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1 Introduction

The endowment investing literature is quite large.1 The conventional wisdom—tracing
back to Litvack et al. (1974), Tobin (1974), Black (1976) and Swensen (2009)—is that an
endowment can afford to take on substantial investment risk since it has a long time hori-
zon, as much of the supported spending occurs in the future. Consistently, endowments
take on substantial risk, including investments in equities, alternatives, and illiquid assets
(e.g., timber).2 The main funds of university endowments are commonly labeled “long-
term investment pools,” or similar names. The so-called “endowment model” or “Yale
model” of investment (Swensen, 2009)) has become standardized, creating a blueprint for
systematic endowment-like investing throughout the world (Leibowitz et al., 2010).

At the same time, Black (1976) strongly argues that the standard argument of a long
horizon is not well grounded because it considers an endowment in isolation of all of
its stakeholders.3 Neither his paper nor the subsequent literature, though, explores this
point with sufficient micro-based foundations. This paper addresses his concern.

The current optimal endowment investment literature, in particular, does not incor-
porate explicit value maximization of an endowment’s most important stakeholders—its
donors. Instead, papers in this literature model the endowment’s objective function as an
isolated decision sans donors or using some reduced-form proxy for a range of stakehold-
ers.4 Maximizing an assumed endowment objective function without considering the
donor problem raises an important question: How do you know that donors won’t walk
away? Donor utility maximization would be required with perfect competition across en-
dowments for donor funds. Donor utility maximization is even required with imperfect
competition but complete information, where donors oversee the endowment by, for exam-
ple, serving on investment committees, as is common practice (Brown et al., 2011). To be
sure, deviations from complete information are entirely plausible. But, even if the endow-
ment environment features asymmetric information, any claim of an agency issue must
be made relative to donors as distinct principals.5

1See, for example, Litvack et al. (1974); Tobin (1974); Black (1976); Merton (1992, 1993); Dybvig (1999);
Fisman and Hubbard (2005); Swensen (2009); Constantinides (1993); Gilbert and Hrdlicka (2012); Cejnek
et al. (2014a); Cejnek et al. (2014b); Brown and Tiu (2015), and other papers cited below.

2 See, for example, Lerner et al. (2008); Dimmock (2012); Cejnek et al. (2014a); and Ang et al. (2018).
3 His argument is best understood using the more modern language of missing markets. Whereas the

government can potentially take on more risk to complete missing markets between generations, an en-
dowment lacks the necessary taxation authority. In particular, an endowment can’t pre-commit future
generations to donate during hard economic times.

4 Some papers cited above incorporate an exogenous donation stream independent of the endowment’s
actions. The endowment does not maximize donor utility in these papers.

5 Put differently, if the endowment’s problem were taken in isolation of the donor problem, there is no
agency issue since the endowment is both principal and agent.
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The current optimal endowment literature, therefore, is a bit at odds with the field of
corporate finance. Commencing with the seminal 1958 theorem by Modigliani and Miller
(M-M), a literature in corporate finance began analyzing a firm’s optimal capital struc-
ture by including its key stakeholders—the firm’s shareholders—into the model. Barring
financial market frictions (e.g., asymmetric information), the M-M theorem shows that
a firm’s capital structure is irrelevant when shareholders are considered. Shareholders
neutralize the firm’s capital structure decision within their own private portfolios.6

Similarly, an endowment does not operate independently of its donors. Like corporate
shareholders, donors give money to the endowment’s sponsor (e.g., university) to receive
some form of consumption, such as a private benefit (e.g., naming rights of a building) or
altruism (contributing to a university’s common mission). So, it would seem that the en-
dowment portfolio problem could be relabeled as a corporate finance problem, producing
a M-M type of theorem where the endowment’s investment policy is irrelevant.

Indeed, suppose that donors make contributions purely for private gain (i.e., “warm
glow” (Andreoni, 1998)) and this form of consumption is perfectly substitutable with the
donor’s other consumption. (Perfect substitution is analogous to “value additivity” in the
corporate finance literature.7) Then, we get a striking result (Section 2): an endowment’s
optimal portfolio is indeterminant (neutral). Analogous to the M-M theorem, warm glow
donors offset, within their own portfolios, an endowment’s investment choice. This result
holds even in complex settings where the endowment faces random costs and donations
are impacted by economic shocks, features considered by some previous papers.

Of course, donating for a pure private return is fairly unrealistic, at least on average.8

The endowment problem is then different from the standard firm problem in one key way:
the endowment’s money comes from donors making voluntary gifts to a “public good”
that supports a common mission among its donors. This public good might include a pas-
sion for a university’s sports teams, the shared joy of knowing that the university offers
subsidies to low-income matriculates, the shared prestige of a university’s contribution to
basic research, or even a university’s prestige as measured by the endowment size itself

6 Stiglitz (1969) shows that the M-M theorem holds even upon relaxing many of the assumptions in the
original 1958 paper.

7 Suppose C1 and C2 represent streams of cash flows. Then, value additivity implies that the value of a
firm (or firms), V(), satisfies V(C1 + C2) = V(C1) + V(C2).

8 A large literature has investigated actual giving motives to charities in general (Becker, 1976; Andreoni,
1998; Fama and Jensen, 1985; Rose-Ackerman, 1996; Fisman and Hubbard, 2005) and to education institu-
tions, specifically (Baade and Sundberg, 1996; Clotfelter, 2003; Ehrenberg and Smith, 2003; Meer and Rosen,
2009; Butcher et al., 2013; Brown et al., 2015). In aggregate, the evidence suggests some form of “impure
altruism” that is partly private consumption (“warm glow”) such as increasing the chances of a child’s ad-
mission to a college and public consumption (“altruism”) that produces a shared benefit. For our purposes,
however, we just need some altruism to motivate our main findings.
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(James, 1990; Hansmann, 1990; Conti-Brown, 2011; Brown et al., 2014; Goetzmann and
Oster, 2015; Chambers et al., 2015; Rosen and Sappington, 2016).

In 1954, Paul Samuelson published his seminal (and second-most cited) article show-
ing that the private sector will under-provide a public good relative to the “socially op-
timal” level, resulting in market failure.9 The subsequent literature interpreted Samuel-
son’s setting as “altruistic” agents donating to a public good, resulting in “free-riding”
(under-provision) in Nash equilibrium (e.g., Steinberg 1987; Andreoni 1988b). Unlike a
private good (e.g., a football ticket), each dollar gifted to a public good (e.g., basic re-
search) produces at least some non-rivalrous consumption simultaneously enjoyed by all
donors. Free-riding in giving emerges because each donor receives utility value from
the contributions of other donors even if she contributes little herself. In other words,
each donor’s contribution produces a positive non-pecuniary “externality” to other donors,
resulting in a Prisoner’s Dilemma in giving.

If each donor internalized this externality, she would make a larger (“socially opti-
mal”) level of gift where all donors are better off, thereby achieving a Pareto improve-
ment. This outcome could be achieved using a Coasian contracting mechanism if there
were few transaction costs to centralizing donor activity. It could also be achieved by force
if a social planner imposed a head tax on each donor. This outcome would then be “first
best” because it would directly achieve the socially optimal level of gifts without distortion.

First-best mechanisms, of course, are rarely feasible. An endowment sponsor might
engage in a capital campaign to inform donors of a desired target and reduce free-riding.
But the target itself is an endogenous outcome of the Nash game, reflecting free-riding.
As with many public goods problems, both organizational costs and enforcement of com-
mitments make the first-best solution challenging.10 Instead, the endowment’s sponsor
must rely on an indirect, “second-best,” decentralized mechanism where some distortion is
required. This paper shows that the endowment’s risk policy is such a mechanism, and a
very powerful one, creating a new theoretical basis for endowment risk taking.

9 Standard examples of public goods include the shared benefit of non-congested roads and the military,
the shared joy of knowing that low-income people are fed, and basic scientific research that produces non-
pecuniary externalities.

10 Similarly, economists generally believe that the private provision of a military would lead to substantial
free-riding, thereby requiring the government to use second-best taxes to fund it. In theory, without govern-
ment, a private firm could refuse to provide any military services unless everyone in the nation participated,
thereby eliminating free-riding. But such a plan would be costly to enforce. It would also lead to bargaining
problems if the credibility of some people to commit to not donate (e.g., fervent religious objections) were
very strong; it is not sub-game perfect for the private firm to not proceed even with some free-riding. The
endowment’s sponsor might even face larger challenges. Virtually everyone in a nation gains from military
protection (the extensive margin), albeit to differing degrees (the intensive margin). However, identify-
ing even the extensive margin of potential donors that benefit from, for example, enhancing a university’s
reputation is trickier since, for example, many alumni may not care.
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Until now, a concern of free-riding has not been incorporated into the optimal en-
dowment investment literature since, as noted earlier, this literature has not considered
explicit donor utility maximization. This paper, therefore, presents a micro-based model
with donor utility maximization for determining an endowment’s optimal capital struc-
ture. Our model combines the key insights of Modigliani and Miller’s famous theorem
with Samuelson’s groundbreaking insights regarding free-riding. As we show, the pres-
ence of free-riding makes the endowment’s optimal investment policy very non-neutral.

