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Abstract

A cointegration analysis on a triangle of high frequency exchange rates is presented.

Market eÆciency requires the triangle to be cointegrated and the cointegration

term to be a martingale di�erence sequence. We �nd empirical evidence against

market eÆciency for very short time horizons: The cointegration term does not

behave like a martingale di�erence sequence. In an out-of-sample forecasting study

the cointegrated vector autoregressive (VAR) model is found to be superior to the

naive martingale. Finally, a simple trading strategy shows that the VAR also has

a signi�cant forecast value in economic terms even after accounting for transaction

costs.
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1 Introduction

The development of cointegration theory has motivated a large number of em-

pirical studies investigating the eÆciency of foreign currency exchange (FX)

markets. Two major lines of research can be discerned. One investigates the

relationship between spot and forward exchange rates which are required to
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be cointegrated as a necessary condition for the unbiasedness of market expec-

tations. The second line examines the relations across di�erent currency mar-

kets. According to this perspective eÆciency implies that no FX rate should

be cointegrated with any linear combination of other rates against which it


oats freely. If cointegration holds there are long-run relationships among FX

rates which tend to eliminate any deviations from equilibrium. Whereas coin-

tegration implies that such deviations are useful in predicting future FX rates,

in an eÆcient market nothing should be useful for prediction; in other words,

FX rates should evolve as a vector martingale.

The conclusions obtained from empirical cointegration tests using (mainly)

daily data are highly controversial, however. Whereas Baillie and Bollerslev

(1989, 1994) have argued that FX main rates are cointegrated, Copeland

(1991), Diebold et al. (1994), and Sephton and Larsen (1991) found that the

evidence for cointegration is much less strong. The purpose of this paper is

to provide new empirical evidence on the issue of FX market eÆciency us-

ing high-frequency data. However, it is not merely the nature of the data,

but an implication of cointegration, so far largely ignored, that motivates our

analysis.

Any de�nition of market eÆciency is based, in some way or another, on the

notion that asset prices fully re
ect relevant information. However, in prac-

tical terms, it is necessary to allow for some time to elapse such that new

information can be processed by the market and be incorporated into prices.

The availability of high-frequency data o�ers new perspectives for market eÆ-

ciency tests. It allows to focus on a property implied by market eÆciency that

cannot or can hardly be accounted for using, e.g., daily data.

We make use of the so-called triangular identity, stating that the ratio of two

FX rates, called the main rates, must be equal to the cross rate. In other

words, direct trading of the cross rate should be equivalent to carrying out

the trade through the main rates. For daily data this condition is almost the

de�nition by which the cross rate is calculated from the main rates. This re-

lationship forces the three FX rates to be cointegrated, provided that each

rate is integrated. However, looking at higher frequencies, the triangular iden-

tity does not continuously hold. A necessary condition for cointegration is the

stationarity of the residuals of the cointegration regression (the so-called coin-

tegration term). Market eÆciency, however, requires the cointegration term to

be a martingale di�erence sequence! Viewed from this perspective, a new and

stronger (yet not suÆcient) condition for market eÆciency can be derived:

The cointegration term must not have any discernible structure in the sense

of a martingale di�erence, otherwise information is not fully and immediately

re
ected in the rates.

This setup has considerable advantages over eÆciency tests based on low-
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frequency data. As Hakkio and Rush (1991) note, long spans of data rather

than a large number of observations are required to give tests for cointegration

much power. In addition, Diebold et al. (1994) remark that cointegration tests

are sensitive to the assumption regarding the presence of a drift in the data.

As we will show below, tests of cointegration on a FX rate triangle are not

a�ected by these issues. EÆciency tests can be based on the properties of the

cointegration term, which are largely una�ected by the length of the available

time span and the drift assumption.

Focusing on a FX triangle the situation in an eÆcient market can be summa-

rized as follows:

� There exists exactly one cointegration relation within a FX rate triangle.

� The cointegration term behaves like a martingale di�erence sequence.

� It is not possible to develop a model with predictive performance signi�-

cantly better than a naive martingale.

Thus, an obvious way to reject market eÆciency is to develop a FX rate model

with predictive performance signi�cantly better than a naive martingale. Jong

et al. (1995) found that the cross rate has predictive power for the main

rates and vice versa. Furthermore, Bolland and Connor (1995) report arbitrage

opportunities investigating a FX rate triangle.

