

WIRTSCHAFTS UNIVERSITÄT WIEN VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS

Vertical Disintegration in the European Electricity Sector: Empirical Evidence on Lost Synergies

Klaus Gugler, Mario Liebensteiner*, Stephan Schmitt

*Contact: mario.liebensteiner@wu.ac.at

CGNI Workshop, October 29, 2015

Background on unbundling

Generation Transmission Distribution Retail

Network stages

- Traditionally: vertically integrated utilities
 - Cost savings due to vertical synergies (e.g. coordination advantages)
- Unbundling of network may foster competition in generation
- EU: Unbundling of transmission grid
 - Each country must choose between: Ownership Unbundling, ISO or ITO (EU directive 2009/72/EC)
 - \rightarrow Ownership unbundling is predominant form
 - Pro: Promotion of competition & prevention of anti-competitive effects
 - Contra: Loss of Economies of Vertical Integration (EVI)
- Study's focus on EVI between GEN & TRANS:
 - Greatest cost synergies between G & T → lost with ownership unbundling

Sources of EVI

- Concept of Economies of Vertical Integration (EVI):
 - Producing two outputs in one firm is cost beneficial over separate production
- Vertical supply stages are highly interlinked
 - technological interdependency of the operational stages
- Hence, cost savings arise from ...
 - ... Coordination advantages
 - ... Efficient planning of investments
 - ... Sharing of information among stages
 - ... Sharing of staff, buildings, software, inputs
 - Protection against uncertainty and financial risk
 - ... Coordinating dispatches of utilities according to the actual merit order
- Such cost savings cannot be easily realized by unbundled firms (Jara-Díaz et al., 2004; Meyer, 2012)
- Vertical integration: more efficient organizational form compared to leaving the coordination of the vertical supply to the market (Arocena et al., 2012)

Research question & motivation

WIRTSCHAFTS UNIVERSITÄT WIEN VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS

- Research question:
 - How large are the Economies of Vertical Integration (EVI) between generation and transmission?
- Relevance of topic:
 - Policy debate on unbundling neglects costs of unbundling, especially OU
 - Potential cost savings from vertical integration question transmission ownership unbundling
 - Benefits of increased competition may be (partly) offset by higher costs from transmission unbundling
 - Transmission unbundling has already been put into practice in Europe
 - Regulatory authorities & politicians may rely on ineffective regulatory measures → Important for policy-makers, companies, tax payers, ...
 - Need for evidence on Europe

Literature

- Cost synergies between GEN & TRANS:
 - Under-researched Only one study for US (2001-2008, rather small utilities): EVI of 4% at mean (Meyer, 2012, J Regul Econ)
 - no evidence on Europe Why? Data availability (!)
- Cost synergies between GEN & DIST:
 - US: Previous studies find substantial cost savings: ~40% at mean (Kwoka, 2002 IJIO; Greer, 2008, Energy Econ)
 - Recently: 8.1% (Arocena, Coelli, Saal, 2012, J Ind Econ), 4.4% (Triebs et al., 2012)
 - Europe: Single countries: Modest cost savings Spain: 6.5% (Budría et al., 2003), Italy: 3% (Fraquelli et al., 2005, J Reg Econ), 6% (Piacenza and Vannoni, 2004, Econ Letters)
- Large disparity among results
 - EVI of 0% to >40% at mean depending on sample, estimation strategy, period, ...
- Our study fills a gap in the literature:
 - Focus on transmission ownership unbundling of European utilities

Methodology & estimation strategy

Economies of vertical integration:

$$C(Y_G, 0) + C(0, Y_T) - C(Y_G, Y_T) > 0 \longrightarrow EVI = \frac{C(Y_G, 0) + C(0, Y_T) - C(Y_G, Y_T)}{C(Y_G, 0) + C(0, Y_T)}$$

Full specification of cost function:

 $C_{it} = \alpha_0 + \alpha_G + \alpha_T + \sum_j \beta_j Y_{it}^j + 0.5 \sum_j \sum_k \beta_{jk} Y_{it}^j Y_{it}^k + \sum_l \gamma_l w_{it}^l + 0.5 \sum_l \sum_m \gamma_{lm} w_{it}^l w_{it}^m + \sum_j \sum_l \delta_{jl} Y_{it}^j w_{it}^l + \rho' Z_{it} + \varepsilon_{it}$

