
j ;

with �
0
j = 0:5 and �0

j = (r0;j � �j)
2 � �j=�j in case we work with the stationary

prior (14) and �
0
j = �0

j = 0 in case we work with the a vague normal prior for the

state variables. The proposal density for the original parameter �2j is then an inverse

gamma density with the same parameters as the gamma density.

The approximate transitions densities (33) and the approximate normal prior

(34) have to be modi�ed further to obtain simple proposal densities for �j and �j.

It has been already mentioned, that the product of the observation densities is a

normal kernel in �j. This suggests a normal proposal density for �j. The �rst

moments of the approximate normal transition densities (33) and the approximate

normal prior (34), too, are linear in �j; the variances, however, are not independent

of �j. To obtain normal kernels in �j, we evaluate these variances at the old value

�
0

j. We then obtain from Lemma 1 the following normal proposal density q(�jj�
0

j; �):

q(�jj�
0

j; �) = pN (�j;B
N

j �̂
N

j ; B
N

j ); (37)

�̂
N

j = �
2�j

�
2
j

2
4 NX
t=1

ntX
i=1

0
@yt;i � KX

k=1

Bk(Tt;i)rt;k

Tt;i
+

KX
k=1;k 6=j

lnAk(Tt;i)

Tt;i

1
A lnCj(Tt;i)

Tt;iVt;ii

3
5+

+
NX
t=1

(rt;j � e
��j�trt�1;j)(1� e

��j�t)

Qt;jj(�
0

j)
+ �̂

0
j

(BN

j )
�1 =

4�2j

�
4
j

"
NX
t=1

ntX
i=1

(lnCj(Tt;i))
2

T
2
t;iVt;ii

#
+

NX
t=1

(1� e
��j�t)2

Qt;jj(�
0

j)
+B

0
j ;

with �̂
0
j = 2r0;j�j=(�

0

j�
2
j ) and B

0
j = 2�j=�

0

j�
2
j in case we work with the stationary

prior (14) and �̂
0
j = B

0
j = 0 in case we work with the a vague normal prior for the

state variables.

Neither the observation density nor the transition density suggest any speci�c

kernel for the proposal density of �j. We therefore construct a normal proposal

density for �j. The �rst moments of the approximate normal transition densities

12



(33), which are non-linear functions of �j, are linearized around the old value �
0

j and

the variances, which are not independent of �j, are evaluated at the old value �
0

j to

obtain normal kernels in �j. The �rst moment of the approximate normal prior (34)

is independent of �j ; the variance, however, is not independent of �j . If we evaluate

the variance at the old value �
0

j, the approximate stationary prior is un-informative

about �j. If we modify the observation densities by linearizing ŷt;i around the "old"

value �
0

j , we obtain from Lemma 1 the following normal proposal density q(�jj�
0

j; �):

q(�jj�
0

j; �) = pN (�j; �̂
N

j ;K
N

j ); (38)

�̂
N

j = �
0

j +K
N

j �
(

NX
t=1

ntX
i=1

yt;i � ŷt;i(�
0

j)

Vt;ii
�
@ŷt;i

@�j
(�

0

j)+

+
NX
t=1

�
rt;j � �j � (rt�1;j � �j)e

��
0

j
�t

�
(�j � rt�1;j)�te

��
0

j
�t

Qt;jj(�
0

j)

9>>=
>>; ;

(KN

j )
�1 =

NX
t=1

ntX
i=1

(
@ŷt;i

@�j
(�

0

j))
2

Vt;ii

+
NX
t=1

(�j � rt�1;j)
2(�t)2e�2�

0

j
�t

Qt;jj(�
0

j)
:

Proposal densities for rt;j. The full conditional posterior p(rt;jj � ) in (23) simpli-

�es to:

p(rt;jj � ) /

8>>><
>>>:

p(ytjxt; �)p(rt;jjrt�1;j; 
j)p(rt+1;j jrt;j; 
j); 1 � t � N � 1;

p(yN jxN ; �)p(rN;jjrN�1;j; 
j); t = N;

p(r0;jj
j)p(r1;jjr0;j; 
j); t = 0:

