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p.426: independently pooled cross sections:

• corresponds to independent samples

• increases the precision of estimates

• cross sections are not identically distributed

p.426: panel data set:

• corresponds to paired samples

• cross sections are not identically distributed

• accommodate unobserved or omitted regressors

p.428: F -test for m restrictions and K regressors (incl. a constant):

F =
(n−K)(R2

u −R2
r)

m(1−R2
u)

∼ F (m,n−K)

R2
r . . .R2 of the restricted model, R2

u . . .R2 of the unrestricted model

F =
(n−K)(SSEr − SSEu)

mSSEu
∼ F (m,n−K)

SSEr . . . sum of squared errors from the restricted model,
SSEu . . . sum of squared errors from the unrestricted model

p.428: 0.128 · 4=0.512 (4 . . . high school takes four years longer than college)



p.428: turning point of the quadratic:

y = 0.532x− 0.0058x2

∂y

∂x
= 0.532− 0.0058 · 2 · x = 0 =⇒ x =

0.532

0.0058 · 2
≈ 46

p.431: 27.2% is the more accurate estimate:

∆ ln wage = −0.317∆x =⇒ ln wage1 − ln wage0 = −0.317 · 1

wage1 = wage0 exp{−0.317} = wage0 · 0.728 1− 0.728 = 0.272

p.438: unobserved factors affecting the dependent variable:

• basic model: yit = β0 + β1xit + ai + uit

ai . . . unobserved or fixed effect (is responsible for unobserved heterogeneity)

• Which problem is associated with the existence of ai? If ai and xit are corre-
lated, all estimates are biased and inconsistent (omitted variable bias)

p.439: yit = β0 + δ0d2t + β1xit + vit vit = ai + uit

estimates are unbiased and consistent only if vit and xit are uncorrelated

p.439: Question 13.3: Show that Cov(vi1, vi2)=Var(ai):

vi1 = ai + ui1 vi2 = ai + ui2

assumptions: E[ai] = 0, E[ui1] = 0, E[ui2] = 0, Cov(ui1, ui2) = 0

Cov(ai, ui1) = 0, Cov(ai, ui2) = 0

Cov(vi1, vi2) = E[(ai + ui1)(ai + ui2)] =

= E[a2i + aiui1 + aiui2 + ui1ui2] = E[a2i ] = Var[ai]

This fact will become relevant in the context of the random effects model (see com-
ment related to p.470).

p.440: standard errors in this equation are incorrect: standard errors are computed under
the assumption of no serial correlation

p.440: main reason to collect panel data: using a single cross section creates an omitted
variable problem

p.440: first-differenced equation ∆yit = β1∆xit + ∆uit: β1 does not change by taking
differences! β0 in the original equation gets lost.
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p.441: ∆xi must have some variation across i: if the variance of ∆xi is low the standard
error of its coefficient will be high. This is true for the regressor educ in Example
13.5. If ∆xi has zero variance it must be eliminated. This problem occurs when
estimating equation (13.19) since only two years are considered.

p.441: The only other assumption: it should be added that ∆ui in (13.17) must not be
autocorrelated. In case of only two periods (as here) this condition is fulfilled by
construction. In case of more than two periods this property must be fulfilled and
checked (see second paragraph on p.449: When using more than two time periods,
we must assume that ∆uit is uncorrelated over time for the usual standard errors
and test statistics to be valid).

p.441: the coefficient 15.40 in equation (13.18) corresponds to the coefficient of the dummy
d87 in equation (13.16) (see comment on p.467).

p.445: the results in section 13.4 are based on using the years 1987 and 1988 only!

S.448: We can also appeal to asymptotic results: this refers to the consistency property
if ut and regressors are uncorrelated (which is weaker than the assumption of strong
exogeneity).

p.448: Therefore (13.30) does not contain an intercept: taking differences of the dummies
d2 and d3 in equation (13.28) results in

t c d2 d3 ∆d2 ∆d3
1 1 0 0 . .
2 1 1 0 1 0
3 1 0 1 –1 1
1 1 0 0 . .
2 1 1 0 1 0
3 1 0 1 –1 1

There exist linear combinations of ∆d2 and ∆d3 which are identical to c; e.g. (1 +
∆d2)/2+∆d3; thus, only two of the three variables c, ∆d2 and ∆d3 can be used.