Y ... Outputs, $j=\{G,T\}$, i.e. generation, transmission w ... Input prices, $l=\{l, c, f\}$, i.e. labor, capital, fuel α_0 ... Joint fixed costs of vertically integrated utility α_G ... Fixed costs of stand-alone generation α_T ... Fixed costs of stand-alone transmission Z ... Control variables

EVI exist if $\beta_{GT} < 0$

 β_{GT} measures the impact of operating at both output stages (Gen & Trans) within one utility on the total costs

Methodology & estimation strategy

 Shepard's Lemma: Estimation of cost function together with input shares to enhance performance

 $\frac{\partial c_{it}}{\partial w_{it}^{l}} = x_{l} = \gamma_{l} + \sum_{m} \gamma_{lm} w_{it}^{m} + \sum_{j} \delta_{jl} Y_{it}^{j} + \varepsilon_{it}^{l}$

- Additional standard assumptions:
 - Linear homogeneity in input prices
 - Division of cost function by arbitrarily chosen input price
 - → Non-linear estimation (NLSUR)
 - Symmetry for β , γ , δ parameters
 - Impose restrictions on the model (e.g. $\gamma_{lc} = \gamma_{cl}$)
 - Cost minimization
 - Just assumption, not possible to impose

Data

- 28 European electricity utilities
 - Comprising 16 European countries
 - Sample utilities cover 74% in total load of their respective countries
 - Various organizational forms: Vertically integrated and specialized firms
 - Period 2000–2010, unbalanced panel
 - Total observations: 242
- Sources
 - Annual Reports output measures for G and T
 - Worldscope & Orbis financial data (costs & input prices), patents
 - OECD price of natural gas
 - Platts PowerVision capacities by fuel source
 - Eurostat countries' shares of RES production

Descriptive Evidence

Table 1. Sample statistics

Description	Variable	Obs.	Mean	S.D.	Min.	Max.
TOTEX excl. purchased power (bnEUR)	С	242	7.36	11.88	0.12	57.90
Generation (TWh)	Y_G	242	74.80	136.85	0.00	669.00
Transmission (tKm)	Y_T	242	9.80	21.65	0.00	100.69
Price of labor (tEUR/empl.)	w_L	242	57.69	21.53	12.07	141.01
Price of natural gas (tEUR/GWh)	W_F	242	26.03	8.55	9.75	44.78
Price of capital (%)	w _c	242	7.05	3.77	0.68	30.32
Hydro Capacity (%)	hyd	242	28.28	26.63	0.00	100.00
Nuclear Capacity (%)	пис	242	11.77	17.10	0.00	61.46
Binary indicator: generation only	α_G	242	0.43	0.50	0.00	1.00
Binary indicator: transmission only	α_T	242	0.12	0.33	0.00	1.00
Binary indicator: registered patents	d_patents	242	0.44	0.50	0.00	1.00
Yearly time trend	trend	242	5.74	3.01	0.00	10.00
Concentration index: 1-HHI	1 - HHI	242	0.97	0.04	0.69	0.99
Share of renewable energy supply	rnwbl	224	0.11	0.10	0.01	0.46

Notes: Obs. is observations, S.D. is standard deviation, Min. is minimum, Max. is maximum, tEUR is thousand EUR, bnEUR is billion (10^9) EUR, tKM is thousand Km, TWh is thousand GWh.