In particular, we first show that endowment risk taking reduces free-riding by gen-
erating equilibrium “precautionary donations” of prudent donors. (All reasonable pref-
erences exhibit prudence.) This reduction in free-riding, though, comes at a cost of the
endowment taking on risk (a second-best distortion) that it would not have taken if it
were not for donor free-riding. We then derive a condition—in which the absolute co-
efficient of prudence is sufficiently larger than the absolute coefficient of risk aversion—
where it is, indeed, optimal for an endowment to take on this risk, that is, where the value
of reducing free-riding exceeds the cost of additional risk. As the size of the donor base
grows, this optimality condition quickly converges to standard DARA preferences. Be-
cause our model maximizes a donor’s expected utility, this additional endowment risk
taking is Pareto improving and required by competition among endowments for donations,
or, more generally, required by complete information.11 In fact, contrary to “asset-liability
matching,” it is optimal for a large endowment to take on substantial risk even if donors
are very risk averse toward variations in the endowment’s value.12 This result holds even
if the endowment uses high-fee investments that pay no more than cash on average.13

At first glance, these results seem far-fetched. However, our model only makes two
key assumptions: (i) donor maximization, consistent with competition, or, more gener-
ally, complete information; and, (ii) donors are making investments into a public good
that, in part, produces non-rivalrous consumption for other donors. In fact, with addi-
tional standard utility curvature assumptions, the optimal capital structure produced by
our model is the unique solution compatible with complete information and altruistic donors.

Of course, the real-world is characterized by asymmetric information. Indeed, it is
well known that the Modgliani-Miller theorem fails in its presence. Yet, the M-M theo-
rem continues to be taught in introductory corporate finance and is one of the most cited

11 In particular, this result is not driven by a “Samaritan’s Dilemma” (Buchanan, 1975) moral hazard
problem where donors effectively provide the endowment with put options; such an attempt to exploit
donors would not be competitive.

12 We directly compare our findings against asset-liability matching in Section 8.
13 Of course, we are not advocating using expensive investment products. Rather, our point is simply

that failing to take risk can be more expensive than existing investment products.
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papers in finance precisely because it tells us where to look for theoretically valid deter-
minants of a firm’s optimal capital structure. Similarly, we recognize that endowments
face agency problems (Ehrenberg and Epifantseva, 2001; Core et al., 2006; Dimmock, 2012;
Gilbert and Hrdlicka, 2013; Hoxby, 2015). Brown et al. (2014), for example, shows that the
length of a university president’s tenure is predictive of risk taking. Still, any agency con-
cern must be measured against the equilibrium with complete information, that is, with
donor maximization. Indeed, without donor maximization, the endowment would be
both principal and agent, and so any choice it makes could not produce agency concerns.

Similar to the Modigliani-Miller theorem, by focusing on the mostly friction-less case,
this paper creates a comprehensive theoretical framework for the endowment investing
problem inclusive of the requirements of complete information. A key difference between
our contribution and the M-M theorem is that we also incorporate the free-riding problem
that makes the endowment problem fundamentally different from corporate finance. Of
course, as with the original M-M theorem, the real world is more complicated. But inter-
preting these complications is challenging without a comprehensive baseline framework.

In fact, with the donor viewed as the principal, our results reverse the conventional
thinking about the relationship between endowment risk taking and principal-agent prob-
lems. A low level of risk taking by a large endowment indicates a principal-agent conflict
in our model since this investment fails to maximize the expected utility of rational, fully-
informed donors.14 Conversely, the backlash in recent years against university endow-
ment managers receiving large performance-based payouts, often in excess of endow-
ment contributions toward student financial aid (e.g., Fleischer 2015),15 could, therefore,
actually increase this principal-agent problem.

More generally, our framework squarely puts the interpretation of an endowment’s
capital structure within the unifying “transactions cost“ framework popularized by Mer-
ton Miller. Without transaction costs (including taxes), even information asymmetries
could be addressed, rendering a firm’s capital structure irrelevant. For endowments, if
there were no transaction costs, both moral hazard (by endowment managers) and free-
riding (by donors) could be eliminated. For example, capital campaigns are designed to

14 A salaried endowment investment manager, for example, might take on a low level of risk for the
same reason as a salaried CEO of a for-profit company: because his or her job represents a personalized,
non-diversified risk. We are not, of course, ascribing intent, as a salaried endowment manager might un-
knowingly exploit the asymmetric information or bounded rationality of its donors. Performance-based
executive stock options were created to increase CEO risk taking inside for-profit companies (Hall and
Murphy, 2002; Dittmann et al., 2017).

15 The Yale endowment, for example, pays more to its asset managers than it distributes toward support-
ing financial aid, which has been cited as one of the motivations for the new “endowment tax” inside of the
2017 Tax Cuts and Jobs Act. Almost three-quarters of its management fees are paid based on performance
(Ibid).
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reduce free-riding but the capital targets themselves reflect the presence of free-riding.
Section 2 presents the model. Before diving into the model’s details, Section 3 con-

siders a simple example that helps to set the stage and drive intuition for the rest of the
paper. Section 4 derives the socially optimal (“first best”) endowment investment pol-
icy, consistent with a hypothetical social planner who directly resolves the non-rivalrous
free-rider problem. Section 5 then presents the more general and formal setting, including
deriving the optimality condition noted above, where it is optimal for an endowment to
take on more risk in Nash equilibrium relative to first-best. That section also shows that
the second-best solution can never deliver the first-best level of expected utility. Section
6 provides additional examples. Section 7 considers the case of “impure altruism” where
the motivation for giving is a mixture of warm glow and pure altruism. Section 8 presents
additional discussion. It explains why our results differ from the asset-liability matching
convention that is more appropriate for pension plan investments. It also explains why
our results differ from a key maxim from the charitable giving literature that argues that
pure altruism cannot explain large amounts of giving. This section also shows how to
interpret other real-world elements within our framework, including donations being tax
deductible, capital campaigns, mixed investment accounts, committed spending needs
and private foundations. Section 9 concludes. Appendix B contains proofs.

The focus of this paper, like much of the past literature, is normative, i.e., about deriv-
ing the optimal investment policy. Nonetheless, Section 7 shows that our model naturally
generates a key stylized fact, namely, the cross-sectional “size effect” where the share of an
endowment’s investment in risky assets increases in the endowment’s size (NCSE (2017),
Figure 3.2). This correspondence, therefore, provides an indirect test of the model. Ap-
pendix A provides a more direct test of the model’s mechanism. Using confidential data
of university and college endowment asset information, it shows that gifts per potential
donor (proxied by the number of full-time equivalent students) decrease in the number of
potential donors, consistent with standard Nash equilibrium giving. Moreover, gifts per
donor increase in the share of an endowment’s assets invested into risky assets, consistent
with the prudence effect. The results are strongly statistically significant and robust to
various controls and data slices.

2 Three-Stage Game

For exposition purposes, we present a very simple model. An endowment is funded by
N identical donors, each endowed with wealth w = 1. Both the endowment and donors
have access to the same risky and risk-free assets. The risk-free asset pays a guaranteed
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zero real return, r = 0. The risky asset with random net return x̃ also has a zero expected
value, E [x̃] = 0. The risk-free asset, therefore, second-order stochastically dominates the
risky asset, and so risk-averse donors should never take on risk. We can interpret the risky
asset as an expensive investment that does not over-perform cash on average. Nonethe-
less, we show that the endowment, which competitively maximizes ex-ante donor ex-
pected utility, should optimally hold the risky asset under a new condition we derive.16

The timing of the model (with commitment17) is as follows:

Stage 1: The endowment announces its optimal investment policy in the risky asset
λ that maximizes each donor’s identical expected utility.

Stage 2: Each donor i picks her own optimal gift gi. She simultaneously picks her
own investment in risky assets αi for the remainder of wealth not gifted,
1− gi. A Nash (non-cooperative) game is played with other donors.

Stage 3: The risky return x̃ is realized.

The endowment is forward looking and so the game is solved backward, starting with
the decision-making at Stage 2.

2.1 Stage 2: Donors

Each donor i donates gift gi to the endowment and also chooses the amount αi to invest
in risky assets from the remainder of her assets, 1 − gi. Donor i makes these choices,
conditional on the value of λ announced by the endowment at Stage 1 as well as the
donation decisions of other donors, to maximize donor i’s expected utility:18

EUi
(

gi, αi|λ,−→g−i
)
= E [u (1 + αi x̃− gi)] + E

[
v

(
gi +

N

∑
j=1,j 6=i

gj + λx̃

)]
. (1)

Here, −→g−i = (g1, ..., gi−1, gi+1..., g N) is the vector of donations made by donors other than
donor i. (Consistently, we will use the notation ~g = (g1, ..., gN) to be the vector of all do-
nations, including donor i.) The increasing and concave functions u (·) and v (·) provide
felicity over personal consumption and gifts contained in the endowment, respectively.

