Regulation, Competition, Diversification, Governance and Costs: An Empirical Analysis of Public Utility and Manufacturing Firms in Japan

Fumitoshi Mizutani

Kobe University Graduate School of Business Administration

Eri Nakamura

Shinshu University Department of Economics

Summary of This Study

- Purpose: investigate how regulation, competition, governance structure, and business diversification strategy affect the cost structure of firms
- Method: translog cost function using 358 public utility firms and manufacturing firms from 1989 to 2002
- Results
 - The regulation factor does not affect the cost structure
 - The competition and governance factors affects a firm's cost reduction
 - The level of diversification is positively related to the firm's business costs (lack of economies of scope)

Contributions of This Study (1)

- 1. This is the only study so far to consider together the four important factors (regulation, competition, governance structure, and business diversification)
 - Previous studies
 - only regulation (e.g. Ter-Martirosyan and Kwoka (2010))
 - competition and governance structure (e.g. Berger and Hannan (1998))
 - only diversification (e.g. Jeng and Lai (2005))
- 2. This study uses the quantity rather than the quality variable of regulation
 - Previous studies: Dummy variable (e.g. Fabrizio et al. (2007), Ter-Martirosyan and Kwoka (2010))
- 3. We introduce the factor of governance structure in the cost function
 - Previous studies: governance structure in a firm's performance (e.g. Zelenyuk and Zheka (2006) and Berger et al. (2009))

Contributions of This Study (2)

- 4. We include a variable for the strategic behavior of a firm.
 - Many firms operate in more than two industries
 - \rightarrow a multi-segment strategy is investigated
 - If there exist scope economies, this factor has negative effects on costs
- 5. We try to obtain more general results of regulation in both public utility and manufacturing industries
 - Previous studies: specific types of regulation or specific industries
 - environmental regulation: Nowell and Shogren (1994)
 - incentive regulation (e.g. Berg and Jeong (1991))
 - price regulation (e.g. Vogelsang (2002))
 - energy industry (e.g. Majumdar and Marcus (2001))
 - rail industry (e.g. Mizutani et al. (2009))
 - postal service industry (e.g. Mizutani and Uranishi (2003))
 - When the focus shifts to general regulation or to other industries, the results will be the same as in the specific cases?

Previous Studies (1)

Regulation

- Conflicting results
 - Regulation reduces costs (e.g. Ter-Martirosyan and Kwoka (2010))
 - Regulation increases costs (e.g. Fabrizio et al. (2007))
 - Regulation does not affect costs (e.g. Berg and Jeong (1991))
- Competition
 - Competition certainly affects firms' costs.
 - Competition improves cost efficiency (e.g. Fenn et al. (2008))
 - Competition worsens cost efficiency (e.g. Nakamura (2010))
 - U-shaped relationship (e.g. Sari (2003))

Previous Studies (2)

- Governance Structure
 - Foreign ownership improves cost efficiency (e.g. Berger et al. (2009))
 - The existence of large shareholders has differing results
 - Large shareholders decrease cost efficiency (e.g. Berger and Hannan (1998))
 - Large shareholders increase cost efficiency (e.g. Berger et al. (2009))
 - governmental ownership increases cost efficiency (e.g. Berger et al. (2009))
 - 'Keiretsu' increases cost efficiency (e.g. Jeng and Lai (2005))
- Diversification Strategy
 - Diversification causes cost inefficiency (e.g. Rajan et al. (2000))
 - There exist economies of scope (e.g. Ottoz and Di Giacomo (2012) in Italian bus industry)