The observation density p(ytjxt; �) is a normal kernel in rt;j. Thus we suggest a

normal proposal density for rt;j. To obtain normal kernels from the transition den-

sities we again use the approximate normal transition density (16). p(rt;j jrt�1;j; 
j)

approximated by (33) is already a normal kernel, p(rt+1;jjrt;j; 
j) is not: although

the mean is linear in rt;j, the variance is not independent of rt;j. To obtain a normal

kernel we evaluate this variance at the old value r
0

t;j. If we work with the stationary

prior (14) for t = 0 we use the approximate normal prior (34), otherwise the prior

p(r0;jj
j) is already normal.

We then obtain fromLemma 1 the following normal proposal densities q(rt;jjr
0

t;j; �):

q(rt;jjr
0

t;j; �) = pN (rt;j;St;jmt;j; St;j); (39)

13



mt;j =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ntX
i=1

(yt;i � at;i �
KX

k=1;k 6=j

Bt;ikrt;k)
Bt;ij

Vt;ii
+
Ft;jjrt�1;j + ut;j

Qt;jj

+
Ft+1;jj(rt+1;j � ut+1;j)

Qt+1;jj(r
0

t;j)
;

1 � t � N � 1;
nNX
i=1

(yN;i � aN;i �
KX

k=1;k 6=j

BN;ikrN;k)
BN;ij

VN;ii
+
FN;jjrN�1;j + uN;j

QN;jj

; t = N;

E(r0;j)

V (r0;j)
+
F1;jj(r1;j � u1;j)

Q1;jj(r
0

0;j)
; t = 0;

S
�1
t;j =

8>>>>>>>>><
>>>>>>>>>:

ntX
i=1

B
2
t;ij

Vt;ii
+

1

Qt;jj

+
F
2
t+1;jj

Qt+1;jj(r
0

t;j)
; 1 � t � N � 1;

nNX
i=1

B
2
N;ij

VN;ii
+

1

QN;jj

; t = N;

1

V (r0;j)
+

F
2
1;jj

Q1;jj(r
0

0;j)
; t = 0:

For at;i and Bt;ij see (10). If the proposed value is negative, it is rejected anyway.

This imposes the constraint rt;j � 0.

4 Empirical Analysis

4.1 Data description

To illustrate the estimation method suggested in this paper, we use a data set of 16

US interest rates observed monthly in the period January 1964 to December 1993

(360 observations). The data are collected from the CRSP Government Bond File

making use of three di�erent sources: (i) The rates for maturities from one to six

months were collected from the Fama T-Bill Yield File based on average (mean of

the bid and the ask quote) prices of 6-month T-Bills. (ii) The rates for maturities

from seven to eleven months were collected from the Fama T-Bill Yield File based

on average prices of 12-month T-Bills. (iii) The rates for maturities from one to �ve

years were collected from the Fama-Bliss Discount Bond File extracted from prices

of coupon-bearing Treasury issues.

We are going to �t a one-, a two-, and a three-factor CIR-model to this data.

We make the simplifying assumption that each measurement error has the same

variance Vt;ii = �
2
h, 1 � i � nt which may be relaxed in future investigations.

The prior of the factors r0;j is chosen to be a vague normal prior. The choice is

based on results obtained by Chen and Scott (1995) and Geyer and Pichler (1995)

who use a similar and the same data set, respectively. For two- and three-factor-
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models they �nd the �rst factor to correlate highly with long maturity yields. The

second factor is interpreted as a yield spread: that is the di�erence between yields

with the shortest and longest maturity. These �ndings and equation (1) suggest

the following choice: In a one-factor-model set E(r0;1) equal to the yield with the

shortest maturity observed in the �rst month. In two- and three-factor-models set

E(r0;1) equal to the yield with the longest maturity (�ve years) and E(r0;2) to the

yield spread. Since no speci�c interpretation exists about the third factor we simply

set E(r0;3) = E(r0;2) in the three-factor-model. This choice takes into account

available prior information about the factors and appears preferable to using the

stationary distribution.