16 Numerical results are discussed below for the case E [x̃] > r = 0, consistent with a positive equity
premium. The key results remain qualitatively unchanged but become quantitatively stronger.

17 Complete information (or competition) requires renegotiation-proof contracts in our setting, ruling out
an endowment announcing a risky portfolio in Stage 1 and investing in no risk in Stage 3.

18 In particular, donor i invests αi into the risky asset and the remainder, (w− gi − αi), into the risk-free
asset, for a gross return at Stage 3 of αi(1 + x̃) + (w − gi − αi)(1 + r), which reduces to 1 + αi x̃ − gi with
w = 1 and r = 0, as shown in the first term on the right-hand side of equation (1). Similarly, the endowment
invests λ of total gifts, G = ∑N

j=1 gj, into the risky asset and the remainder into the risk-free asset, to receive
λ(1 + x̃) + (G− λ)(1 + r) = G + λx̃, which is shown in the second term.
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The expression in function v (·) assumes that each donor only cares about the sum of
gifts, consistent with pure altruism, and so the donor does not distinctively weigh her
own gift. The endowment, therefore, provides a “public good” to donors in the tradition
of Samuelson (1954), which can lead to free-riding.

2.2 Remark: A Neutrality Result with No Altruism

Instead of altruism, suppose for a moment that each donor only receives utility from her
own gift, a “warm glow” (Andreoni (1998)) without any shared benefit to other donors.
Moreover, suppose donor’s gift is perfectly substitutable with her own private consump-
tion. Then, the donor’s problem (1) becomes

EUi
(

gi, αi; λ,−→g−i
)
= E [u (1 + αi x̃− gi + (gi − λ)(1 + r) + λ(1 + x̃))]

= E [u (1 + (α + λ)x̃)] ,
(2)

where, recall, r = 0. We drop the i subscript on α in the second equality since donors are
still ex-ante identical and there is no public good. The free-riding problem, of course, van-
ishes. But, notice that each donor now only cares about the total risk, (α + λ), rather than
its decomposition. As a result, the actual endowment risk policy λ, that competitively
maximizes donor ex-ante utility, is now irrelevant since each donor simply neutralizes
any choice of λ with an offsetting choice of α, similar to the M-M theorem. This neutral-
ity result easily generalizes to richer economic settings, including model settings cited in
Section 1 that consider shocks to the economy or endowment sponsor costs.

To be sure, program (2) is not realistic. Program (2) models giving as a pure private
good, in contrast to the evidence of “impure altruism” (Section 1). Program (2) also as-
sumes that the private return for the charitable donation is fully substitutable with other
private consumption. This “value additivity” type of assumption is natural in the cor-
porate finance setting where investors only care about cash flows and not the identity of
each cash flow. It is a much stronger assumption for donations.

Still, this neutrality result emphasizes the power of allowing for donor maximization,
a result that easily generalizes to even richer settings with economic or cost shocks. Mod-
els with impure altruism fall in-between and produce free-riding, albeit less free-riding,
than full altruism (Andreoni, 1989). Our subsequent key theoretical results, however,
only require the presence of some free-riding. Hence, most of the remainder of this paper
considers the case of pure altruism giving shown in equation (1). But, we return to the
case of impure altruism in Section 7.
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2.3 Stage 1: The Endowment

The endowment fund picks its investment policy λ to maximize the sum of donor utilities,

N

∑
i=1

E [u (1 + α∗i (λ)x̃− g∗i (λ))] + N · E
[

v

(
N

∑
i=1

g∗i (λ) + λx̃

)]
,

where g∗i (λ) and α∗i (λ) are the equilibrium policy functions that solve the Stage-2 prob-
lem.19 However, since donors are ex-ante identical, maximizing their sum of utilities is
identical to choosing λ to maximize the ex-ante utility of a single donor, consistent with a
competitive equilibrium, where endowments compete for donations:

Ω (λ) = E [u (1 + α∗(λ)x̃− g∗(λ))] + E [v (Ng∗(λ) + λx̃)] . (3)

2.4 Nash (Second-Best) vs. Social (First-Best) Values of λ

Denote λ∗ as the value of λ that maximizes equation (3). We say that λ∗ is the second-best
solution for the endowment problem because λ∗ is conditional on the equilibrium pol-
icy functions produced by the non-cooperative Nash game in Stage 2. As shown below,
the second-best solution is not Pareto efficient because each donor fails to internalize the
value of her contribution on the utility of the other N − 1 donors in Stage 2.

The endowment problem outlined above looks similar to the “social planner” problem
considered by Samuelson (1954) and the large subsequent public goods literature. But,
there is a subtle yet important difference. While picking λ, the hypothetical social planner
also gets to pick the gifts vector ~g when maximizing equation (3). The social planner,
therefore, directly solves the gifts free-riding problem, thereby producing the first-best
expected donor utility, which is Pareto efficient. Let hatted variables correspond to the
social planner solution, and so λ̂ is the first-best solution for the endowment problem (3).

3 Setting the Stage: An Example

We present general results starting in the next section. For now, let’s set the stage by
considering a simple example to help drive subsequent intuition.

Suppose that each donor has separable log-log preferences: u (·) = v (·) = log (·). More-
over, suppose that the net risky return x̃ follows a two-point distribution that takes the
values +1 and −1 with equal probability, 1

2 . The following results will be proven later.

19 Section 5 defines the non-cooperative Nash equilibrium in more detail, but it is standard.
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First, consider the centralized, socially optimal solution. Regardless of the total num-
ber of donors N, the social planner would require the endowment take no risk, λ̂ = 0,
since the risky asset is stochastically dominated. Instead, the social planner directly solves
the free-riding problem by commanding each donor to give (or taxing them) sufficiently,
producing a first-best total level of giving of N

2 , which increases unbounded in N.
Now, consider the decentralized setting. Suppose that the endowment arbitrarily

adopts a “no-risk rule,” i.e., λ = 0. However, there is no social planner to address free-
riding. Instead, donors give voluntarily in a non-cooperative setting. With λ = 0, this
Nash game produces N

N+1 in total giving, which converges to just unity in N.
This “no risk” rule, however, is not second-best optimal if there are more than three

donors, N > 3.20 The second-best solution requires taking on some risk, |λ∗| > 0.21

Specifically, the endowment can increase donor utility by growing the second-best |λ∗| in
the number of donors N, as plotted in Figure 1.22 (For comparison, the first-best solution,
λ̂ = 0, and “no-risk rule,” λ = 0, are also shown.) Growing |λ∗| in N according to this
plotted function produces N

4 in total giving. Notice that with N > 3:

N
N + 1

(i.e., “no-risk rule” total giving with λ = 0)

<
N
4

(i.e., second-best equilibrium total giving, |λ∗| > 0)

<
N
2

(i.e., first-best giving, λ̂ = 0)

Figure 2 shows total giving in N under the first-best, second-best and “no-risk rule” so-
lutions. Each value of total giving for a given value of N is consistent with its respective
value of λ shown in Figure 1.

Consider the first inequality above. It reflects a reduction in free-riding when risk tak-
ing |λ| increases in N. Since donor expected utility is being maximized, this change is also
Pareto improving. Of course, at first glance, this result seems absurd since the risky return
x̃ produces no commensurate risk premium. Put differently, this endowment is simply
introducing mean-preserving risk. How could “junk” variance be optimal since log-utility
donors are risk averse to changes in the endowment’s value? The answer is that with pos-
itive prudence, even a mean-preserving increase in risk effectively pre-commits each donor to

20 We prove in Section 6 that N > 3 is required for the general “optimality condition,” derived in Section
5, to hold for log utility. Intuitively, endowment risk taking is costly since the risky asset is dominated. But,
the benefit of taking on some risk increases in the size of the free-riding problem which, itself, increases in
N. For log utility, only N > 3 is required for the benefit from some risk taking to exceed the cost.

21 The model allows for shorting and so λ 6= 0 represents risk taking.
22 This rule is derived algebraically in Section 6.
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Figure 1: Endowment Risk: First-best (λ̂ = 0), Second-best (|λ∗|), and No Risk (λ = 0)
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Figure 2: Total Giving: First-Best, Second-Best and No Risk
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Notes for Figures 1 and 2: As in Section 6.3, u(w) = v(w) = log(w) and net return to stocks, x̃, take values
in set {−1.,+1.0} with equal probability.
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give a larger, precautionary donation. More specifically, under the optimality condition
derived in Section 5, the marginal benefit of reducing free-riding exceeds the marginal
cost of additional “junk” risk, each measured at the point where the endowment initially
takes no risk (λ = 0). Moreover, this second-best solution is required by competition (or
complete information). Under the normative baseline where principal-agent conflicts do
not exist by definition, rational donors, will reward (donate to) endowments that take on
this risk and walk away from endowments that do not.