Our analysis is based on the high frequency FX rate triangle USD-DEM, USD-

JPY, and DEM-JPY. In order to take the e�ects of seasonal volatility into

account, we apply a deseasonalization procedure similar to the method pro-

posed by Dacorogna et al. (1993). In particular, we apply a volatility based

time scale to the price generating process. Based on the work of Johansen

(1991) we, thereafter, estimate a vector autoregressive (VAR) model and an-

alyze the resulting cointegration term. We compare the out-of-sample fore-

casting performance of the VAR model to that of a martingale. Finally, the

economic value of the VAR forecasts is evaluated in terms of two trading

strategies.

In the next section we introduce high frequency FX rates and brie
y summa-

rize the deseasonalization procedure and its e�ects. The results of the VAR

analysis appear in Section 3. In Section 4 we outline the experimental design

and present the results of the forecasting and trading experiments. Section 5

o�ers a summary and conclusions.
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2 High Frequency Exchange Rates

2.1 Data

The basic data for this study are the exchange rate quotes for USD-DEM,

USD-JPY, and the cross rate DEM-JPY. The data set covers the period from

October 1, 1992 to September 30, 1993 on a tick-by-tick basis and contains

1,472,241 (USD-DEM), 570,813 (USD-JPY), and 158,978 (DEM-JPY) data

records. Each record consists of the time the record was collected, the bid and

ask price, the identi�cation of the reporting institution, and a validation 
ag.

To construct an equally spaced time series, we take the most recent valid price

record as a proxy for the current price record. The price values are computed

as the average of the log of bid and ask prices, the returns as the price changes

over some �xed time interval, and the volatility as the absolute values of the

returns. Note that the sampling frequency is arbitrary and strongly in
uences

the results. In order to keep the intra-daily character of the time series, but

not getting a bid-ask spread of the same order as the returns, we use one hour

time steps.

2.2 Time Scale

One of the major characteristics of high frequency data is the strong intra-

week and intra-day seasonal behavior of the volatility. This is shown, e.g., by

the autocorrelation function of the volatility for the USD-DEM rate in �gure

1.

A data generation process with strong seasonal distribution patterns cannot

be stationary. Therefore, controlling these seasonalities before �tting any time

series model should improve the overall model quality.

A very promising approach to �lter these seasonal patterns is to apply a new

time scale to the price generating process similar to the one suggested by

Dacorogna et al. (1993). In probability theory, this is formally equivalent to

subordinated process modelling of the observed process. In this model the

returns follow a subordinated process in physical time and are non-stationary.

However, they follow the stationary parent process in another time scale which

we call operational time scale.

The �rst step towards obtaining such a time scale is to cut the weekends. We

call this time scale business time. Unfortunately, this step does not remove all

seasonalities. Mainly the hour-of-the-day e�ect is still highly signi�cant. To
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Table 1

Augmented Dickey-Fuller test statistics with the 5% signi�cance levels for the ob-

servations 1 to 4387.

Single unit root a Second unit root b

USD-DEM USD-JPY DEM-JPY USD-DEM USD-JPY DEM-JPY �0:95

0.04 0.00 0.01 744.46 1037.23 819.64 1.95 c

1.23 0.02 0.44 744.91 1037.31 820.94 2.86 d

ano lagged di�erences
bone lagged di�erence
cwithout drift
dwith drift

control for the remaining seasonal patterns, we apply another time scale to

the business time scale which is computed by stretching highly volatile market

periods, whereas less volatile periods are shortened. A more detailed descrip-

tion of the computation of the operational time scale is given in Appendix

A. We sampled from the three series equally spaced in operational time with

a sampling frequency corresponding to one hour time intervals. When the

volatility in the market is high, these one hour time intervals in operational

time correspond to about 15 minutes in physical time. On average, however,

both time intervals have equal length.

The e�ect of changing the time scale can be seen in �gure 1. Although the

conditional heteroscedasticity is still present, most of the seasonal e�ects have

been removed. Since the results for the two other rates are very similar to

those of the USD-DEM rate, they are not reported here. It is important to

note that the change of time scale does not a�ect our conclusions: a fair game

cannot be made unfair by sampling it at certain stopping times, i.e., if the

FX rates are a vector martingale, then optional sampling cannot improve the

prediction quality over the martingale model. From this section onwards we

use the operational time scale.

3 Cointegration Analysis

To establish the order of integration of the time series, unit root tests are com-

puted. The results are reported in table 1. Based on the Augmented Dickey-

Fuller tests (e.g., Cromwell et al., 1994) all series are found to be I(1) which

is hardly surprising.