utility	Country	Obs.	Period	Organizational structure
A2A	Italy	7	2004-2010	G
Acea	Italy	11	2000-2010	G&T until 2005, then G
BKW	Switzerland	11	2000-2010	G&T
CEZ Group	Czech Rep.	11	2000-2010	G&T until 2002, then G
Drax Group	United Kingdom	8	2003-2010	G
EDF	France	11	2000-2010	G&T
EDP	Portugal	10	2001-2010	G&T
ENBW	Germany	10	2001-2010	G&T
EVN	Austria	11	2000-2010	G
Endesa	Spain	11	2000-2010	G
Enea	Poland	3	2008-2010	G
Enel	Italy	6	2005-2010	G
Energiedienst	Switzerland	7	2004-2010	G&T
Fortum	Finland	10	2001-2010	G
IREN	Italy	11	2000-2010	G&T
Iberdrola	Spain	9	2002-2010	G
Latvenergo	Latvia	5	2006-2010	G&T
Magyar Villamos	Hungary	7	2003-2010	G&T
National Grid	United Kingdom	11	2000-2010	Т
PGE Polska Grupa	Poland	3	2008-2010	G
Public Power Corp.	Greece	11	2000-2010	G&T
RWE	Germany	11	2000-2010	G&T
Red Electrica	Spain	8	2003-2010	т
Statkraft	Norway	5	2006-2010	G
Terna	Italy	10	2001-2010	Т
Vattenfall	Sweden	10	2001-2010	G&T until 2009, then G
Verbund	Austria	11	2000-2010	G&T
Wiener Stadtwerke	Austria	3	2008-2010	G
Total		242		

Table A1. Electricity utilities in the sample

Notes: Obs. Is observations; G&T represents an integrated utility, G is stand-alone generation, T is stand-alone transmission.

Data issues

- Dependent Variable: Total costs minus purchased electricity
 - Avoids double-counting of purchased electricity
 - Purchased electricity difficult to measure
- Multi-product firms (e.g. electricity & gas)
 - Data at firm level not product level
 - → Study's focus on electricity
 - Financial variables adjusted by share of revenues from electricity Information from Worldscope / Orbis / annual reports / other company infos
- Outputs measured at European level
 - Firm level data incl. overseas operations (few firms)
 - → Study's focus on Europe
 - Financial variables adjusted by share of revenues generated within Europe

	(i) Basic model (ii) Time FE					(iii) Country FE				(iv) Time & Country FE			
~	0 5952	(0.002)	***	0.0211	(0.002)	***	1 0099	(0.022)	**	0 9026	(0, 100)	•	
a_0	0.5652	(0.003)		0.9311	(0.002)		1.0066	(0.022)		0.8026	(0.109)		
α_G	-0.1055	(0.591)		0.0385	(0.856)		-0.2736	(0.127)		-0.0071	(0.977)		
α_T	2.2536	(0.000)	***	2.2903	(0.000)	***	3.3830	(0.000)	***	3.2382	(0.000)	***	
β_G	0.0351	(0.000)	***	0.0333	(0.000)	***	0.0596	(0.000)	***	0.0585	(0.000)	***	
β_T	-0.1502	(0.000)	***	-0.1427	(0.000)	***	-0.1318	(0.001)	***	-0.1066	(0.011)	**	
β_{GG}	0.0001	(0.070)	*	0.0002	(0.032)	**	0.0000	(0.926)		0.0000	(0.974)		
β_{TT}	0.0041	(0.001)	***	0.0038	(0.001)	***	0.0021	(0.064)	*	0.0014	(0.219)		
β_{GT}	-0.0006	(0.008)	***	-0.0007	(0.003)	***	-0.0007	(0.078)	*	-0.0008	(0.054)	*	
γι	0.1789	(0.000)	***	0.1858	(0.000)	***	0.1679	(0.000)	***	0.1760	(0.000)	***	
Υc	0.3116	(0.000)	***	0.3230	(0.000)	***	0.3092	(0.000)	***	0.3189	(0.000)	***	
γιι	-0.0078	(0.359)		-0.0110	(0.212)		-0.0045	(0.592)		-0.0085	(0.334)		
Үсс	-0.1309	(0.000)	***	-0.1308	(0.000)	***	-0.1407	(0.000)	***	-0.1354	(0.000)	***	
γις	-0.0161	(0.001)	***	-0.0211	(0.000)	***	-0.0140	(0.007)	**	-0.0191	(0.000)	***	
δ_{Gl}	0.0000	(0.745)		0.0000	(0.757)		0.0000	(0.630)		0.0000	(0.598)		
δ_{Gc}	-0.0007	(0.000)	***	-0.0007	(0.000)	***	-0.0006	(0.000)	***	-0.0006	(0.000)	***	
δ_{Tl}	0.0006	(0.153)		0.0006	(0.161)		0.0006	(0.138)		0.0005	(0.152)		
δ_{Tc}	0.0042	(0.000)	***	0.0042	(0.000)	***	0.0041	(0.000)	***	0.0042	(0.000)	***	
hyd	-0.0080	(0.002)	***	-0.0067	(0.016)	**	-0.0147	(0.037)	**	-0.0100	(0.182)		
nuc	-0.0063	(0.213)		-0.0053	(0.304)		0.0260	(0.189)		0.0252	(0.194)		
Time FE	no			yes			no			yes			
Country FE	no			no			yes			yes			
Obs.	242			242			242			242			
Overall R ²	0.883			0.891			0.928			0.936			