The second inequality, however, shows that decentralized second-best mechanism
with endowment risk taking still produces a level of giving smaller than the first-best
mechanism where free-riding is eliminated by force without risk taking. It is not efficient
for the endowment to fully eliminate free-riding in second best. In fact, if the endowment
got “greedy” and tried to generate more total giving by increasing |λ| in N faster than the
value of |λ∗| shown in Figure 1, donors would walk away (under competition) or fire the
endowment manager (with complete information and managerial control).

In sum, it is second-best optimal to grow endowment risk taking |λ| in N. However,
we can go one-step further: in second-best, the share of the endowment invested in the
risky investment, |λ

∗|
( N

4 )
, increases in the size of the endowment, N

4 . Intuitively, as noted

above, the first-best level of giving, N
2 , grows unbounded in N. But, the level of giving

under the “no-risk rule” (λ = 0), N
N+1 , converges to unity. Hence, the size of the free-

riding problem—the difference between these two quantities—grows unbounded in N. A
growing endowment, therefore, must take on increasing share of risk in second best to
mitigate the growing amount of free-riding. The second-best level of total giving, N

4 ,
although less than first best, at least now grows unbounded in N. As we show later, it is
even optimal for a large endowment to take on a large risk share even if donors are much
more risk averse to changes in the endowment’s value than characterized by log utility.

4 The Social (First-Best) Optimum

In the social optimum, the endowment and individual donors don’t need to take a posi-
tion in the dominated risky asset. Individual gifts are also symmetric:

Theorem 1. λ̂ = 0, α̂i = 0 ∀i, with equal individual gifts ĝi = ĝ that solves

u′ (1− ĝ) = Nv′ (Nĝ) . (4)

Intuitively, since the social planner directly controls individual gifts, the planner does not
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need to inefficiently distort risk taking by setting λ̂ to a non-zero value. The concavity
of u (·) and v (·) implies that this solution is also unique. In the proof to Theorem 1 in
Appendix B, we provide an extension that shows how first-best gifts ĝ vary in N.23

5 Nash (Second-Best) Equilibrium

Without the social planner, the presence of free-riding in the second-best setting, however,
fundamentally changes the optimal risk allocation. We now solve for the more general
non-cooperative solution (Nash) for the game outlined in Section 2 and then compare it
against the social optimum solution (Section 4).

5.1 Stage 2: Nash Equilibrium Gifts

Starting first with the donor game in Stage 2, the definition of a Nash equilibrium is
standard. Each donor i picks the tuple (gi, αi) that maximizes her problem (1), given the
gifts made by other donors, −→g−i.24 A Nash equilibrium is the vector of gifts ~g∗ and the
vector of personal risk taking ~α∗ = (α1, ..., αN) that maximizes the donor problem (1), ∀i.

Theorem 2. The Nash equilibrium in the Stage-2 donor game is unique with α∗i = 0, ∀i, and
equal gifts, g∗i (λ) = g∗ (λ), conditional on λ, that solves

u′ (1− g∗ (λ)) = E
[
v′ (Ng∗ (λ) + λx̃)

]
. (5)

In words, each donor wants to invest all of her personal (non-gifted) wealth, 1− gi, into
the risk-free asset, which, recall, pays the same expected return as the risky asset. The
equilibrium is unique and symmetric, producing identical gifting policy functions, g∗ (λ).

23 Let Rv (w) = −w·v′′(w)
v′(w)

denote the Arrow-Pratt coefficient of relative risk aversion for felicity function v
over the public good. Then, ĝ is [increasing in, independent of, decreasing in] N ⇐⇒ Rv (Nĝ) [<,=,>] 1.
Intuitively, as the value of N increases, the positive externality of giving by one donor extends to more
donors, thereby increasing the social benefit from the public good. At the same time, as N increases, the total
endowment wealth, Nĝ, increases, lowering the marginal utility from more gifts. Rewrite the condition as
v′ (Nĝ) = −Nĝ · v′′ (Nĝ). The left-hand side represents the positive externality effect while the second term
reflects the wealth effect. If the first [second] effect dominates then Rv (Nĝ) < [>]1. The positive externality
effect is absent in the Nash problem considered below, leading to an under-provision of the public good.

24 Each donor only needs to know the total size of giving, which is standard in public good games.
Even the Nash equilibrium concept can be replaced with a Perfect Bayesian Equilibrium under reasonable
conditions, but this modification isn’t necessary since total gifts are generally observable. For example, a
university typically provides updated information about gifts during a capital campaign.
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5.2 Stage 2: Comparative Statics of g∗ (λ)

We now investigate how the equilibrium level of giving, g∗ (λ), changes as the number of
donors, N, increases and as endowment risk moves away from its socially optimal value,
λ̂ = 0. Let Pv (·) ≡ − v′′′(·)

v′′(·) denote the coefficient of absolute prudence (Kimball, 1990) for
felicity function v over the public good. Then:

Theorem 3. The following comparative statics hold:

1. g∗ (λ) is decreasing in N.

2. Pv (Ng∗ (0)) > 0⇐⇒ λ = 0 is a local minimum of g∗ (λ).

3. Pv (·) > 0 =⇒ g∗ (λ) is increasing in |λ| and λ = 0 is the global minimum of g∗ (λ).

Part 1 is the standard result from the previous literature, where individual giving falls
in the number of donors, which, in our model setting, is consistent with a fixed value of
λ, including no risk taking, λ = 0. But, with positive prudence, some endowment risk
taking will increase the Nash equilibrium level of giving relative to no risk taking λ = 0
(Part 2). In fact, λ = 0 produces the global minimum level of giving (Part 3).

The role of prudence can be explained with equation (5). As the endowment changes λ

from zero, it introduces risk in the second term, E [v (·)]. Donor i makes a “precautionary
donation” with a larger gift, gi, similar to “precautionary savings” with uninsurable risk
(Kimball, 1990). Positive prudence is a standard assumption. DARA preferences, for
example, is a sufficient (but not necessary) condition for positive prudence.

Example 1. Consider the case of two donors (N = 2). Figure 3 plots the gift reaction functions
of donors i = {1, 2} in gift (g1, g2) space with αi = 0. Donors have constant relative risk averse
felicity (see Figure 3 notes). For the set of reaction functions labeled as “λ = 0.0” the value
λ is set to zero and the intersection of the reaction functions represents the corresponding Nash
equilibrium level of gifting. (By symmetry, g∗1 = g∗2 , all equilibria lie on the dotted 45-degree
line.) The gift level lies below the indicated social optimum value. When λ is increased to 0.25,
equilibrium gifts move closer to the social optimum, reducing some free-riding. When λ = 0.40,
equilibrium gifts “over-shoot” the social optimum value, a point we discuss in more detail below.

While this paper is normative in nature, Appendix A directly tests the predictions of
Theorem 3 using data of U.S. university and college endowments and associated school
characteristics. To summarize, gifts per potential donor (proxied by the number of full-
time equivalent students) decrease in the number of potential donors, consistent with Nash
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Figure 3: Gifts Reaction Functions for Two Donors (N = 2)
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Notes: Shows reaction functions and corresponding equilibria for two donors i ∈ {1, 2}, λ ∈
{0.0, 0.25, 0.40}, u(w) = v(w) = w1−γ

1−γ , γ = 4, and αi = 0. Net return to stocks, x̃, take values in set
{−1.,−0.05, 0.05, 1.0} with probabilities {0.1, 0.4, 0.4, 0.1}. At λ = 0, the reaction functions are linear since
(w0 − gi) = (g1 + g2) at optimum. For λ > 0, reaction functions are slightly nonlinear.
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equilibrium giving (Theorem 3, Part 1). Moreover, gifts per donor increase in the share of
an endowment’s assets invested into risky assets, consistent with prudence (Theorem 3,
Part 3). These results are strongly statistically significant and robust to various controls
and data slices. This type of quantitative test is superior to trying to interpret qualitative
language provided in endowment reports related to their long-term investment pools,
where multiple interpretations could be made. Moreover, Theorem 3’s predictions do not
literally require that endowment managers understand the mechanism; rather, endow-
ments taking on more risk receive larger individual gifts.

5.3 Stage 1: Optimal λ∗

But, is it efficient for the endowment to take on risk? Without free-riding, Theorem 1 shows
that the optimal endowment level of risk taking is zero, λ̂ = 0. With free-riding, Theorem
3 shows that endowment risk taking reduces free-riding. So, under what condition does
the benefit from less free-riding exceed the cost from taking on dominated risk?