4.2 Starting Values, Assessing Convergence and Construct-

ing the Final MCMC sample

In our empirical analysis we found that convergence of the Markov Chain designed

in section 3 to the steady state might be slow. Thus some care should be given both

to the choice of the starting value (xN ; �)(0) and to assessing convergence.

There has been an extensive discussion on the question whether to use a long

single chain or many short multiple chains when implementing MCMC methods

(see e.g. the comments following the papers of Gelman and Rubin, 1992, and Geyer,

1992). Finding it rather di�cult to obtain convergence from a single chain, we used

two seperate chains during the burn-in phase and monitored the algorithm simply

by plotting the sampled values of the model parameters �
(m)

d ;m = 0; : : : ;M0 as a

function of m for both chains. If the chains were not in equilibrium, we increased

M0 and continued the burn-in phase for each of the chains. We switched to a single

chain when convergence was obvious from the plots. To obtain the �nal MCMC

sample of length M we continued with this single chain for further M steps.

We found that the speed of convergence of the Markov chain towards the steady

state heavily depends on the number of factors to be included in the model. Whereas

the burn-in phase is rather short for the one-factor-model (M0 = 500), it increases

to M0 = 10000 for the two-factor-model and is as long as M0 = 20000 for the

three-factor-model. For illustration purposes we include Figures 1 and 2 showing

the parameters of the second factor both for the two- and the three-factor-model.

Figure 1 about here

Figure 2 about here
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For the �rst starting value we use approximate Kalman �ltering and QML esti-

mation. The �ltered estimates of the state variable x̂tjt; t = 0; : : : ; N , and the QML

estimator �̂ML served as starting value for one chain. The second starting value has

been obtained by random choice. We sampled 200 �K di�erent values for � from

the cartesian product of univariate intervals, where these intervals were chosen large

enough to cover a reasonable range of parameter values and computed the quasi

likelihood function from the approximate normal model. The parameter with the

largest functional value of the quasi likelihood function then served as starting value

�
(0) for the second chain. Starting values (xN)(0) for the state process were obtained

by approximate Kalman �ltering conditional on �
(0). The �ltered estimates of the

state variable x̂tjt; t = 0; : : : ; N , served as a starting value for the state process.

The QML estimator proved in general to be a good starting value in the sense

that the corresponding chain reached the steady state quicker than the chain starting

at a randomly chosen value (see Figures 1 and 2), except for the three-factor-model.

For this model the chain starting at the QML estimator showed hardly any con-

vergence to the steady state for the model parameters (�3; �3; �3; �3) of the third

factor. However, after replacing the QML starting value by the randomly chosen

starting value for the third factor only, the steady state was �nally reached after a

considerable burn-in phase.1

To construct the �nal MCMC sample we continued with the chain starting from

the QML estimator for the one- and the two-factor-model, and starting from the

QML estimator with the starting value for the model parameters of the third factor

substituted by the randomly chosen starting value for the three-factor-model. The

length of the �nal MCMC sample is chosen to be equal to M = 9500 for the one-

factor-model and M = 10000 for the two- and the three-factor-model. We used

Dickey-Fuller tests to test for stationarity of the �nal MCMC samples. The unit-

root hypothesis was rejected for all parameters and factors at the 5% level, except

for the MCMC samples of �3 and �3.

We conclude this subsection with a discussion of the acceptance rates of the

Metropolis-Hastings algorithm. In Section 3 we suggested to implement MCMC

methods for the CIR-model by means of a Metropolis-Hastings step within Gibbs

sampling, where sampling takes place from an approximate proposal density and a

rejection step is incorporated in such a way that �nally we sample from the correct

1Note that for the three-factor-model the chain denoted by QML in Figure 2 is the chain starting

from this mixed value.
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density. The larger the acceptance rates �(�?dj�
(m�1)

d ; �) for �d and �(r?t;jjr
(m�1)
t;j ; �) for

r
?
t;j { see formula (24) and (25) { the better are the chosen proposal densities.

The empirical average acceptance rate �̂d = 1=(M0 +M)
PM+M0

m=1 �(�?dj�
(m�1)

d ; �)

for each model parameter �d, 1 � d � D, for the chain starting at the QML estimator

is reported in Table 1. The normal proposal density chosen for �j is extremely good,

leading to an average acceptance rate of 99.7 { 99.9%. The normal proposal density

chosen for �j is also �ne, leading to high average acceptance rates of 89.4 { 98.9%.