Estimating equation (13.30) – without intercept – results in (p-values in parenthesis)

̂DLOG(SCRAP) = −0.13975
(0.1044)

D(D88)− 0.42688
(0.0003)

D(D89)− 0.0831
(0.368)

D(GRANT).

Adding an intercept results in the EViews error message Near singular matrix, which
indicates the identity of the linear combination of ∆d2 and ∆d3, and c. Removing
the dummy D88 from (13.30) and using an intercept instead results in (p-values in
parenthesis)

̂DLOG(SCRAP) = −0.13975
(0.1044)

− 0.14737
(0.2275)

D(D89)− 0.0831
(0.368)

D(GRANT).
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When comparing the coefficients of the dummy variables it must be taken into ac-
count that D(D88) equals +1 in 1988 and −1 in 1989! Thus, the constant on the right
hand side of the first equation in 1989 is: +0.13975−0.42688=−0.2871. This corre-
sponds exactly to the constant in 1989 from the second equation: −0.13975−0.14737=
−0.2871.

p.449: The correlation between ∆uit and ∆ui,t+1 can be shown to be –.5:

yt = ut − ut−1 E[ut] = 0 E[utut−1] = 0 (ut is not autocorrelated)

autocovariance of yt: γ1 = E[ytyt−1] = E[(ut − ut−1)(ut−1 − ut−2)]

γ1 = E[(utut−1 − utut−1 − u2t−1 + ut−1ut−2)]

= E[utut−1]− E[utut−1]− E[u2t−1] + E[ut−1ut−2] = −E[u2t−1] = −V[ut]

autocorrelation of yt: ρ1 =
γ1

V[yt]
=

−V[ut]

V[ut] + V[ut−1]
= −0.5

p.449: random walk: yt is a random walk if yt−yt−1 is not autocorrelated.

p.449: feasible GLS or Prais-Winsten vs. Cochrane-Orcutt: these approaches correct for
the autocorrelation of errors. The observed variables (y and x) are transformed on
the basis of ρ1 as follows: y∗t =yt−ρ1yt−1 (similarly for xt). Using Cochrane-Orcutt
the first observation gets lost. Prais-Winsten overcomes this problem.

p.452: the police variable might be endogenous and this additional form of endogeneity :
In this example it is argued that the regressor polpc depends on the expected but
unobservable crime rate. Thus, the expected crime rate is part of the error term. If
the regressor polpc depends on this variable, the error term and the regressor are
correlated (which violates the exogeneity assumption).

p.463: Table 14.1: note that the results in this table are based on the fact that grant 1 is
assumed 0 in 1987. As a matter of fact grant 1 should be coded as ’NA’ in the first
year of each cross section.

p.464: The R-squared given in Table 14.1 is based on the within transformation: Note
that there is major difference between the R2 from using dummy variables to account
for fixed effects or using the demeaned variables (within transformation). Using a
dummy variable for each cross section usually produces a rather high R2 (see p.466).
If different orders of magnitude of yit in each cross section are the main source
of variance in the dependent variable, this will be captured by the cross section
dummies (many degrees of freedom). This source of variance is eliminated when
using demeaned variables, and R2 measures ”the amount of time variation . . . that
is explained by the time variation in the explanatory variables”.
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p.464: time-constant variables cannot be included: a disadvantage of FD and FE is that
variables which are constant over time or change deterministically over time (e.g. a
linear time trend) cannot be used. Interactions with dummies are possible, however.

Differencing interaction terms: suppose the original equation is

yt = c+ b1D + b2xt + b3D · xt + e

(e.g. D is a dummy distinguishing two groups). This implies

D = 0 : yt = c+ b2xt
D = 1 : yt = (c+ b1) + (b2 + b3)xt

Taking differences correctly means that the variable zt=D·xt must be differenced:

∆yt = b2∆xt + b3∆zt + ∆e.

In other words, D and xt must not be differenced separately and multiplied after-
wards (D would be the same in each cross section and ∆D would be zero). The first
differences are given by

D = 0 : ∆yt = b2∆xt
D = 1 : ∆yt = (b2 + b3)∆xt.