In Stage 1, the endowment solves for its optimal investment policy λ∗ by maximizing
problem (3), given the Nash gift policy functions g∗ (λ) determined in Stage 2. Notice
that if the endowment fails to take on any risk (λ = 0) then Nash gifts are implicitly
determined simply by the relationship,

u′ (1− g∗) = v′ (Ng∗) . (6)

Compare this relationship to equation (4) in Theorem 1 that derives the social optimal
level of giving. The only difference is the presence of N that multiples the marginal utility
of the public good on the right-hand side in equation (4). Intuitively, since the public
good (endowment) is non-rivalrous in consumption, the socially optimal solution linearly
increases the marginal utility of the public good. It is easy to see that g∗(λ = 0) < ĝi

∗, the
now-familiar public goods free-riding problem first identified by Samuelson (1954).25

For exposition, suppose u (·) = v (·). (Footnotes and Appendix B generalize the results
to u (·) 6= v (·)). Denote A (·) ≡ −u′′(·)

u′(·) and P (·) ≡ −u′′′(·)
u′′(·) as the coefficients of absolute

risk aversion and absolute prudence, respectively. Recall each donor has wealth w = 1
before making a gift, and so the donor count N equals total wealth.

Theorem 4. λ = 0 is a local minimum solution to the endowment problem that maximizes
equation (3)⇐⇒ P

( N
N+1

)
> N+1

N−1 · A
( N

N+1

)
when u (·) = v (·).26 Hence, |λ∗| > λ̂ = 0.

25 Indeed, the expression shown in Theorem 1 is commonly known as the “Samuelson condition.”
26 As shown in the proof to Theorem 4 in Appendix B, for the general case where u (·) and v (·) might be
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Theorem 4 shows that the endowment’s optimal investment policy λ∗ is to take on
positive risk (by longing or shorting the risky asset27) under a new condition where the fe-
licity’s level of absolute prudence is sufficiently larger than its absolute risk aversion. For
a finite value of N, this condition is slightly stronger than the relationship between pru-
dence and risk aversion that is equivalent to standard Decreasing Absolute Risk Aversion
(DARA) preferences, i.e., P

( N
N+1

)
> A

( N
N+1

)
.28 However, this new condition quickly

converges to DARA in N since the multiplier, N+1
N−1 , converges to 1.

To understand this relationship, first consider the term N
N+1 inside of the P (·) and

A (·) operators in Theorem 4. At λ = 0, equation (6) with u (·) = v (·) implies that the
individual Nash equilibrium gift g∗ (0) = 1

N+1 . Hence, total gifts equal N
N+1 at λ = 0.

At large N, therefore, the Theorem-4 condition simply requires DARA preferences,
P
( N

N+1

)
> A

( N
N+1

)
, at the total levels of gifts with no endowment risk taking, λ = 0.

Intuitively, as shown in the Theorem 3, positive prudence, P (·) > 0, implies that endow-
ment risk taking, |λ∗| > 0, reduces free-riding, thereby capturing the marginal benefit
of additional risk taking. However, as shown in Theorem 1 risk taking is not optimal
without free-riding. The coefficient of relative risk aversion, A (·), captures the marginal
cost of additional risk. It is optimal, therefore, for the endowment to take on risk if the
marginal benefit, P

( N
N+1

)
, exceeds the marginal cost, A

( N
N+1

)
, calculated at the level of

gifts with no risk taking. These results generalize to the case where N is not large and
u (·) 6= v (·), although with some additional notation.29 Simulation code, made available

different, the necessary and sufficient condition is:

(N − 1) Pv (Ng∗ (0)) > Au (1− g∗ (0)) + NAv (Ng∗ (0)) ,

where Pv is the absolute prudence of v. Au and Av are the absolute risk aversions for u and v, respectively.
See Footnote 29 for additional discussion. We focus on the equality case in the text for exposition, thereby
dropping the superscripts on P and A.

27 Our characterization of risky returns does not distinguish between long or short positions. Any devi-
ation from zero represents risk taking.

28 DARA is “a very intuitive condition” (Eeckhoudt et al., 2005) and includes commonly-used preferences
such as Constant Relative Risk Aversion. DARA is necessary and sufficient for the absolute amount of risk
taking to increase in wealth, along with many other standard properties (Gollier, 2004).

29 At smaller N, the multiplier, N+1
N−1 , is more relevant. Consider the more general Theorem-4 condition

from footnote 26, where we multiply each side by 1
2 E
[
x̃2]:

(N − 1)
1
2

E[x̃2]Pv (Ng∗ (0)) >
1
2

E[x̃2]Au (1− g∗ (0)) + N
1
2

E[x̃2]Av (Ng∗ (0)) .

The left-hand side, which is the approximation for the precautionary equivalent premium (Kimball, 1990)
for small, zero-mean risks, is exactly equal to the willingness of N− 1 donors to increase their precautionary
donations in response to additional risk taking by the endowment in Nash equilibrium, i.e., the benefit of
reducing free-riding to an individual donor. The right-hand side, which is the Arrow-Pratt approximation
for the risk premium, is exactly equal to the premium required by an individual donor to take on the
additional risk, i.e., the cost of additional risk taking. More specifically, the right-hand side is equal to the
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online, considers the case of E [x̃] > r = 0, consistent with a positive equity premium.30

5.4 Comparison Against the Social Equilibrium

The Nash (second-best) expected utility, however, calculated at the optimal endowment
investment policy Ω (λ∗) with |λ∗| > 0, can never produce the socially-optimal (first-
best) level of expected utility. At only a slight abuse of notation, denote ΩSO (λ) as as the
value of expected utility Ω (λ) in equation (3), but where the social planner picks λ and
individual gifts in Stage 1. Then:

Theorem 5. Under the Theorem-4 condition, ΩSO

(
λ̂ = 0

)
> Ω (λ∗) > Ω (λ = 0), where

|λ∗| > 0.

The first inequality shows that the socially optimum solution, where social planner di-
rectly picks gifts and the endowment takes no risk, produces larger donor expected util-
ity than the second-best Nash optimum where the only available instrument is for the
endowment to take on investment risk. (This inequality does not require the Theorem-4
condition.) Once in the second-best setting, the second inequality shows that positive risk
taking is optimal under the Theorem-4 condition, as previously proven in Theorem 4.

Let’s return to Example 1. The case of λ = 0.40 in Figure 3 shows that the Nash equi-
librium level of gifts can over-shoot the social optimum level. Indeed, there exists a value
of λ that fully eliminates free-riding. Importantly, however, this value of λ is generally
not second-best optimal, as it does not maximize the Stage-1 endowment problem (3). In-
tuitively, fully solving the gifts free-riding problem in the second-best Nash game would
require distorting the endowment’s dominated risk investment λ too much. In fact, in
this example, recall that γ = 4 and N = 2 (N = 2 allowed us to plot the reaction func-
tions in two dimensions in Figure 3). As proven in Section 6, with γ = 4, there must be
at least 10 donors (N ≥ 10) for the Theorem-4 condition to be satisfied with HARA util-
ity (of which Constant Relative Risk Aversion is a special case). In fact, the second-best
level of endowment risk taking in Example 1 is λ∗ = 0. In words, the endowment should
not take on any risk since, with just two donors, the value of reducing any free-riding is
outweighed by the dominated risk costs associated with an even small investment.

direct cost associated with more risk taking by the endowment as a whole, N 1
2 E[x̃2]Av (Ng∗ (0)), and in the

donor’s “private wealth”, 1
2 E[x̃2]Au (1− g∗ (0)). Even though α∗ = 0, the envelope theorem implies that,

in effect, a donor’s private wealth, up to the individual gift level, g∗ (0), is exposed to additional risk.
30 The key results presented herein remain qualitatively unchanged but generally become quantitatively

stronger. The reason is that first term in equation (5) now contains some risk since α∗ > 0. This risk creates
a competing prudence effect for the endowment, which must increase λ even more to offset.
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Now assume N = 10. Figure 4 plots the value of expected utility Ω (λ) from equation
(3), where the equilibrium Stage-1 policy functions α∗(λ) and g∗(λ) are Nash. Notice
that the expected utility peaks at a value λ greater than zero but falls at larger values of
λ. Increasing λ above zero reduces free-riding, thereby increasing donor expected utility.
But, raising λ too much, reduces donor utility by distorting risk taking too much. In
sharp contrast, Figure 5 shows the donor expected utility for the same donor problem
where the social planner can directly pick gifts. Notice that expected utility now peaks
at λ = 0, consistent with Theorem 1. In the first-best setting, there is no need to take on
otherwise inefficient risk taking since the social planner can directly solve free-riding.

6 Examples

We now present three examples, where u(·) = v(·), starting with very general HARA
preferences before narrowing, while proving the key derivations presented in Section 3.

6.1 HARA Utility

Consider the HARA class of felicity functions,

u (w) = ζ

(
η +

w
γ

)1−γ

,

on the domain η + w
γ > 0. The first three derivatives are:

u′ (w) = ζ
1− γ

γ

(
η +

w
γ

)−γ

,

u′′ (w) = −ζ
1− γ

γ

(
η +

w
γ

)−γ−1

, and,

u′′′ (w) = ζ
(1− γ) (1 + γ)

γ2

(
η +

w
γ

)−γ−2

.

We naturally assume ζ 1−γ
γ > 0 such that u′ (w) > 0 and u′′ (w) < 0.