We then estimate a k'th order VAR for our system of three series by the

maximum likelihood procedure following Johansen (1991). The ordering of
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Table 2

Order selection using the AIC and FPE criteria.

VAR order (k)

1 2 3 4 5 6 7

AIC -42.353 -42.379 -42.387 -42.390� -42.388 -42.384 -42.383

FPE -41.352 -41.377 -41.385 -41.388� -41.386 -41.383 -41.381

�Minimum

the variables is (USD-DEM, USD-JPY, DEM-JPY). Allowing for linear trends

and for a varying number of independent unit roots the VAR system can be

written as

�X
t
=

k�1X
i=1

�
i
�X

t�i
+�X

t�k
+ �+ "

t
; (1)

where "
t
are NID(0;�) with the 3�3 covariance matrix �. Further param-

eters are the 3 � 1 vector �, the 3 � 3 matrices �
i
, and the 3 � 3 matrix �.

The rank of the latter is equal to the number of cointegrating vectors.

We select the lag length using the Akaike information and �nal prediction

error (AIC and FPE) criteria. Therefore, the unrestricted model (1) with

Rank(�) = 3 is estimated using the �rst half of the sample having 4387

observations. The results of order selection are presented in table 2. AIC and

FPE both yield an optimal lag length of k̂ = 4.

3.1 Cointegrating Vectors

The hypothesis that there are r independent cointegrating vectors, i.e., 0 <

Rank(�) = r < 3 can be expressed as

� = ��0; (2)

where � and � are 3 � r matrices. Furthermore, the hypothesis about the

absence of a linear trend in the process is expressed as

� = ��0
0
; (3)

or alternatively �0

?
� = 0, where �? is a 3� (3� r) matrix of vectors chosen

orthogonal to �. Then we can write

��0X
t�k

+ � = ���
0
X�

t�k
;

where �� = (�0;�0
0
)
0
and X�

t�k
= (X 0

t�k
; 1)

0
.

7



0.
35

0.
40

0.
45

0.
50

0.
55

U
S

D
−D

E
M

4.
65

4.
70

4.
75

4.
80

U
S

D
−J

P
Y

4.
1

4.
2

4.
3

4.
4

D
E

M
−J

P
Y

0 2000 4000 6000 8000

Fig. 2. The price series sampled equally spaced in operational time with a sampling

frequency corresponding to one hour time intervals for the period from October 1,

1992 to September 30, 1993.

Table 3

Trace and maximum eigenvalue test statistics for various values of r with the 5%

signi�cance levels.

trace �max

trace (0.95) �max (0.95)

r � 2 3.35 9.09 3.35 9.09

r � 1 14.01 20.17 10.66 15.75

r = 0 608.98 35.07 594.97 21.89

On the basis of the plots of the series (see �gure 2) a model without a lin-

ear trend, i.e., under hypothesis (3) was assumed. The results of the trace

and maximum eigenvalue test statistics are given in table 3 (cf. Johansen and

Juselius, 1990). The support for the existence of exactly one cointegrating

vector is strong. Moreover, assuming the absence of a linear trend is data con-
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Table 4

The estimated cointegrating vector c��0. normalized on USD-DEM.

USD-DEM USD-JPY DEM-JPY Constant

1.000 -0.999 1.000 -0.005

sistent. The likelihood ratio test statistic is LR = 5:05 which is asymptotically

�2(2) and, thus, not signi�cant.

Table 4 presents the normalized estimate of ��. The cointegrating vector ��

can be interpreted as an error correction mechanism. According to our hypoth-

esis, all rates of the FX triangle should enter the error correction mechanism

with the same weight. Given the chosen normalization we consider the hy-

pothesis

�� = (1;�1; 1; 0)0 '; (4)

where ' is a real-valued parameter. The likelihood ratio test is given by LR =

6:89 which should be compared with the quantiles of the �2(3) distribution. It

is not signi�cant and, therefore, hypothesis (4) is accepted with '̂ = 2:612�103.

In the remainder of the paper hypotheses (1)-(4) with k̂ = 4 and r̂ = 1 are

maintained. The estimates of the other parameters are presented in Appendix

B.

3.2 Cointegration Term

Under the eÆcient market hypothesis the cointegration term should behave

like a martingale di�erence. In �gure 3 the autocorrelation function for the

cointegration term (1;�1; 1)X
t�k

is plotted.

While the process is apparently I(0), it is immediately clear that this process

is not uncorrelated. This implies that non-trivial forecasts of the FX rates are

possible which violates the eÆcient market hypothesis. The relatively rapid de-

cay of the autocorrelation coeÆcients indicates the purely intra-day character

of this phenomenon.