Table 2. Non-linear regression (NLSUR) estimates of the cost function

Notes: Dependent variable is total expenditures excluding purchased power; Robust p-values in parentheses; ***, **, * indicate significance at the 1%, 5%, and 10% levels, respectively.

Recall: EVI exist if $\beta_{GT} < 0$

Magnitude of Economies of Vertical Integration

Table 3. Magnitude of economies of vertical integration (EVI)

	Transmission	50 th %ile:		60 th %ile:		70 th %ile:		80 th %ile:		90 th %ile:
Generation	GWh \ Km	658		3,657		6,713		11,000		33,580
20 th %ile:	2,569	17.7%	***	20.5%	***	23.9%	***	30.0%	***	
30 th %ile:	6,503	17.0%	***	19.8%	***	23.2%	***	29.3%	***	
40 th %ile:	12,869	16.0%	***	18.8%	***	22.2%	***	28.2%	***	
50 th %ile:	29,885	13.8%	***	16.6%	***	20.0%	***	25.8%	***	
60 th %ile:	52,100	11.6%	***	14.5%	***	17.9%	***	23.5%	***	
70 th %ile:	62,126	10.8%	***	13.7%	***	17.1%	***	22.7%	***	
80 th %ile:	90,785	8.9%	***	11.9%	***	15.3%	***	20.7%	***	
90 th %ile:	179,000									

Notes: Calculation of EVI is based on parameter estimates from Model i. ***, **, * indicate significance at the 1%, 5%, and 10% levels, respectively. Values below the 20th percentile of generation and 50th percentile of transmission are not reported because outputs have values of zero. Cells in grey indicate output combinations at equal percentiles.

Magnitude of EVI

- Median firm obtains cost savings of around 14%
- Substantial cost savings from vertical integration between GEN & TRANS at higher output levels
 → Higher cost synergies for large operators (even 20% seem plausible)
- Very large output combinations (90th %ile) should be viewed with caution:
 - Quadratic cost function = Taylor approximation of unknown true function
 - Hence, estimates are not reliable at corners
 - Only one utility (i.e. EDF) exists in this scope
- Non-linear significance test of EVIs based on Delta-method (large N)
 - → Additional linear test:
 - Linear test of $\beta_{GT}Y_GY_T < 0$ yields robust significance levels
- Robustness: Similar magnitude and significance levels of EVI from other specifications
 - Time and country fixed-effects / linear SUR / reduced sample from earlier version

Sources of EVI

- We investigate two potential sources of EVI:
 - Presence of asset specificity
 - Coordination requirements from high market complexity
- Inclusion of output interaction term multiplied by additional variable of interest: $\theta * Y_G Y_T X$
 - X captures either asset specificity or market complexity
 - Patents as proxy for technological intensity (e.g. Acemoglu et al., 2010)
 - Time trend may capture increased complexity over time
 - Share of countries' renewable energy
 - concentration of power plants (1-HHI)

$$HHI = \sum_{p=1}^{N} a_p^2, a_p = \frac{capacity_p}{\sum_{q=1}^{N} capacity_q}$$

Theory: negative and significant $\theta \rightarrow$ vertical integration is cost-beneficial compared to stand-alone operations in order to deal with either asset specificity or market complexity.