The first-best (socially optimal) investment policy is, of course, λ̂ = 0 (Theorem 1).
The first-best individual gift level is

ĝ =
(N)1/γ +

(
(N)1/γ − 1

)
γη

(N)1/γ + N
. (7)
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Figure 4: Expected Utility: Nash
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Figure 5: Expected Utility: Social Optimum
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1−γ , and γ = 4. Net return to stocks, x̃, take values in
set {−1.,−0.05, 0.05, 1.0} with probabilities {0.1, 0.4, 0.4, 0.1}.
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The coefficients of absolute risk aversion and prudence are given by

A (w) =

(
η +

w
γ

)−1

, and,

P (w) =
1 + γ

γ

(
η +

w
γ

)−1

,

respectively. Then the Theorem-4 condition,

P
(

N
N + 1

)
>

N + 1
N − 1

· A
(

N
N + 1

)
,

is equivalent to

0 < γ <
N − 1

2
. (8)

With the value γ = 4, as used in Example 1, it takes just 10 donors for it to be optimal
for the endowment to take on investment risk, |λ∗| > 0. Even smaller values of N are
required at smaller values of γ (less concavity). At large N, this condition simply becomes
0 < γ < ∞, which is equivalent to DARA preferences.

6.2 CRRA Utility

For the HARA subset of constant relative risk aversion (CRRA) felicity functions (η = 0),
the first-best (social optimally) gift level shown in equation (7) simplifies to:

ĝ
(

λ̂ = 0
)
=

N1/γ

N1/γ + N
(9)

To determine the Theorem-4 condition, let u(·) and v(·) take on potentially different
relative risk aversion parameters, γu and γv. Equation (8) is then replaced by:

0 < γu + γv < N − 1 (10)

0 < γv. (11)

Equations (10) and (11) indicate that the more linear the preferences, the lower the value
N required for |λ∗| > 0. These conditions support flexible preferences.

Remark (Quasi-linear utility). Preferences can be quasi-linear. In the extreme, preferences over
non-charitable consumption can be linear, γu = 0, and preferences over charitable consumption
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can be arbitrarily close to linear, γv → 0+. If γv = 0 then it would be socially optimal for each
donor to donate all of her wealth above a small non-charitable value.

The model also accommodates nearly “deterministic” planning goals.

Remark (“Deterministic” future expenses). If the endowment’s sponsor’s future spending
goals are fully fixed (“deterministic”), then γv = ∞. In this case, condition (10) cannot hold
for any finite value of N, and so the optimal endowment risk is zero, λ∗ = 0. However, γv = ∞
also implies that non-charitable consumption, 1− gi, converges to zero even in Nash equilibrium.
More realistically, suppose that future spending goals by the endowment’s sponsor are at least
somewhat flexible. Then, the value of γv is finite and there exists a finite value of N where endow-
ment risk taking is optimal, |λ∗| > 0. For example, suppose γu = 4 and γv = 20, suggesting very
high risk aversion to the endowment’s asset value falling short of expectation. Then, an endowment
with N ≤ 25 donors optimally takes no risk while an endowment with N ≥ 26 does.

6.3 Log Utility with a Two-Point Risk Distribution

Now consider the CRRA subset of log felicity (γu = γv = 1). By equation (9), the first-best
level of gifts is simply

ĝ
(

λ̂ = 0
)
=

1
2

.

To compute the corresponding second-best Nash equilibrium, the Theorem-4 condi-
tion is satisfied for all N > 3 by equation (8). We can also obtain analytic solutions for
individual gifts of the Nash game by specifying a distribution for x̃. Suppose x̃ follows a
two-point distribution that takes the values +1 and −1 with equal probability, 1

2 . Then,
the Nash equilibrium donation is

g∗ (λ) =
N +

√
N2 + 4N (N + 1) λ2

2N (N + 1)
. (12)

Equation (12) implies that if λ were mistakenly set to zero (no endowment risk taking),
then g∗(λ = 0) = 1

N+1 , which is less than the social optimal value of 1
2 , with N > 1.

Individual Nash gifts converge to zero in N while total gifts N
N+1 converges to just unity.

But, the endowment can do better by choosing the second-best λ to grow with N:

Example 2. Suppose felicity is log and let x̃ follow a two-point distribution that takes the values

+1 and −1 with equal probability. Then, |λ∗| =
√

N(N−3)
4 and g∗ (λ∗) = 1

4 .
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Notice that the individual second-best donation is now a constant 1
4 . So, total dona-

tions N
4 rise in N but are still below the first-best level N

2 . Setting |λ∗| at a larger value
than shown in Example 2 would generate generate larger gifts (Theorem 2) but cause too
much risk distortion, reducing donor expected utility (Theorem 4).

6.4 CARA Utility

Our final example tests the boundary of the Theorem-4 condition, which, recall, is suffi-
cient and necessary for the endowment to take on risk in the Nash game, |λ∗| > 0.

Consider the case of Constant Absolute Risk Aversion (CARA) felicity:

u (w) = −e−γw

The socially optimal level of individual gifts are:

ĝ(λ̂ = 0) =
1

N + 1

(
1 +

ln N
γ

)
.

For the Nash game, to obtain an analytic solution, assume that x̃ is normally dis-
tributed with expectation 0 and and variance σ2. The Nash gift policy function is

g∗ (λ) =
1

N + 1

(
1 +

1
2

γσ2λ2
)

. (13)

Like the CRRA example considered above, if λ were set to zero, then individual gifts
g∗ (λ = 0) fall to zero in N and the value of the total gift, Ng∗, approaches the value of
just unity. Moreover, individual gifts are below the socially optimal level of gifts.

However, CARA presents a problem not previously found with CRRA. In particular,
CARA felicity implies that P

( N
N+1

)
= γ = A

( N
N+1

)
< N+1

N−1 · A
( N

N+1

)
. Hence, CARA vio-

lates the Theorem-4 condition, even if “just barely” at large N. As a result, in Stage 1, it is
no longer optimal for the endowment to take on more risk to increase individual gifts.

Example 3. Suppose felicity takes the CARA form and let x̃ follow a normal distribution with
expectation 0 and variance σ2. Then, λ∗ = 0 and g∗ (λ∗) = 1

N+1 .

Of course, it is important to remember that while CARA felicity is popular for pro-
ducing analytic solutions, it also implies an implausible attitude toward risk aversion
discarding the usual Inada condition. So, CARA predicts that each coauthor of this paper
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would hold the same dollar amount in risky assets as Bill Gates, by shorting the risk-free
asset by, in our individual cases, quite sadly, a nearly identical amount!

7 The Size Effect

The main focus of this paper is normative in nature, that is, on deriving optimal endow-
ment risk taking rather than attempting to explain actual practice. Still, we now show that
our model produces a key empirical relationship between endowment size and optimal
risk taking—the cross-sectional “size effect”—where risk taking increases in endowment
size (NCSE (2017), Figure 3.2), including liquidity risk by the largest endowments (ibid.).
However, contrary to conventional wisdom, a large endowment optimally takes on sub-
stantial risk in our model even without the presence of fixed costs (e.g., dedicated asset
managers) and even if it does not have access to unique asset classes that produce supe-
rior expected returns. Conversely, it is also optimal for smaller endowments to take on less
risk even in the presence of modern outsourced “endowment style” turnkey investment
solutions that are supposed to absorb these fixed costs and provide access to superior re-
turns. We first consider our baseline model with pure altruism and then show how the
results extend to the case of “impure altruism.”

7.1 Pure Altruism: Log Utility

Denote G(λ∗) = ~g(λ∗) ·~1 as sum of all gifts in Nash equilibrium, equal to the size of
the total endowment. The ratio λ∗

G(λ∗) gives the second-best optimal risk share, that is, the
optimal share of the total endowment invested into risky assets.

For the two-point log utility example in Section 6.3, the optimal risk share is

|λ∗|
G∗ (λ∗)

=
|λ∗|

Ng∗ (λ∗)
=

√
N(N − 3)/4

N/4
=
√

1− 3/N,

where, recall, N > 3. Notice that the optimal risk share increases in N, converging to 1
in N. Intuitively, Figure 2 shows that the gap between the first-best total level of giving
(solid line) and the constrained no-risk (λ = 0) total level of giving (dotted line) increases
in N. The second-best strategy, therefore, is to not only increase the value |λ| in N but to
increase its value faster than the size of the endowment G∗ itself.

Figure 6 plots the endowment’s second-best optimal risk share for the two-point log
utility case (γ = 1.0). For comparison, additional CRRA values (γu = γv = γ = 2.0,
4.0) are also shown, consistent with greater risk aversion. Notice the graphs in Figure 6
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turn positive at different values of N. As noted in Section 6.2, the minimum value of N
required for the Theorem-4 optimality condition to hold increases in γ. In each case, the
optimal risk share converges to unity (complete risk taking) in N. In sum, a higher level
of risk aversion only increases the minimum value of N required for a positive optimal
risk share and then the speed at which the optimal risk share converges to 1.0.

