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Delta hedging with stochastic volatility in discrete time

1 Introduction

Since the important contributions by Black and Scholes (1973) and Merton (1973) it is

well known that option prices are intimately related to the costs of hedging strategies. The

Black/Scholes (BS) option pricing model assumes that the option's payo� can be perfectly

duplicated or hedged by an continuously adjusted, self-�nancing portfolio strategy. The

necessary adjustments are based on the option's greeks: delta { the �rst derivative of the

option price with respect to the price of the underlying asset, and theta { the �rst derivative

with respect to time. To exclude arbitrage opportunities the option price must equal the

costs necessary to run the duplication strategy. The strategy costs can be calculated as

the present value of the accumulated costs until maturity. Since the costs are the same on

each possible price path, the present value can be computed by using the risk free rate.

The BS option pricing formula and the related portfolio strategy are based on several

assumptions: The underlying of the option is an instantaneously traded and storable

asset. Its price follows a geometric Brownian Motion with a constant di�usion. There are

no market imperfections such as taxes or transaction costs. The interest rate does not

change at di�erent points in time and for di�erent time horizons, i.e., the term structure

is 
at and constant over time.

The purpose of the present paper is to investigate the consequences of relaxing the as-

sumption of a constant di�usion. Substantial empirical evidence collected in recent years

indicates that the temporal behaviour of the variance of stock (or stock index) returns

can be conveniently described by generalized autoregressive conditional heteroskedasticity

(GARCH) models (see Bollerslev et al., 1992). Duan (1995) has investigated the e�ect on

option pricing when the empirically observed GARCH variance structure is used (GARCH

economy) instead of the constant di�usion assumption (BS economy). He proposed a local

risk-neutral valuation (LRNV) principle to price options under the GARCH assumption.

Our objective is to derive the costs of delta hedging strategies when the variance of the

underlying asset returns follows a GARCH process.

In a BS economy the costs of a delta hedging strategy correspond to the option's price

calculated from the BS formula. In a GARCH economy it is not straightforward to im-

plement a delta hedge, and it is not clear whether the (average) hedging costs coincide

with the price obtained by, for instance, Duan's LRNV approach. It is the purpose of this

paper to investigate these issues.
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2 Delta Hedging Costs in the Black/Scholes Economy

In this section simulation results for a delta hedging strategy are derived for a BS { or

constant variance { economy. The BS economy serves as a benchmark for the GARCH

economy, which will be investigated in the next section. We generate 20000 daily return

series yt with standard deviation � and mean �0:5�2:

yt = �0:5�2 + �t �t � N(0; �2):

Prices of the underlying are computed from St = St�1 expfytg (S0 = 100). On each price

path the delta hedging strategy is pursued using deltas from the BS call price formula.

Thus, on each day until maturity the stock position held in the delta hedging portfolio is

given by

�BS
t =

@Ct

@St
= N(dt) dt =

ln(St=X) + (r+ 0:5�2)(T � t)

�
p
T � t

: (1)

�BS
t depends only on constant parameters (strike X , risk free interest rate r, variance �2

and maturity T ) and the current price of the underlying St. In the GARCH economy this

convenient fact { as will be seen later { is no longer valid.

In continuous time, where adjustments happen instantaneously, the present value of the

accumulated costs (a constant amount on all paths) must equal the option price to exclude

arbitrage. In the present case the adjustments are solely based on the call's delta and

they are made at discrete time instants and for discrete price changes, which introduces

(time and price) discretization errors (see Boyle and Emanuel (1980), Leland (1985) and

Figlewski (1989) for the e�ects associated with discrete replication). These errors yield

di�erent accumulated delta hedging costs along each simulated price path giving a cost

distribution rather than a constant cost amount. The present value of the accumulated

costs is calculated as the average of costs across paths discounted by the risk free rate,

which is { for simplicity { assumed to be zero.

Table 1 shows the results of a simulated delta hedging strategy for three di�erent call

maturities (30, 60 and 90 days) and di�erent moneyness-ratios (S0=X), assuming �
2 =

0:32=250. The length of the rebalancing interval is one day. The distribution of the costs

is summarized in terms of the mean and standard deviation of 20000 simulated values of

hedging costs. As expected, the average hedging costs closely correspond to the prices

resulting from the analytical BS call price formula. The deviations from this average can

be substantial, however, because of discretization errors.

3 Delta Hedging Costs in the GARCH Economy

In this section the consequences of using stochastic GARCH instead of constant variances

on delta hedging costs are investigated. For this purpose we use the GARCH option
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Table 1: Results for delta hedging in a discrete time Black/Scholes economy.