The proposal densities chosen for �j and �j which are a normal and an inverse

gamma density, respectively, are "worse" in the sense that the average acceptance

rates range from 79.0 to 97.8% for �j and from 76.2 to 98.6% for �j. These rates

are smaller than for �j and �j but still in an acceptable range.

Table 1 about here

The acceptance rates �̂t;j = 1=(M0 + M)
PM+M0

m=1 �(r?t;jjr
(m�1)
t;j ; �) for the state

variable rt;j are analyzed in Table 2. For all factors and for all models the median

of �̂t;j { where the median is taken over t, 0 � t � N { ranges from 96.8% to 99.6%

and proves to be quite high. The 0.05-quantile of �̂t;j ranges from 66.6% to 98.5%

which means that for 95% of the time points t, 0 � t � N , the average acceptance

rate is larger than the given number. Furthermore, for 92.5% { 100% of the time

points t, 0 � t � N , the average acceptance rate is larger than 0.9. Finally, for

the one- and the two-factor-model the minimum of all average acceptance rates �̂t;j

over t, 0 � t � N is larger than 62.7%. To sum up, in most cases the normal

proposal density derived from the normal approximation of Chen and Scott (1995)

is a perfect proposal density for the state variable rt;j. For the three-factor-model,

however, there are a few time points where this is not true. For the �rst and

the second factor we �nd one and for the third factor even ten time points out of

N = 361, where �̂t;j is smaller than 0.3.

Table 2 about here

4.3 Exploring the MCMC Sample

The �nal MCMC sample of length M may be explored in various ways. We focus

on the di�erence between exact Bayesian and approximate QML estimation, and

the economic relevance of the di�erences found.
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We start by comparing the estimator �̂ML obtained from the approximate quasi

likelihood function with an exact Bayesian estimator �̂B of the unknown model

parameters �. A Bayesian estimator of � such as the posterior mean is obtained

from the MCMC output simply by averaging over the sampled values �(m)
;m =

M0 + 1;M0 + M . The estimation results are summarized in Table 3. (Q)ML-

estimators are usually reported together with standard errors sML derived from the

second derivative of the (quasi) likelihood function. We therefore include in this

table both sML and the Bayesian analogon sB which is simply estimated from the

MCMC-sample as the standard deviation of the sampled parameter values from their

mean. Furthermore we report empirical 95%-HPD-regions which are approximated

by the shortest interval containing 95% of the sampled values.

Table 3 about here

Figures 3 and 4 contain exact marginal posterior densities of the model parame-

ters { estimated by smoothed marginal histograms of the MCMC sample { and the

approximate QML estimator.

Figure 3 about here

Figure 4 about here

Hardly any di�erence exists between exact Bayesian and approximate QML es-

timation for the one-factor-model. The di�erence between the estimators of �1 is

small compared to the standard deviation. For the two-factor-model the same is

true for the �rst factor; however, the di�erence is considerable for the second factor,

where the QML estimators of all parameters except �2 lie outside the 95%-H.P.D.-

regions derived from Bayesian estimation. The di�erences are even stronger for the

three-factor-model with the most striking deviation occuring for the third factor.

From the posterior densities and the 95%-H.P.D.-regions we conclude in an ex-

plorative manner that for the three-factor-model all model parameters �j ; �j; �j,

1 � j � 3, di�er from 0 and that at least three factors can be extracted for the

US-data. The estimators obtained for �j , 1 � j � 3, for the three-factor-model

allow the following interpretation of the factors: The �rst factor with a small �1

exhibits long-term memory { the autocorrelation function of the square root process

(1) over lag t equals exp(��jt) { and behaves similar to a unit root. However, from

the posterior densities in Figures 3 and 4 we �nd that �1 > 0 with extremely high
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posterior probability and we conclude in an explorative manner that no unit root

exists. The second factor exhibits medium-term memory with the mean-reverting

behavior one would expect for a yield spread. The third factor with a large �3 is

very close to a factor with no autocorrelation at all.