7.2 Extension: Impure Altruism

As previously noted, our key insights only requires that some giving is to a public good;
a large component can still be for private consumption. Consider a modification of the
original public goods donor problem (1) that now accommodates impure altruism:

EUi
(

gi, αi|λ,−→g−i
)
= E [u (1 + αi x̃− gi)]

+ E

[
v

(
gi +

λ

N
x̃ + ρ

[
N

∑
j=1,j 6=i

gj + λ
(N − 1)

N
x̃

])]
,

(14)

where ρ represents the degree of altruism. With ρ = 1, we get the original donor problem
(1), where a donor i’s gift, gi, and its subsequent investment return, produces the same
felicity within v (·) as gifts and subsequent investment returns from other donors. It is
this substitutability of giving that produces the free-rider problem. With ρ = 0, donors
only value their own gift and subsequent investment return, consistent with pure private
consumption.31 Intermediate values of ρ correspond to “impure altruism.”

Similar to Figure 6 for the pure altruism problem (ρ = 1), Figure 7 plots the endow-
ment’s second-best optimal risk share from the three-stage Nash problem outlined in Sec-
tion 5 but with the impure altruism donor problem (14) now used in Stage 2. We set
ρ = 0.25, consistent with a significant level of impurity in altruism. Let’s now compare
the results in Figure 7 against Figure 6 where ρ = 1.0 (full altruism). For a given risk
aversion γ, notice that impure altruism increases the minimum value of N required for a
positive optimal risk share and slows the speed at which the optimal risk share converges
to 1.0. Intuitively, since the risky asset with return x̃ is second-order stochastically dom-
inated by the risk-free asset, a positive optimal risk share is inefficient without the free-
riding associated with pure altruism. Less altruism produces less free-riding at a given
level of N, increasing the minimum N required for positive risk taking and reducing its
slope in N. Indeed, the risk share ”flat lines“ at zero when ρ = 0 for any λ.

31 Notice that λ is partitioned equally across donors, consistent with equal donations in the symmetric
Nash equilibrium that is known in Stage 1.
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Figure 6: Endowment Second-best Optimal Risk Share: Pure Altruism
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shown. Net return to stocks, x̃, take values in set {−1., 1.0} with equal probability, as in Section 6.3.

Figure 7: Endowment Second-best Optimal Risk Share: Impure Altruism
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γ shown and ρ = 0.25. x̃ takes values in set {−1., 1.0} with equal probability, as in Section 6.3.
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8 Discussion and Extensions

This section compares our results to related literature, including asset-liability matching
and charitable giving under pure altruism. We also address how our model provides a
framework for addressing other real-world endowment frictions, in addition to informa-
tional asymmetries (moral hazard) addressed earlier.

Asset-Liability Matching. Our results differ sharply from the asset-liability matching
(or “liability-driven investing,” LDI) convention that is appropriate with pension plans
(Brown and Wilcox, 2009; Novy-Marx and Rauh, 2011), which predicts that fairly deter-
ministic liabilities should be determined with safe asset returns. Why the big difference?
In the extreme case with pure “warm glow” (no altruism), our model and LDI make sim-
ilar predictions. With donor altruism, however, our model indicates a role for risk taking
in the context of endowment investing to reduce free-riding. In contrast, pension claims
are paid by firms (out of firm revenues) or governments (out of taxes) as part of compen-
sation; neither party seeks voluntary donations to pay pension claims.

Too Little Giving with Pure Altruism. The standard argument in the charitable giv-
ing literature for “impure altruism” is that the observable level of charitable giving is too
large to be consistent with pure altruism, especially with a large number of donors N (An-
dreoni, 1988a). This result can be seen in our previous log-log (γu = γv = 1.0) example
(Sections 3 and 6). Without risk taking (λ = 0), individual donations 1

N+1 converge to zero
in N and total donations N

N+1 converge to 1. However, in our model, if endowments take
the second-best level of risk, individual donations remain fixed at 1

4 and so total giving
N
4 grows linearly in N, i.e., divergence.32 The sizeable amount of giving to endowments
could, therefore, be compatible with pure altruism, even though less than first-best.

Tax Deduction of Donations. Since the War Revenue Act of 1917, the United States has
allowed a tax deduction for charitable donations. A charitable deduction can easily be
incorporated into our model by reducing donor i′s private consumption in equation (1)
by (1− τ)gi instead of gi, where τ is the donor’s marginal tax rate. Our results would not
materially change unless the tax deduction could fully eliminate the free-riding problem.
However, fully resolving the free-riding problem with a deduction is generally inefficient
(indeed, likely even impossible). First, the value of τ would have to be a function of the

32For brevity, we don’t report figures for the non-log case herein. However, at levels of risk aversion
greater than unity (e.g., γu = γv > 1.0), it can be shown that individual donations fall in N but at a rate
slower than the value of N itself, thereby allowing total donations to still grow unbounded in N, although
less than linearly.
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number of donors N to a specific charity. As N increases for a given charity, the optimal
tax deduction of gi would converge to a credit, nearly eliminating a donor’s after-tax cost
of giving. Second, the lost tax revenue must be replaced using distorting taxes levied on
a smaller tax base, increasing the nonlinear dead-weight loss from raising revenue.

Capital Campaigns. New donations are often raised as part of capital campaigns. These
campaigns are usually preceded by “a study” or “quiet period” with some “testing of the
waters” from some limited donors before stating an achievable target for a larger cam-
paign. Hence, the target is endogenous to the Nash game and so achieving it is not a sign
that free-riding does not exist. Rather, the very presence of capital campaigns reflect the
presence of free-riding. A capital campaign might attempt to reduce free-riding through
a coordination of giving, a miniature version of Coasian bargaining.33 By creating a list
of donor-named gift opportunities, a capital campaign might also attempt to increase the
impurity of altruistic giving, thereby reducing free-riding.

Multiple Endowment Funds. At large universities, for example, most assets are man-
aged within long-term investment pools that take on substantial risk. But there some-
times exists smaller side pocket funds that are managed separately and more conserva-
tively. These funds can be interpreted within our framework. In some cases, these funds
are associated with a charitable gift annuity (where the donor receives back a stream of
income until he or she dies) that must legally be managed conservatively as an insurance
product. In other cases, these funds hold gifts for a specific cause for which a donor sub-
stantially cares about but for which there might be very little free-riding (e.g., a donor’s
personal experience with a specific disease motivates a gift to find a cure, or the fixed
and variable expenses of a named building or program). Echazu and Nocetti (2015), for
example, argues that the pure altruism might be more scalable in the traditional giving
model if targets of giving are heterogeneous and each target can be assigned to a small
pool of donors. Recall that a small N in our model implies more conservative risk taking.

Committed or Mixed Spending Needs. Closely related, the entire endowment might be
closely committed to specific funding needs even without side pocket funds. This setup

33 To the extent that a capital campaign does, however, reduce free-riding, it is then optimal to take
on less risk. Actual measurement is confounded by data limitations, as major data trackers of university
endowments—including Commonfund, NACUBO and VSE—do not distinguish assets raised from capital
campaigns from other assets. An endogeneity problem also arises where charities facing greater free-riding
are more likely to engage in multiple mechanisms to reduce it. Moreover, with a large N, the marginal
benefit of a formal capital campaign might exceed its fixed costs, but the overall impact on free-riding
could still be small relative to the endowment size.
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sometimes occurs with endowments supported by a small number of donors such as a
small school. Recall, that our model predicts that endowments supported by a small N
should, in fact, take less risk. Moreover, Section 6.2 considered the case in which donors
are potentially very averse to changes in endowment supported spending. If donors are
infinitely risk averse to such changes (γv = ∞) then no investment risk is optimal. If
risk aversion is large and finite, then N must be sufficiently large for risk taking to be
optimal. At the same time, managers of endowments who are supported by a sufficiently
large value of N might be taking too little risk (moral hazard). Alternatively, a single fund
might support mixed spending needs, with existing assets committed to existing spend-
ing and new donations earmarked to expanding the mission. Still, nothing materially
changes in our framework. Unless the number of donors N is small (more generally, γv

is very large relative to N), it remains optimal for the endowment to take on risk.34

Private Foundations. Our model does not apply to private foundations that are not sup-
ported by several donors. For example, the Carnegie Foundation was established with
the wealth of Andrew Carnegie and currently does not take private donations. Still, its
$3.5 billion endowment takes on risk. More generally, suppose, that we think of a pri-
vate foundation as deriving legacy value for the single donor and her family, where, in
effect, N = 1. In Section 2, the risk-free asset second-order stochastically dominates the
risky asset, and so this foundation would not take on any risk. However, recall that this
assumption was made for exposition: our intent was to cleanly demonstrate the optimal-
ity of risk taking in the presence of free-riding under conditions that would not produce
risk taking without free-riding. In contrast, a private foundation with flexible future goals
might optimally take on risk precisely because equities generally out-perform risk-free
assets, similar to the predictions of an asset-liability matching model.