BS properties of

option delta hedging costs

S0=X T price average std.dev.

30 0.0658 0.0678 0.1898

0.8 60 0.4609 0.4617 0.3782

90 1.0373 1.0385 0.4815

30 0.8881 0.8884 0.5023

0.9 60 2.1476 2.1486 0.5953

90 3.2702 3.2690 0.6313

30 4.1441 4.1441 0.6550

1.0 60 5.8580 5.8539 0.6418

90 7.1713 7.1662 0.6476

30 10.0544 10.0529 0.4634

1.1 60 11.2703 11.2693 0.5334

90 12.3252 12.3239 0.5624

30 16.8183 16.8196 0.2208

1.2 60 17.3576 17.3581 0.3597

90 17.9989 17.9993 0.4212

pricing model proposed by Duan (1995). It is based on the following speci�cation for the

return process:

ln
St

St�1
= r + �

p
ht � 0:5ht + �t:

� is a risk aversion parameter. The disturbances �t are assumed to be conditionally

normally distributed:

�tj�t�1 � N(0; ht):

�t denotes the information set at time t and ht is the conditional variance that follows a

GARCH(p; q) model:

ht = a0 +
pX

i=1

ai�
2
t�i +

qX
i=1

biht�i: (2)

The unconditional variance implied by the GARCH parameters is given by:

�
2 =

a0

1�
pX

i=1

ai �
qX

i=1

bi

: (3)

If all GARCH parameters ai, (i = 1; : : : ; p), bi, (i = 1; : : : ; q) are equal to zero the

stochastic return model is identical to the BS model where the conditional variance is

a constant and equal to the unconditional variance (i.e., ht = a0 = �
2) and the mean

return is r + �� � 0:5�2 rather than �0:5�2.
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3.1 Option Pricing in the GARCH Economy

To derive the delta in the GARCH economy as the derivative of the option price with

respect to the price of the underlying, one �rst needs to know the option price. Duan

(1995) shows that the local risk-neutral valuation (LRNV) principle implies the following

return process:

ln
S
�

t

S
�

t�1

= r � 0:5h�t + �
�

t :

�
�

t j�t�1 � N(0; h�t ) and the modi�ed conditional variance is given by

h
�

t = a0 +

pX
i=1

ai

�
�
�

t�i � �

q
h
�

t�i

�2
+

qX
i=1

b1h
�

t�i:

The unconditional variance is given by:

(��)2 =
a0

1� (1 + �
2)

pX
i=1

ai �
qX

i=1

bi

and the corresponding terminal asset price is:

S
�

T = S
�

t exp

8<
:(T � t)r � 0:5

TX
k=t+1

h
�

k +
TX

k=t+1

�
�

k

9=
; :

Based on this asset price the GARCH call option price can be calculated from

C
G
t = expf�(T � t)rgE[max(S�T �X; 0)j�t]

There exists no analytical solution forCG
t because the conditional distribution of S�

T
cannot

be analytically derived. However the GARCH option price can be calculated numerically.

We use a GARCH(1,1)model with parameter values a0 = 2:88E{5, a1 = 0:32 and b1 = 0:60

which are comparable to estimates known from empirical studies and imply a volatility of

30% in annual terms. This is equal to the value used in the BS economy in the previous

section. In order to analyse the e�ect of the parameter � we simulate two di�erent GARCH

economies based on � = 0:0 and on � = 0:4. The �rst value implies risk-neutrality, the

second value is close to the upper bound j�j <
p
(1� a1 � b1)=a1 (see Duan, 1995).

In order to compare the delta hedging costs to the GARCH option prices obtained by

LRNV we use the empirical martingale simulation (see Duan and Simonato, 1998). The

resulting option prices for � = 0:0 and � = 0:4 are presented in Table 2 together with the

prices given by the BS formula. The di�erences between option prices in the BS and the

GARCH economy can be explained on the basis of the di�erences between the lognormal

distribution of the BS economy and the fat-tailed density implied by GARCH returns (see

Duan (1995) for a discussion of the di�erences in prices).
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Table 2: Option pricing in a GARCH economy; T = 30.
BS GARCH option price

S0=X formula � = 0:0 � = 0:4

0.8 0.0658 0.1873 0.2180

0.9 0.8881 0.8378 1.0549

1.0 4.1441 3.7505 4.5278

1.1 10.0544 9.9648 10.8168

1.2 16.8183 16.9067 17.4907

3.2 Delta Hedging Strategies in the GARCH Economy

In a discrete time BS economy di�erent hedging costs are obtained for each possible price

path. On average, however, the calculated hedging costs correspond to the price from the

BS formula (see Table 1). We therefore investigate whether (average) hedging costs in

a GARCH economy correspond to the GARCH option prices as derived from the LRNV

principle.