The average speed of adjustment towards equilibrium is determined by the

corresponding estimate of the adjustment parameters

�̂ = (�0:164; 1:764 � 10�4;�0:343)0:

The estimated coeÆcients indicate a much faster reaction for the DEM-JPY

cross rate and for the USD-DEM rate than for the USD-JPY rate. In other

words, arbitrage trades are typically not carried out using the USD-JPY rate.
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goal is to compare the VAR with the naive martingale, we only report the

relative performance of the VAR compared to the martingale. These accuracy

measures are, however, parametric in the sense that they rely on the desirable

properties of mean and variance. Therefore we also apply a distribution free

procedure. A measure having this desirable property is the percentage of fore-

casts in the right direction which will be called the direction quality (DQ). In

conjunction with the DQ the signal correlation (SC) between the forecasting

signal and the actual price signal is computed.

In order to avoid decisions based on point estimates of the forecast accuracy,

we test for the equality of two forecasts as proposed by Diebold and Mariano

(1995). We give a brief explanation of how this test works:

Consider two scalar forecasts producing the errors fe1t; e2tg; t = 1; : : : ; T .

The null hypothesis of the equality of the expected forecast performance is

E[g(e1t)] = E[g(e2t)], or E[g(d
t
)] = 0, where d

t
= g(e1t) � g(e2t) and g(�)

is some loss function. It is natural to base a test on the sample mean d =

T�1
P

T

t=1
d
t
of the loss-di�erential series. If the loss-di�erential series is weakly

stationary and short memory, we have the asymptotic result d
d

! N(�; �2),

where � = E[g(d
t
)], �2 = T�1

P
1

h=�1

(h), and 
(h) is the autocovariance

function of fd
t
g. The obvious test statistic for testing the null is then S = d=�̂,

where �̂ is a consistent estimator of �. We also computed a modi�ed version

of the above test as suggested by Harvey et al. (1997). As the results are very

similar they are not reported here.

Choosing g(�) as the square function or as the absolute value function results

in the MSPE or the MAPE, respectively. To evaluate the DQ we set e1t to one

if the forecast is in the right direction, and to zero otherwise. Zero changes

either of the forecast or of the actual price are omitted. The DQ of the VAR

is compared to a coin 
ip with probabilities 1=2 for each direction. Hence,

e2t = 0:5 and g(�) is chosen as the identity function. For the SC the forecast

errors are chosen as e1t = (�X
t

d�X
t
)=
qP

T

t=1
(�X

t
)2
P

T

t=1
(d�X

t
)2 and e2t = 0

for the benchmark of no signal correlation. �X
t
and d�X

t
are observed and

predicted returns, respectively.

To conclude, we note that these forecast measures are primarily of academic

interest. However, they neither provide necessary nor suÆcient conditions for

forecast value in economic terms, i.e., a pro�table trading strategy yielding

positive returns. To evaluate the forecast value in that sense we implement

two simple trading strategies based on the forecasts of the VAR model. The

�rst \trader" takes a long position if the forecast direction is up and a short

position otherwise. However, this trader is very busy and changes the trading

position frequently. Therefore, we implement a more realistic second strategy

which accounts for transaction costs. Since actual transaction costs are not

available we used the quoted bid-ask spreads for simplicity. The motivation is
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Table 5

Out-of-sample forecasting results of the VAR(4) for the observations 4388 to 8774.

The results are given in terms of the MSPE, the MAPE, the DQ, and the SC relative

to the benchmark model.

Forecast

FX horizon MSPE MAPE DQ SC

rate (hours) (�10�8) (�10�6) (�10�2) (�10�2)

USD-DEM 1 0.31 -2.15 3.03� 6.01�

2 -0.58 -4.96� 1.58y 2.91y

4 -3.58y -11.02� -0.24 0.10

8 -9.53� -17.89� -1.32 -1.22

USD-JPY 1 1.55y 6.22� 5.22� 8.51�

2 -0.60 2.92 4.13� 2.74

4 -2.25 -0.54 1.73� 0.50

8 -1.26 -1.90 1.08 1.25�

DEM-JPY 1 4.78� -0.79 5.88� 15.52�

2 6.40� 1.68� 3.80� 13.32�

4 5.55 1.26� 2.52y 9.06�

8 1.42� 8.59 1.38y 9.06�

�Signi�cant at the 5% level
ySigni�cant at the 10% level

to combine the VAR direction forecasts with a \technical" trading rule which

signi�cantly reduces the trading frequency. If the current position is neutral,

then the direction forecast is used to take a position. Now, the position is

held until a so called \stop-loss" rule is violated. In an add-hoc way we used

twice the transaction costs as a limit. If cumulative negative returns exceed

this limit the position is immediately cleared. Next, the direction forecast is

again used and so on. Transaction costs are subtracted from returns whenever

a position is changed. For this strategy, winning runs are unlimited. On the

other hand, long negative runs are not possible, since they are \stopped out".