Although the di�erence between exact Bayesian and approximate QML estima-

tion of the model parameters is considerable, especially for models with more than

one factor, one might wonder, whether this di�erence is of any economic relevance.

We attempt to obtain an indication for the economic consequences by investigating

the di�erence between estimates of the parameters which are relevant for valuation.

These are �j and the parameter combinations (�+ �)j = �j + �j and (��)j = �j�j.

Bayesian point estimates, standard errors, 95%-H.P.D.regions and marginal poste-

rior densities of these parameter combinations are easily obtained from the trans-

formed MCMC sample (�+�)
(m)
j = �

(m)
j +�

(m)
j and (��)

(m)
j = �

(m)
j �

(m)
j in the same

fashion as above. In Table 4 these estimation results are compared to the plug-

in estimator, where the transformed parameter is estimated by substituting each

component by the QML estimator.

Table 4 about here

As regards the di�erence between estimates of �j, Table 3 shows that only the

third factor's estimate in the three-factor-model is substantially di�erent (�̂ML;3 =

12:3 and �̂B;3 = 3:373). On the basis of Table 4 we may conclude, however, that

parameter combinations for all factors of the three-factor-model di�er considerably,

both in sign and magnitude. It is interesting to note, that the plug-in estimators lie

outside the 95%-H.P.D.-regions. The di�erences for the one- and two-factor-model

are minor and the plug-in estimators lie inside the 95%-H.P.D.-regions.

These results agree with those obtained from inspecting the factor loadings

Bj(T ), which can also be used to indicate the economic relevance of di�erences

in estimation approaches. The loadings associated with each factor are non-linear

functions of the unknown model parameters (see (4)). In Figure 5 we compare

the approximate plug-in estimator of Bj(T ) { plotted as a function of the time to

maturity T { with the Bayesian estimator for the two- and the three-factor-model.

The Bayesian estimator of Bj(T ) is the mean of the transformed MCMC sample

B
(m)
j (T ), m = M0+1; : : :M0+M , where the model parameters appearing in (4) are

substituted by the parameters from the (stationary) MCMC sample. The plug-in

estimator is derived by substituting the unknown parameters by the QML estimator.
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Figure 5 about here

Figure 5 con�rms that the Bayesian estimates of the parameters relevant for

asset pricing in a three-factor-model di�er strongly from QML estimates. Although

the general tendency and shape of the loadings agrees for all three factors, the

absolute values di�er substantially, in particular for the �rst factor. Thus, if a one-

or a two-factor-model is employed for asset pricing the additional e�ort implied by

Bayesian estimation may not be worth while. We conclude, however, that signi�cant

di�erences in bond and derivative prices can result when a three-factor-model is used.

Some readers might consider Bayesian estimation rather envolved numerically

and would prefer the QML approach, if the di�erence between the methods was not

too substantial. It would be helpful to obtain information from the QML estimation

which indicates that di�erences may be important. For that purpose we found

an interesting relationship between the shape of the stationary distribution of the

state process rt;j and the discrepancy between QML and Bayesian estimates. The

parameters of the stationary gamma distribution of rt;j { the degrees of freedom �j

and the scale parameter �j { depend on the unknown model parameters �j , �j and

�j (see (14) and (8)) and may be estimated from the MCMC sample simply by

�̂B;j =
1

M

M0+MX
m=M0+1

�
(m)
j �

(m)
j

(�
(m)
j )2

; �̂B;j =
1

M

M0+MX
m=M0+1

2�
(m)
j

(�
(m)
j )2

: (40)

If the number of degrees of freedom �j is large, the stationary distribution is

close to a normal distribution with the variance proportional to the mean, whereas

a more or less small degree of freedom leads to a more or less skew stationary

distribution. Table 5 summarizesBayesian estimators as well as plug-in estimators of

the parameters of the stationary distribution for one-, two-, and three-factor-models.