Empirical Model -Cost Function-

- $lnC = \alpha_0 + \alpha_Q lnQ + \sum_i \beta_{w_i} lnw_i + \frac{1}{2}\alpha_{QQ}(lnQ)^2 + \frac{1}{2}\sum_i \sum_j \beta_{w_{ij}} lnw_i lnw_j + \frac{1}{2}\sum_i \beta_{Qw_i} lnQ lnw_i + \gamma_{REG} RG_{REG} + \sum_l \gamma_{CMP_i} CMP_l + \sum_m \gamma_{GS_m} GS_m + \gamma_{DIV} STR_{DIV} + \sum_n \gamma_{EX_n} EX_n + t_T T + \delta D_{NPU}$
- *C*: total costs, *Q*: revenues, $w_i \cdot w_j$: *i*,*j*=L (labor price), M (material and service price), K (capital price), *T* : time trend
- RG_{REG} : degree of regulation,
- CMP_l : I= HHI(Herfindahl-Hirschman index), CR4 (concentration ratio of 4 firms),
- GS_m : m= FRN (stock ratio held by foreign shareholders), TOP (stock ratio held by top 10 shareholders), BANK (main bank index),
- *STR_{DIV}* : number of segments,
- EX_n : n= BKT (industry's bankruptcy ratio), PRF (industry's profitability),
- D_{NPU} : non-public utility dummy (non-public utility =1, otherwise =0)

Empirical Model -Share Function-

• We apply Shepard's lemma for the cost function

$$S_i = \beta_i + \sum_j \beta_{w_{ij}} \ln w_j + \beta_{Qw_i} \ln Q$$

where S_i : share of input *i* (*i*, *j* = *K*, *L*, *M*).

- Estimation method: Seemingly Unrelated Regression (SUR)
- Restrictions: $\sum_{i} \beta_{w_i} = 1$, $\sum_{j} \beta_{w_{Lj}} = 0$, $\sum_{j} \beta_{w_{Kj}} = 0$, $\sum_{j} \beta_{w_{Mj}} = 0$, $\sum_{i} \beta_{Qw_i} = 0$, $\beta_{QK} + \beta_{QL} + \beta_{QM} = 0$, $\beta_{w_iw_j} = \beta_{w_jw_i}$

Data and Variables (1)

- Sample: 358 manufacturing firms and public utility firms in Japan for the 14 years from 1989 to 2002
- C: the sum of labor, material (including energy) and capital costs
- Q: total sales
- w_l : labor costs/the total number of employees
- *w_m*: domestic Corporate Goods Price Index (CGPI) weighted by divisional sales ratio
- w_k : the sum of depreciation rate and interest rate
- *RG_{REG}* : "regulation weight" weighted by divisional sales ratio

Data and Variables (2)

- *CMP*_{HHI}: Herfindahl-Hirschman index based on sales
- *CMP*_{CR4}: the concentration ratio of top 4 firms
- GS_{FRN}: the stock ratio held by foreign shareholders
- GS_{TOP} : the stock ratio held by the top 10 shareholders
- GS BANK: the standard deviation of the ratios of debt loan by each financial institution
- *STR_{DIV}*: the number of segments
- EX BKT: the number of bankrupt firms/existing firms
- EX_{PRF}: the weighted average profitability of the industries

Summary Statistics

Variable	Unit	Mean	Standard Deviation	Minimum	Maximum
TC (total cost)	Million yen	408,031	543,665	1,843	3,042,338
Q (output)	Million yen	415,140	554,060	1,926	3,000,000
w _L (labor price)	Thousand yen	6,260	2,375	1,068	15,907
w _M (material price)	-	95.7899	26.4882	7.3416	249.9917
w _κ (capital price)	-	0.1131	0.0357	0.0258	0.2802
T (time trend)	-	8.4916	3.7817	1.0000	15.0000
RG _{REG} (degree of regulation)	-	0.4585	0.3920	0.0000	1.0000
СМР _{нн} (Herfindahl-Hirschman index)	-	0.4677	0.2505	0.2505 0.0161	
CMP _{CR4} (concentration ratio of 4 firms)	-	0.7154	0.2936	0.0119	1.0000
STR _{DIV} (numbers of industries which a firm involves)	-	3.4330	1.3698	2.0000	12.0000
GS _{FRN} (stock ratio held by foreign shareholders)	-	0.0584	0.0591	0.0000	0.4024
GS _{TOP} (stock ratio held by top 10 shareholders)	-	0.3813	0.1230	0.0837	0.7876
GS _{BANK} (main bank dummy)	-	0.0908	0.0645	0.0198	0.6566
EX _{BKT} (industry's bankruptcy ratio)	-	0.2032	0.3622	0.0008	0.9828
EX _{PRF} (industry's profitability)	-	0.8731	0.3884	0.2510	5.9841
D _{NPU} (non-public utility dummy)	-	0.5000	0.5007	0.0000	1.0000
S _L (share of labor)	-	0.1657	0.0763	0.0393	0.5384
${\sf S}_{\sf M}$ (share of material and service)	-	0.7293	0.0868	0.4158	0.9067
S _κ (share of capital)	-	0.1050	0.0662	0.0177	0.3374