4.2 Results

The results of the out-of-sample forecasting exercise are reported in table 5. For

the 1- and 2-hour horizons the message is clear: the forecasting performance

of the VAR is signi�cantly better than that of the martingale. With a few

exceptions, the VAR tends to outperform the martingale, and almost every

12



estimate is signi�cant. The most signi�cant results are those for the DQ and

SC. The percentage of forecasts in the right direction is between 53.1% for the

USD-DEM and 55.9% for the DEM-JPY for the 1-hour horizon. For the 2-

hour forecasts the DQ is between 51.6% (USD-DEM) and 54.1% (USD-JPY).

The corresponding SC varies from 6% to 15% (1-hour) and from 2.7% and

13.3% (2 hours). For the longer horizons the quality of the forecasts decreases

continuously. Nevertheless, the DQ for an 8-hour forecast of the cross-rate

DEM-JPY is 51.4%. Furthermore, the ranking of the rates from lower to higher

predictability is USD-DEM, USD-JPY, and DEM-JPY.

Concerning the MSPE and the MAPE, the results are not that clear. For

the shorter horizons there seems to be some predictability, whereas for the

longer horizons the martingale signi�cantly outperforms the VAR. We have

two explanations for this result: First, the underlying distributions all have

fat-tails. This means that the MSPE and the MAPE performances depend

very much on a few large observations, turning the results very unstable.

Second, the volatility, i.e., in our case either the MSPE or the MAPE loss

series, has long memory (e.g., Trapletti and Fischer, 1997). When making l-

step predictions the situation gets even worse. Thus, the asymptotics for the

sample mean could change dramatically as shown in Taqqu (1975). E.g., for

one of the MSPE loss series, we estimated the order of fractional integration as

0.22. Consequently, one should not over-interpret the results from the MSPE

and the MAPE signi�cance tests. Concerning the DQ and the SC the situation

is less critical since the magnitude of the forecasts is irrelevant.

The cumulative return of the �rst trading strategy without taking transaction

costs into account is shown in �gure 4. However, to achieve this return frequent

trading is necessary. Taking transaction costs into account yields a negative

overall return (not shown). The second trading strategy is more successful

as shown in �gure 5. Although we have not optimized the stop-loss rule in

any sense, the overall net-return is positive. Moreover, it is a well known fact

among of FX traders, that the actual transaction costs are much smaller than

the quoted bid-ask spreads. Therefore, our estimates of transaction costs can

be considered conservative estimates of the actual costs.

5 Conclusions

We have presented a cointegration analysis on the triangle (USD-DEM, USD-

JPY, DEM-JPY) of high frequency FX rates and studied the implications of

our empirical �ndings on market eÆciency. Theoretically, market eÆciency

requires the triangle to be cointegrated and the cointegration term to be a

martingale di�erence sequence. In this article we have found that:
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Fig. 4. Cumulative returns (ignoring transaction costs) of the �rst trading strategy

for the out-of-sample observations 4388 to 8774.

� The relationship within the exchange rate triangle is characterized by ex-

actly one cointegration relation. The cointegrating vector is unbiased in the

sense that each rate has the same weight and no systematic deviation from

equilibrium occurs.

� The residuals from the cointegration regression do not behave like a mar-

tingale di�erence sequence. However, the relatively rapid decay of the au-

tocorrelation coeÆcients indicates the purely intra-day character of this

phenomenon.

� The out-of-sample forecasting exercises and the improved performance test-

ing procedures reject the null hypothesis of a martingale process, at least for

short time horizons. On a 1-hour forecast horizon the percentage of forecasts

in the right direction was found to be between 53.1% for the USD-DEM and

55.9% for the DEM-JPY.

� A simple trading scheme shows that the VAR also has a signi�cant forecast

value in terms of a pro�table trading strategy yielding signi�cantly positive

returns even after transaction costs.
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Fig. 5. Cumulative net-returns of the second trading strategy for the out-of-sample

observations 4388 to 8774.