For the implementation of a delta hedging strategy in the GARCH economy two aspects

are important: First, di�erent price paths are characterized by di�erent realisations of

the variance process. Second, GARCH implies a shape of the multiperiod density that

deviates from normality. Therefore a di�erent hedge ratio than in the BS economy is

required.

The delta that corresponds to the GARCH option pricing model is given by (see Duan,

1995):

�G
t = expf�(T � t)rgE

�
S
�

T

S
�

t

I(S�T ; X)j�t
�

(4)

I(S�T ; X) =

(
1 if S�T � X

0 if S�T < X
:

Contrary to the BS economy, no closed form solution for the delta is available in the

GARCH economy. �G
t depends on the stochastic evolution of the transformed price pro-

cess S�. To calculate the delta along each path requires keeping track (1) of the process

S representing the actual price development in the risk-averse economy over time, and at

the same time keeping track (2) of the risk-neutralized process S�.

Since there exists no analytical solution for �G
t it is necessary to compute the GARCH

delta numerically, i.e., by simulation. This requires a considerable amount of computations

since on each path of the hedging simulation and at each time point the distribution of

S
�

t at maturity has to be simulated in order to calculate the GARCH delta from (4). The

distribution of S�
T
depends on the time to maturity as well as on the current level of the

conditional GARCH variance. To reduce the computational requirements we investigate

three cases: the use of (i) a constant variance, (ii) a GARCH variance forecast, and (iii)

an approximation of �G
t . The following three di�erent hedging strategies can be derived:
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In the constant variance case (i) we calculate the delta from the BS formula by { incorrectly

but consciously { assuming a constant variance until maturity on each path and each time

instance. The constant variance is the unconditional variance implied by the GARCH

parameters (see equation 3). On each of the 20000 simulated paths we calculate �BS
t

based on equation (1) and hold the corresponding position in the stock.

In the second case (ii) we maintain to calculate the delta from the BS formula. However,

we modify equation (1) and replace �
2(T � t) by the variance forecast for the time until

maturity:

TX
k=t+1

E [hkj�t] :

To compute this sum we use the current (time t) values of ht and �t, plug them into

equation (2), and calculate hk iteratively for k = t + 1; : : : ; T with E[�2k j�t] = hk . Note

that the sum is di�erent on each path for each time instant. This takes into account the

conditional nature of the variance implied by the GARCH model. However, the fact that

the multiperiod return distribution implied by GARCH is not accounted for. Nevertheless

we expect the distribution of hedging costs to be narrower than in the constant variance

strategy.

In the third case (iii) we derive a hedging strategy by approximating the GARCH delta on

the basis of a two-step procedure: In the �rst step we simulate GARCH deltas according

to Duan and Simonato (1998) for a range of di�erent parameter values that determine the

shape of S�T and consequently �G
t . These are the time to maturity T , the moneyness-ratio

St=X and the conditional variance ht which is expressed relative to the unconditional

variance. St=X is varied in the range of 0.5 to 5.0 in steps of 0.025 (from 0.725 to 1.475),

0.05 (from .05 to 0.7 and 1.5 to 3.0) and 0.1 (from 3.1 to 5.0).
p
ht=� is varied from 0.3

to 3.0 in steps of 0.1. We simulate GARCH deltas for this grid of parameters for every

maturity in the range of T = 1 to T = 30 using � = 0:0 and the GARCH parameters

estimated from returns. We repeat this procedure for � = 0:4.

In order to calculate GARCH deltas in the hedging simulations for every possible value

of St=X and
p
ht=� in the second step we �t the nonlinear function f(x; �) = (1 +

expf�x�g)�1 by least-squares to the simulated GARCH deltas from the �rst step. x

denotes a vector of 'explanatory variables' that consists of a constant term, St=X ,
p
ht=�,

and square-roots, squares and cross-products of these variables. The parameter vector

� of this function is determined for every T and the two cases � = 0:0 and � = 0:4.

As it turns out the nonlinear least-squares �tting procedure provides highly accurate

approximations to the simulated GARCH deltas. Although this procedure reduces the

amount of computations in the course of hedging simulations it still involves rather heavy

preparatory computations. We have therefore restricted the analysis to considering only

the maturity T = 30.