The stationary distribution of the only factor of the one-factor-model (�̂B;1 = 12:182)

is close to a normal distribution, the stationary distribution of the �rst factor of the

two-factor-model (�̂B;1 = 4:297) is quite skew, and the stationary distributions of

the second factor of the two-factor-model (�̂B;2 = 1:021) and of all factors of the

three-factor-model (�̂B;1 = 1:48, �̂B;2 = 0:448, �̂B;3 = 1:253) are extremely skew. It

interesting to note that the di�erences between Bayesian and QML estimation of the

model parameters (see Table 3 and Figure 4) are substantial, especially for factors

with extremely skew stationary distributions. To a large extent this is true also

for the plug-in estimator of the degrees of freedom derived from QML estimation.
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Thus, if only QML estimation is carried out, the estimated degrees of freedom

�̂ML;j = �̂ML;j�̂ML;j=�̂
2
ML;j may serve as a useful diagnostic tool: if any of the �̂ML;js

is extremely small, the approximate results derived from QML estimation may be

somewhat doubtful.

Table 5 about here

5 Concluding Remarks

The MCMC approach presented in this paper is based on single-move-sampling, i.e.

sampling a single component �d of � from the full conditional density p(�dj��d; xN ; yN).

If the correlation among the various components of � is high, MCMC methods based

on single-move-sampling are known to converge quite slowly towards the steady

state. An alternative would be multi-move-sampling where highly correlated compo-

nents are sampled simultaneously from an appropriate multivariate proposal density.

The construction of multivariate model speci�c proposal densities for the parame-

ters of the CIR-model is far from trivial and would be an interesting topic of further

research.

By chosing the multi-factor CIR-model we con�ned ourselves in the present paper

to one speci�c model among a much larger group of possible term-structure models

(see Rogers, 1995 for a general review of term-structure models). From the view

point of estimation, econometric term structure models based on the CIR-model are

far more challenging than are other models, e.g. econometric term structure models

based on the Vasicek-model, because of the highly non-normal structure of the

underlying state space model. Bayesian estimation of econometric term structure

models via MCMCmethods, however, is not restricted to the CIR-model and is easily

extended to other term structure models which ful�ll the following requirements:

� The transition density p(xtjxt�1) is known analytically and the functional val-

ues of this density can be computed numerically.

� An explicit solution for the nominal prices Pt(T ) is available and possesses the

a�ne structure given in (2) with Aj(T ) and Bj(T ) being known functions of

the model parameters.
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model factor �j �j �j �j

one-factor j = 1 0.906 0.986 0.968 0.997

two-factor j = 1 0.978 0.983 0.989 0.999

j = 2 0.790 0.969 0.894 0.999

three-factor j = 1 0.949 0.952 0.967 0.999

j = 2 0.972 0.940 0.981 0.999

j = 3 0.882 0.762 0.977 0.998

Table 1: Empirical average acceptance rates of the Metropolis-Hastings algorithm

for the model parameters �d

model factor ~�j �
Q

j

#(�̂t;j � 0:9)

N + 1
�min;j #(�̂t;j � 0:3)

one-factor j = 1 0.995 0.985 1.000 0.945 0

two-factor j = 1 0.996 0.968 1.000 0.779 0

j = 2 0.989 0.980 0.983 0.627 0

three-factor j = 1 0.995 0.859 0.942 0.239 1

j = 2 0.995 0.666 0.925 0.167 1

j = 3 0.968 0.864 0.942 0.000 10

~�j . . .median of �̂t;j , 0 � t � N ;

�
Q

j . . . 0.05-quantile of �̂t;j , 0 � t � N ;

�min;j = min
0�t�N

�̂t;j ;