These results reject market eÆciency in a weak form, i.e., the martingale

hypothesis is not accepted for these high frequency exchange rates on such

short forecasting horizons. This is not surprising when taking into account

that some time is needed to integrate new price information into the di�erent

markets, and considering how diverse the interpretation of information can be.

Concerning the pro�tability of such an approach it is doubtful if FX markets

are fully eÆcient on very short time horizons. Therefore, a stronger version of

market eÆciency that accounts for transaction costs cannot be fully accepted.

Of course, more empirical work is necessary to support our �ndings. In par-

ticular, the extension of the analysis to a longer time span, and using more

rates may be useful.
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Table 6

Parameter estimates for the scaling power law. The numbers in parentheses are

estimated standard errors. �t is measured in seconds.

\log(c) ê R
2 �t

-11.703 0.521 0.998

(0.055) (0.006)

Appendix

A Time Scale Transformation

The basis for the computation of the operational time scale is the empirical scaling

power law found by M�uller et al. (1990). It expresses the average volatility �V over

some time interval �t as a function of the length of the time interval �t

�V = c (�t)e: (5)

Since we focus on multivariate modelling, �V is computed as the volatility of a

weighted average of the underlying time series. c and e are estimated from a re-

gression of log( �V ) on log(�t) and depend on the underlying time series and the

averaging weights. The results of the regression are reported in table 6.

To express time as a function of the volatility we invert the scaling power law as

suggested in Schnidrig and W�urtz (1995). Application to each hour of an average

week gives the length of this hour in operational time

�t
op

i
=

�
�V (�t

i
)

c

�
1=e

; i = 1; : : : ; 168; (6)

where �V (�t
i
) is the average volatility over the i'th hour of the week. �t

op

i
is the

resulting length of the i'th hour in operational time.

The complete time mapping is found by interpolating between these 168 tabulated

points (�t
op

i
;�t

i
) and synchronizing the two time scales each week. We have used

a cubic spline interpolation procedure as described in Press et al. (1995). Note that

business time instead of physical time was used as the underlying time scale for these

computations. The time mapping from business time to physical time is shown in

�gure 6.

The averaging weights are chosen in such a way that the sum of the seasonal 
uc-

tuations in operational time over all time series becomes minimal. We use the root

mean square error of the average volatility around the mean (RMSEV) as a measure

of the seasonal 
uctuations (see Dacorogna et al., 1993). Table 7 shows the averag-

ing weights which minimize the RMSEV criterion. Furthermore, the corresponding

RMSEV in operational time are reported as percentages of the RMSEV in physical

time.
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Table 7

The averaging weights which minimize the sum of the seasonal 
uctuations in op-

erational time over all time series. The RMSEV-ratios are computed as the ratio of

the RMSEV in operational time to the RMSEV in physical time.

USD-DEM USD-JPY DEM-JPY

weights 0.68 0.13 0.19

RMSEV-ratio 0.29 0.33 0.34
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B
us

in
es
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T

im
e

Fig. 6. Time mapping from operational time to business time.

B VAR Parameter Estimates

The maximum likelihood procedure gives the following estimates:

�̂1 =

2
6666666666664

�0:129 0:089 �0:096

(0:040) (0:043) (0:043)

0:156 �0:209 0:169

(0:029) (0:031) (0:031)

�0:440 0:420 �0:452

(0:035) (0:037) (0:037)

3
7777777777775
; �̂2 =

2
6666666666664

�0:050 0:070 �0:034

(0:050) (0:052) (0:051)

0:073 �0:095 0:072

(0:036) (0:038) (0:038)

�0:460 0:410 �0:472

(0:043) (0:045) (0:045)

3
7777777777775
;
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and

�̂3 =

2
6666666666664

�0:096 0:102 �0:123

(0:055) (0:056) (0:056)

0:086 �0:087 0:073

(0:040) (0:041) (0:041)

�0:356 0:337 �0:335

(0:048) (0:049) (0:049)

3
7777777777775
;

where the numbers in parentheses are estimated standard errors. Furthermore,

�̂ =

2
6666666666664

�0:164 0:164 �0:164

(0:037) (0:037) (0:037)

1:764 � 10�4 1:764 � 10�4 1:764 � 10�4

(0:027) (0:027) (0:027)

�0:343 0:343 �0:343

(0:032) (0:032) (0:032)

3
7777777777775

and

�̂ =

2
6664

1:940 0:653 �1:121

0:653 1:035 0:306

�1:121 0:306 1:465

3
7775 � 10�6:
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