	(i) d_patents		(ii) trend			(iv) rnwbl			(iii) (1-HHI)			
α_0	0.5609	(0.004)	***	0.8214	(0.000)	***	0.7674	(0.000)	***	0.7940	(0.000)	***
α_G	-0.0184	(0.930)		-0.3022	(0.099)	*	-0.6082	(0.001)	***	-0.2780	(0.132)	
α_T	3.0887	(0.000)	***	2.5536	(0.000)	***	2.8827	(0.000)	***	2.5771	(0.000)	***
β_G	0.0303	(0.000)	***	0.0402	(0.000)	***	0.0517	(0.000)	***	0.0392	(0.000)	***
β_T	-0.1931	(0.000)	***	-0.1770	(0.000)	***	-0.1998	(0.000)	***	-0.1758	(0.000)	***
β_{GG}	0.0002	(0.015)	**	0.0001	(0.259)		-0.0000	(0.708)		0.0001	(0.156)	
β_{TT}	0.0053	(0.001)	***	0.0051	(0.000)	***	0.0057	(0.000)	***	0.0050	(0.000)	***
β_{GT}	0.0026	(0.003)	***	-0.0004	(0.067)	*	0.0001	(0.659)		0.0134	(0.030)	**
θ	-0.0034	(0.001)	***	-9.94E-06	(0.020)	**	-0.0057	(0.001)	***	-0.0142	(0.024)	**
γι	0.1693	(0.000)	***	0.1703	(0.000)	***	0.1674	(0.000)	***	0.1699	(0.000)	***
γ _c	0.2715	(0.000)	***	0.2742	(0.000)	***	0.2950	(0.000)	***	0.2729	(0.000)	***
Yu	-0.1044	(0.164)		-0.1089	(0.147)		-0.1071	(0.178)		-0.1076	(0.152)	
Ycc	-1.2488	(0.027)	**	-1.2398	(0.029)	**	-1.5730	(0.008)	***	-1.2384	(0.029)	**
γις	-0.1598	(0.192)		-0.1840	(0.129)		-0.1958	(0.116)		-0.1736	(0.152)	
δ_{Gl}	-0.0000	(0.464)		-0.0000	(0.453)		-0.0000	(0.530)		-0.0000	(0.457)	
δ_{Gc}	-0.0007	(0.000)	***	-0.0007	(0.000)	***	-0.0007	(0.000)	***	-0.0007	(0.000)	***
δ_{Tl}	0.0007	(0.066)	*	0.0007	(0.066)	*	0.0007	(0.060)	*	0.0007	(0.066)	*
δ_{Tc}	0.0043	(0.000)	***	0.0044	(0.000)	***	0.0043	(0.000)	***	0.0043	(0.000)	***
hyd	-0.0052	(0.062)	*	-0.0069	(0.011)	**	-0.0043	(0.299)		-0.0068	(0.010)	***
пис	0.0031	(0.618)		-0.0081	(0.157)		-0.0126	(0.022)	**	-0.0079	(0.170)	
Obs.	242			242			224			242		
Overall R2	0.887			0.887			0.894			0.889		

Table 4. Non-linear regression (NLSUR) estimates of the cost function including a double interaction term

Notes: Dependent variable is total expenditures excluding purchased power; Robust p-values in parentheses; ***, **, * indicate significance at the 1%, 5%, and 10% levels, respectively.

Indication for vast potential for cost savings from vertical integration in the presence of either asset specificity or market complexity.

Conclusions

- Empirical findings:
 - Economies of vertical integration (EVI) $\approx 14\%$
 - Unbundling comes at a cost: (full) loss of EVI
 - Non-negligible hurdle for successful unbundling regime
- Policy implications:
 - Findings put practical application of transmission unbundling in Europe into perspective
 - Policies allowing for internalization of externalities from asset specificity and/or market complexity are desirable
 - Institutions to meet coordination needs / Policies for lowering hold-up risk of sunk costs
- Study's limitations:
 - Data requirements first attempt to provide evidence on Europe
 - Static focus: Dynamic aspects of ownership unbundling not part of analysis
 - Limited sample: transmission companies are underrepresented