Table 2: Empirical average acceptance rates of the Metropolis-Hastings algorithm

for the state variables rt;j
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model factor �d �̂ML;d �̂B;d sML;d sB;d 95%-H.P.D.-region

one-factor j = 1 �1 0.144 0.141 0.007 0.008 0.127 0.156

�1 0.277 0.277 0.006 0.007 0.263 0.291

�1 6.512 6.633 0.237 0.285 6.099 7.187

�1 {0.185 {0.182 0.009 0.009 {0.199 {0.166

h 0.465 0.465 0.004 0.005 0.456 0.474

two-factor j = 1 �1 0.089 0.078 0.007 0.008 0.062 0.094

�1 0.261 0.256 0.007 0.006 0.245 0.269

�1 3.536 3.639 0.267 0.334 3.046 4.363

�1 {0.291 {0.281 0.019 0.014 {0.311 {0.258

j = 2 �2 1.086 0.795 0.068 0.041 0.711 0.870

�2 1.535 1.482 0.052 0.046 1.407 1.587

�2 1.945 2.817 0.157 0.143 2.521 3.090

�2 {1.336 {0.985 0.105 0.057 {1.085 {0.858

h 0.208 0.208 0.002 0.002 0.204 0.212

three-factor j = 1 �1 0.068 0.083 0.009 0.010 0.065 0.104

�1 0.228 0.293 0.007 0.003 0.287 0.298

�1 3.111 1.539 0.313 0.200 1.194 1.922

�1 {0.266 {0.632 0.018 0.015 {0.662 {0.606

j = 2 �2 0.523 0.178 0.038 0.030 0.124 0.236

�2 0.939 1.069 0.029 0.024 1.023 1.111

�2 2.107 2.929 0.066 0.438 2.084 3.875

�2 {0.302 {0.368 0.042 0.034 {0.427 {0.301

j = 3 �3 32.733 7.903 1.110 0.399 7.144 8.799

�3 12.295 3.373 0.420 0.154 3.022 3.653

�3 0.307 1.794 0.019 0.067 1.690 1.943

�3 {34.403 {3.114 1.229 0.255 {3.527 {2.611

h 0.129 0.151 0.002 0.002 0.148 0.154

�̂ML;d ... d-th component of the QML-estimator

�̂B;d ... d-th component of the posterior mean estimated by the mean of the MCMC sample

sML;d ... standard deviation of the QML estimator

sB;d ... standard deviation of the MCMC sample around �̂B;d

95%-H.P.D.-region ... estimated by the smallest interval containing 95% of the MCMC sample

Table 3: Comparing QML and Bayesian estimation for one-, two-, and three-factor-

models 25



model transformed parameter plug-in Bayes 95%-H.P.D.-region

one-factor �1 + �1 {0.041 {0.041 {0.052 {0.029

�1 � �1 0.938 0.936 0.880 0.990

two-factor �1 + �1 {0.202 {0.203 {0.226 {0.183

�1 � �1 0.315 0.282 0.245 0.319

�2 + �2 {0.250 {0.190 {0.273 {0.114

�2 � �2 2.112 2.236 2.057 2.413

three-factor �1 + �1 {0.198 {0.549 {0.574 {0.521

�1 � �1 0.212 0.127 0.105 0.149

�2 + �2 0.221 {0.189 {0.233 {0.136

�2 � �2 1.102 0.513 0.397 0.666

�3 + �3 {1.670 4.789 4.161 5.461

�3 � �3 10.043 14.171 12.825 15.637

plug-in . . . (approximate) estimator obtained from the QML estimator

Bayes ... (exact) posterior mean estimated by the the mean of the

transformed MCMC sample

95%-H.P.D.-region ... estimated by the smallest interval containing 95% of the

transformed MCMC sample

Table 4: Comparing QML and Bayesian estimation of transformedmodel parameters

model factor �̂B;j �̂ML;j �̂B;j

one-factor j = 1 12.182 12.184 3.679

two-factor j = 1 4.297 4.634 2.378

j = 2 1.021 0.896 0.725

three-factor j = 1 1.480 4.076 1.948

j = 2 0.448 1.250 0.312

j = 3 1.253 0.066 1.397

Table 5: Estimated parameters of the stationary distribution (degrees of freedom �̂

and scale parameter �̂) of factors for one-, two- and three-factor-models
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Figure 1: Assessing convergence for the second factor of the two-factor-model
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Figure 2: Assessing convergence for the second factor of the three-factor-model
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Figure 3: Marginal posterior densities and the QML estimator (vertical line)
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Figure 4: Marginal posterior densities and the QML estimator (vertical line)
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Figure 5: Comparing QML and Bayesian estimators of the factor loadings Bj(T )
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