Estimation Results

Variable	Case 1	Case 2	Case 3	Case 4	Case 5	Case 6	Case 7	Case 8
In RG _{REG}	-0.0007 (0.0014)	-0.0006 (0.0014)	-0.0001 (0.0014)	-0.0014 (0.0014)	-0.0007 (0.0014)	-0.0007 (0.0014)	-0.0001 (0.0014)	-0.0001 (0.0014)
In CMP _{HHI}	-	0.0292* (0.0153)	-	0.0472*** (0.0156)	-	0.0426*** (0.0153)	-	-0.0014 (0.0257)
In CMP _{CR4}	-	-	0.0428*** (0.0144)	-	0.0559*** (0.0148)	-	0.0510*** (0.0146)	0.0521** (0.0247)
In GS _{FRN}	-	-	-	-0.0214*** (0.0085)	-0.0210** (0.0084)	-0.0238*** (0.0083)	-0.0234*** (0.0082)	-0.0234*** (0.0082)
In GS _{TOP}	-	-	-	-0.0079 (0.0359)	0.0047 (0.0360)	-0.0092 (0.0356)	0.0022 (0.0357)	0.0024 (0.0359)
In GS _{BANK}	-	-	-	-0.0815*** (0.0232)	-0.0748*** (0.0230)	-0.0780*** (0.0229)	-0.0719*** (0.0227)	-0.0717*** (0.0229)
In STR _{DIV}	-	-	-	0.1455*** (0.0302)	0.1503*** (0.0300)	0.1781*** (0.0306)	0.1817*** (0.0304)	0.1817*** (0.0305)
In EX _{вкт}	-	-	-	-	-	0.0154** (0.0062)	0.0152** (0.0061)	0.0152** (0.0061)
In EX _{PRF}	-	-	-	-	-	-0.1512*** (0.0348)	-0.1472*** (0.0346)	-0.1473*** (0.0346)
D _{NPU}	-0.0467* (0.0252)	-0.0373 (0.0256)	-0.0259 (0.0259)	-0.0483* (0.0271)	-0.0347 (0.0274)	0.0255 (0.0337)	0.0365 (0.0337)	0.0366 (0.0338)
Log-likelihood	894.485	897.344	900.112	901.368	902.790	915.185	916.358	916.544
R ²	0.9676	0.9678	0.9681	0.9709	0.9713	0.9719	0.9722	0.9722
Concavity Condition	12.6%	13.1%	12.8%	20.7%	19.6%	17.9%	15.4%	15.9%

(Note):

(1) Numbers in parentheses are standard errors.

(2) Sample size is 358.

(3) Statistically significant at 1% (***), 5% (**) and 10% (*).

Discussion (1)

- We discuss our findings based mainly on Cases 4 and 6 (because R² are large, the concavity condition is relatively high, and key variables show the correct sign)
- Regulation does not affect the cost structure
 - Our empirical results do not support either the public or private interest theory
 - Consistent with previous studies such as Berg and Jeong (1991) and Bos and Peters (1995) showing that regulation does not affect cost structure
- Competition has the effect of reducing the costs of a firm

Discussion (2)

- As the foreign shareholders' ratio becomes larger and more concentrated in a single main bank, the costs of a firm become smaller
 - Foreign shareholders: consistent with Zelenyuk and Zheka (2006) and Berger et al. (2009)
 - Main bank: consistent with Jeng and Lai (2005) arguing that the close relationship with main bank results in better monitoring and reduced information costs
- As a company diversifies more from its core industry to other industries, the costs of all the firm's business increase → no economies of scope
- As industry's bankruptcy ratio increases and industry's profitability decrease, the cost of a firm becomes large

References (1)