For obvious reasons the three hedging strategies will be termed as follows: (i) constant

variance strategy, (ii) conditional variance strategy, and (iii) approximate delta strategy.
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Table 3: Hedging costs in a GARCH economy; � = 0:0, T = 30.
GARCH properties of

option delta hedging costs

strategy S0=X price average std.dev.

constant 0.1923 1.3481

conditional 0.8 0.1873 0.1897 1.1107

approximate delta 0.1907 1.2194

constant 0.8382 1.8912

conditional 0.9 0.8378 0.8388 1.6308

approximate delta 0.8394 1.7533

constant 3.7436 2.1245

conditional 1.0 3.7505 3.7435 1.9399

approximate delta 3.7465 2.0515

constant 9.9567 1.7038

conditional 1.1 9.9648 9.9577 1.4586

approximate delta 9.9590 1.5959

constant 16.9118 1.2527

conditional 1.2 16.9067 16.9065 0.9706

approximate delta 16.9090 1.1203

3.3 Delta Hedging Results and Interpretation

The numerical results presented in this section are based on the same 20000 series of

standard normal random numbers �t used in the BS economy. The return series are not

identical, however, because of the di�erent assumptions about the process. In order to

eliminate e�ects from the initial level of conditional variances at t = 0 we have started to

simulate the return process paths at time t = �20. Hedging activities started at t = 0.

We �rst consider the case � = 0:0 in Table 3 and �nd that there are hardly any di�erences

between the average costs implied by the three di�erent delta hedges. Deltas based on the

conditional GARCH variance forecasts yield a narrower spread of hedging costs than the

other deltas if the moneyness-ratio is less than 1.0. For in-the-money calls the approximate

GARCH delta provide the smallest spread. However, we �nd a discrepancy between the

average hedging costs (from any strategy) and the GARCH option prices implied by LRNV,

in particular for out-of-the-money calls. The bias is surprisingly small, however, given that

the constant and conditional delta hedging strategy is based on using the (inappropriate)

deltas from the BS formula. This result suggests that the BS deltas may be quite useful

for hedging options even if returns follow a GARCH process.

The picture changes strongly if we consider the case of � = 0:4 (see Table 4). The

average hedging costs from the three strategies di�er considerably. Moreover, other than

for � = 0:0, average hedging costs and GARCH option prices deviate strongly for out-

of-the-money calls. We �nd { without presenting details { that these deviations increase

with �. We obtain similar results for other choices of the GARCH parameters a1 and b1.

Several attempts to obtain 'better' approximations of the GARCH deltas did not change

these results. Large discrepancies between costs and prices prevailed, for instance, when

the simulated grid of GARCH deltas was re�ned and/or was approximated by neural nets.
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Table 4: Hedging costs in a GARCH economy; � = 0:4, T = 30.
GARCH properties of

option delta hedging costs

strategy S0=X price average std.dev.

constant 0.3039 2.2876

conditional 0.8 0.2180 0.2877 1.8204

approximate delta 0.3065 2.0417

constant 0.8065 2.3040

conditional 0.9 1.0549 0.9113 2.1103

approximate delta 0.6852 2.1512

constant 4.1406 1.7392

conditional 1.0 4.5278 4.1119 1.8372

approximate delta 3.7509 1.7539

constant 10.1150 1.1029

conditional 1.1 10.8168 10.1514 1.2603

approximate delta 10.1056 1.1156

constant 16.8608 0.6786

conditional 1.2 17.4907 16.9336 0.8385

approximate delta 16.9956 0.6973

The results do not seem to depend on the simulation design as some experiments with

more or less simulated paths and di�erent random samples show.

4 Summary

The purpose of this study was to investigate issues involved in delta based hedging in

discrete time, if the underlying returns follow a GARCH process. The results can be

summarized as follows: Hedging strategies based on simple approximate deltas can yield

average hedging costs that are close to option prices implied by Duan's (1995) GARCH

option pricing model. The strategies mainly di�er with respect to the variance of hedging

costs across the possible time paths. However, if the GARCH return process underlying

Duan's pricing model is based on a value of the risk parameter � di�erent from zero, we

�nd strong discrepancies between prices and average hedging costs, in particular for far

out-of-the-money calls.

This raises the question whether the local risk-neutral valuation principle is not generally

applicable, or the approximate deltas used in this study are inappropriate. At this point

it is unclear what the reasons for the discrepancies between prices and average hedging

costs are. Several attempts to improve the delta approximations did not succeed. The

derivation of other hedging strategies { not only based on the option's delta { are left for

further research. For � > 0 we conclude that GARCH option prices for out-of-the-money

calls may be a biased reference for average hedging cost obtained by discrete time delta

strategies.
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