Thus, in the FD model b3 is the additional slope with respect to xt in the second
group.

p.466 The R-squared from the dummy variable regression is usually rather high: see
comment on p.464.

p.466 Some econometrics packages . . . report an ”intercept”: In fact, the constant 75.4
should not (cannot) be part of a FE model. However, ”EViews automatically in-
cludes a constant term so that the fixed effects estimates sum to zero and should be
interpreted as deviations from an overall mean (EViews Users Guide p.837).”

p.467: when T = 2, the FE and FD estimates and all test statistics are identical: This
statement must be made more precise. For example, estimating equation (13.18) as
a FE model results in (p-values in parenthesis)

ˆcrmrte = 100.935
(0.000)

− 0.018
(0.976)

unem.

Adding the dummy d87 results in

ˆcrmrte = 75.4
(0.000)

+ 15.4
(0.002)

d87 + 2.22
(0.015)

unem,

which agrees with (13.18). The coefficient 15.4 corresponds to the constant in equa-
tion (13.18).
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distinguishing between FD and FE:

• if uit is (strongly) autocorrelated: FD

• if uit is not autocorrelated: FE

• p.467: It is difficult to test whether the uit are serially uncorrelated after FE
estimation: Note that the estimated residuals from the FE regression

..
uit are

not equal to the ”true” residuals uit which are the object of this assumption.
indirect test for autocorrelation:

1. estimated FD model

2. check ∆uit for autocorrelation

– if ∆uit is not autocorrelated: FD

– If ∆uit is negatively autocorrelated: FE
p.467: If there is substantial negative serial correlation in the ∆uit:
if uit is not autocorrelated, taking differences makes ∆uit negatively
autocorrelated (see comment on p.449).

• Alternative: FE and AR(1) correction

p.469 (line 3): sample section problem −→ sample selection problem

p.469 ai is uncorrelated with each explanatory variable: the random effects (RE) model
should be chosen if ai and xit are uncorrelated, since FD and FE are inefficient in
this case.

p.470: there is no need for panel data at all: this is a preliminary implication of
corr[ai, xit]=0.

p.470: But it ignores a key feature of the model: if the RE assumption holds (ai and
xit are uncorrelated) the errors vit must be positively autocorrelated! For a proof of
the positive correlation between vit and vis see the comment on p.439. This positive
autocorrelation requires GLS estimation.

p.471: the whole reason for using panel data: if panel data is used to account for unob-
served heterogeneity (i.e. it is assumed that there are fixed effects – see comment on
p.438), a RE model is most likely not the first choice.

p.472: exper is dropped in the FE analysis (but exper2 remains): the reason why exper
has to be dropped is given in the next sentence: because the regression also contains
a full set of year dummies. Since exper increases every year by a constant amount
(ein Jahr), this variable is perfectly correlated with the year dummies.

p.473: The estimate of λ for the random effects estimation: λ̂=0.643 can be obtained in
EViews from the estimated RE model using equation (14.10), and substituting σu by
the value 0.350990 from the line Idiosyncratic random and σa by the value 0.324603
from the line Cross-section random. Using the results from Example 14.4 one obtains

1− [0.350992/(0.350992 + 8 · 0.3246032)]1/2 = 0.643,

where T=8 (the number of years in each cross section).
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p.473: RE or FE?

1. relevant assumption/fact: ai and xit are uncorrelated

2. if ai and xit are correlated RE is inconsistent

Summary:

yit = β0 + β1xit + ai + uit

yit = β0 + β1xit + vit

1. FD: ∆yit = β1∆xit + ∆uit

2. FE: (yit − ȳi) = β1(xit − x̄i) + (vit − v̄i)

3. RE: (yit − λȳi) = β0(1− λ) + β1(xit − λx̄i) + (vit − λv̄i)

If unobserved effects ai are

1. correlated with regressors xit: FD or FE

2. uncorrelated with regressors xit: RE

If residuals uit are

1. (strongly) autocorrelated: FD or FE with AR-correction

2. not autocorrelated: FE

Hausman-test to distinguish between FE and RE: H0: corr[ai, xi,t]=0
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