- Berg, S.V. and J. Jeong (1991) "An Evaluation of Incentive Regulation for Electric Utilities," Journal of Regulatory Economics, Vol.3, No.1, pp.45-55.
- Berger, A.N. and T.H. Hannan (1998) "The Efficiency Cost of Market Power in the Banking Industry: A Test of the 'Quiet Life' and Related Hypotheses," Review of Economics and Statistics, Vol.80, No.3, pp.454-465.
- Berger, A.N., I Hasan and M. Zhou (2009) "Bank Ownership and Efficiency in China: What Will Happen in the World's Largest Nation?," Journal of Banking and Finance, Vol.33, No.1, pp.113-130.
- Bos, D. and W. Peters (1995) "Double Inefficiency in Optimally Organized Firms," Journal of Public Economics, Vol.56, No.3, pp.355-375.
- Fabrizio, K.R., N.L. Rose, and C.D. Wolfram (2007) "Do Markets Reduce Costs? Assessing the Impact of Regulatory Restructuring on US Electric Generation Efficiency," American Economic Review, Vol.97, No.4, pp.1250-1277.
- Fenn, P., D. Vencappa, S. Diacon, P. Klumpes and C. O'Brien (2008) "Market Structure and the Efficiency of European Insurance Companies: A Stochastic Frontier Analysis," Journal of Banking and Finance, Vol.32, No.1, pp.86-100.
- Jeng, V. and G. C. Lai (2005) "Ownership Structure, Agency Costs, Specialization, and Efficiency: Analysis of Keiretsu and Independent Insures in the Japanese Nonlife Insurance Industry," Journal of Rsik and Insurance, Vol.72, No.1, pp.105-158.
- Majumdar, S.K. and A.A. Marcus (2001) "Rules versus Discretion: The Productivity Consequences of Flexible Regulation," Academy of Management Journal, Vol.44, No.1, pp.170-179.
- Mizutani, F., H. Kozumi and N. Matsushima (2009) "Does Yardstick Regulation Really Work? Empirical Evidence from Japan's Rail Industry," Journal of Regulatory Economics, Vol.36, No.3, pp.308-323.

References (2)

- Nakamura, E. (2010) "The Effect of Public Involvement on Firm Inefficiency: Evidence Using Japanese Private Firms," Review of Managerial Science, Vol.4, No.3, pp.217-258.
- Nelson, R.A. and M.E. Wohar (1983) "Regulation, Scale Economies, and Productivity in Steam-Electric Generation," International Economic Review, Vol.24, No.1, pp.57-79.
- Nowell, C. and J. Shogren (1994) "Challenging the Enforcement of Environmental Regulation," Journal of Regulatory Economics, Vol.6, No.3, pp.265-282.
- Ottoz, E. and M. Di Giacomo (2012) "Diversification Strategies and Scope Economies: Evidence from a Sample of Italian Regional Bus Transport Providers," Applied Economics, Vol.44, No.22-24, pp.2867-2880.
- Rajan, R., H. Servaes and L. Zingales (2000) "The Cost of Diversity: The Diversification Discount and Inefficient Investment," Journal of Finance, Vol.55, No.1, pp.35-80.
- Sari, N. (2003) "Efficiency Outcomes of Market Concentration and Managed Care," International Journal of Industrial Organization, Vol.21, No.10, pp.1571-1589.
- Schneider, J.E. (2003) "Changes in the Effects of Mandatory Rate Regulation on Growth in Hospital Operating Costs, 1980-1996," Review of Industrial Organization, Vol.22, No.4, pp.297-312.
- Ter-Martirosyan, A. and J. Kwoka (2010) "Incentive Regulation, Service Quality, and Standards in U.S. Electricity Distribution," Journal of Regulatory Economics, Vol.38, No.3, pp.258-273.
- Vogelsang, I. (2002) "Incentive Regulation and Competition in Public Utility Markets: A 20-Year Perspective," Journal of Regulatory Economics, Vol.22, No.1, pp.5-27.
- Zelenyuk, V. and V. Zheka (2006) "Corporate Governance and Firm's Efficiency: the Case of a Transitional Country, Ukraine," Journal of Productivity Analysis, Vol.25, No.1-2, pp.143-157.

Thank you for your attention!