9 Conclusions

This paper revisits the large literature on endowment investing with a more complete
micro-foundation that includes a donor’s objective function. We derive a condition—
which quickly converges to standard DARA preferences in the number of donors—where
the value of reducing free-riding exceeds the cost of additional risk. Risk taking is Pareto

34 A stock of previous donations Gpast could be added to the last term in equation (1) without materially
changing our key qualitative results. In Nash equilibrium, each donor takes the donations of others as given
regardless of source. Adding Gpast would produce a wealth effect but free-riding would still emerge. For
positive risk taking to be optimal, only the required value of γv relative to the number of contemporaneous
donors N would be impacted.
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improving and required by competition among endowments for donations, or, even more
generally, by imperfect competition with complete information.

A strong cross-sectional “size effect” also emerges, where endowment risk taking in-
creases in the size of the endowment. It is efficient for a large endowment to take on
substantial risk even without the presence of fixed costs and even if the endowment does
not have access to unique risk asset classes relative to its donors. In fact, risk taking is
optimal even if the endowment’s sponsors are very risk averse to changes in spending
and use expensive investments that don’t over-perform cash on average. Similarly, it is
optimal for smaller endowments to take on less risk, even in the presence of more modern
outsourced “endowment style” turnkey investment solutions. As a result, the strong size
effect found in the data could be close to optimal.

A key difference between our contribution and the Modigliani-Miller theorem is that
we also incorporate the free-riding problem that makes the endowment problem funda-
mentally different from corporate finance. Of course, as with the original M-M theorem,
the real world is more complicated. But, like the original M-M theorem in corporate
finance, our framework allows for a more comprehensive interpretation of real-world
complexities related to endowment investing. In so doing, our results challenge the con-
ventional thinking about the relationship between endowment risk taking and agency
conflicts. A low level of risk taking by a large endowment likely indicates a moral hazard
problem. We show that numerous other real-world complications can also be interpreted
within our framework.
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Appendices

A Empirical Evidence on Giving Mechanism (Section 5.2)

Section 7 proved how the model’s equilibrium endowment risk share increases in endow-
ment size, consistent with the most salient empirical fact of endowment asset allocation.
This section provides more direct evidence of the comparative statics mechanism derived
in Section 5.2 by empirically estimating how donor giving to U.S. university and college
endowments responds to the number of donors as well as the endowment’s risk taking.

We obtained confidential data of university and college endowment asset informa-
tion between the years 2009 and 2014 for a total of 4,256 endowment asset allocations
across these years.35 The data includes most U.S. colleges and university endowments,
including all Ivy League schools as well even smaller schools such as seminaries and art
schools. Asset holdings are decomposed into five major asset classes: domestic equities,
international equities, private equity, bonds and cash. Annual gifts can be assessed from
the survey data as can student enrollment and other demographic information.36

We proxy potential donor size by the number of full-time equivalent (FTE) students.
To accommodate preference heterogeneity, we also incrementally add indicator (dummy)
variables for the type of school, including private / public, elite / non-elite,37 and college
/ university. We construct the empirical risk share (a value between 0 and 100 percent) by
summing the value of an endowment’s assets invested in domestic equities, international
equities and private equity and then dividing this sum by the value of all assets.

Table 1 provides a summary of the data, pooled across years 2009 and 2014. Notice
the presence of the “size effect” discussed in Section 7, where larger endowments take on
more risk. For example, at the median (50th quantile), our constructed risk share increases
from 65.9 percent in small endowments to 86.3 percent in large endowments. For the sake
of comparison, the last row in Table 1 recomputes the risk share by including only inter-
national and alternative investments (“High Risk Share”), thereby excluding domestic
equities. Notice that a considerable amount of risk taking in larger endowments takes the
form of tilting toward international (including emerging markets) and alternative invest-

35 Data provided by NACUBO and Commonfund. For years prior to 2009, their survey methodology
changed between 2008 and 2009, making data before 2009 incompatible for our uses.

36 Across schools, the median number of annual full-time equivalent students is 15,370, with 1,830 at the
10th quantile and 63,386 at the 90th quantile. The median gift per FTE is $3,118 while the mean value is
$10,975.

37 Defined as ”Ivy League Plus” schools often used in the literature, including Brown, Columbia, Cornell,
Dartmouth, Harvard, Penn, Princeton, Yale, Stanford, MIT, CalTech, University of Chicago, Duke, and
Northwestern.
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Table 1: Summary Statistics (Pooled Across Years)

Endowment Size $0-25M $25-50M $50-100M $100-500M $500M-$1B $1B+

Number of Schools 720 667 899 1280 353 337
Private 409 463 677 922 227 214

Elite 0 0 4 0 0 45
College 360 197 364 416 98 50

Risk Share (quantile)
10th 45.7 55.9 61 65.2 71.8 78
25th 57.5 66 68.7 72.7 80 82.1
50th 65.9 73.8 75.7 79.5 86 86.3
75th 72.6 80.3 81.2 85.5 89.5 89.5
90th 79.8 86.3 86 89.5 92 92.7

High Risk Share
Median 14.7 33 40.9 52 66.1 69.4

ments, which have, historically, produced higher volatility than than domestic equities.
To avoid any appearance of data mining, the subsequent analysis focuses on the broader
measure of risk (“Risk Share”) that includes domestic equities. The key results become
stronger if we, instead, focused on the more narrow “High Risk Share” variable.38

Table 2 shows the outcomes of regressing the log of gifts per FTE student on the log of
number of students (“log(# Students)”) and the constructed risk share (“Risk Share”). The
coefficients on both variables are consistent with our model. The estimated coefficient on
“log( students)” indicates that a one percent increase in FTE students reduces gifts per
FTE by around -0.4 percent. Moreover, the coefficient on “Risk Share” indicates that a ten
point increase in the proportion of the endowment invested in risky assets increases gifts
per FTE by about 0.4 percent.

Figure 8 provided additional robustness checks on the significance of the “Risk Share”
coefficient. It shows the results of Model 3 by year (“All”) along with 99-percent confi-
dence intervals. Despite reducing the degrees of freedom relative to the regression pooled
over time presented in Table 2, the annual results are highly significant. This significance
is robust to additional data slices, including focusing on smaller endowments, schools
with smaller FTE counts, both of these slices combined, and then both of these slices com-
bined with a control for outliers. Figures 9 and 10 show that residual errors are nearly

38 Similarly, our results below become stronger with more sophisticated risk adjustments including using
risk-weights similar to those commonly used in banking for regulatory purposes, e.g., Basel III.
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Table 2: Dependent Variable: log(Gifts Per Student)

Model 1 2 3 4

Intercept 7.27*** 5.91*** 6.35*** 6.53***
(35.7) (22.59) (24.27) (23.37)

log(# Students) -0.48*** -0.34*** -0.38*** -0.4***
(-24.06) (-13.4) (-14.96) (-14.66)

Risk Share 0.04*** 0.04*** 0.04*** 0.04***
(22.41) (21.25) (20.94) (20.96)

Private 0.57*** 0.46*** 0.46***
(8.23) (6.69) (6.71)

Elite 2.4*** 2.4***
(10.37) (10.37)

College -0.1
(-1.8)

Observations = 4256.
t-values in parentheses.
*p < 0.05, **p < 0.01, ***p < 0.001.

normally distributed, with a slight negative skew, allowing the confidence intervals to be
computed directly from the standard errors.

Given the other controls for preference heterogeneity, the identification of the “Risk
Share” coefficient in Table 2 and Figure 8 comes from assuming that some investment
managers are engaging in some moral hazard by under-investing in risk (see the related
discussion in Section 1). If risk shares were second-best optimal, then the “Risk Share”
control could not be separately identified relative to the “log(# Students).” The “Risk
Share” coefficient, therefore, might be biased downward relative to the coefficient that
would be estimated from a natural experiment that was more observable to donors. We
leave those considerations to future work.
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Figure 8: Marginal Contribution of Risk Share on
Giving Per Student for Model 3 in Table 2, by Year

2009 2010 2011 2012 2013 2014
0.02
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0.06
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R1: Endowment < $1B
R2: FTE Students < 40K
R1 + R2
R1 + R2 + Drop Outliers

Explanation: Shows annual Risk Share coefficient (solid line) with 99% confidence interval (dotted black
lines) for Model 3 shown in Table 2.39

In the figure legend, “All” corresponds to the data shown in Table 2, although unpooled to show annual re-
sults. Results for additional single data Restrictions are also shown, including “R1” (endowments with less
than $1 billion in assets), “R2” (schools with less than 40,000 full-time equivalent students), “R3” (schools
with endowments with at least 40% of Risk Share), “R1, R2 and R3” (all restrictions combined) and “Drop
Outliers” (drop data points outside of three-standard deviations of fitted value). Results are very robust to
other models shown in Table 1.
Data Source: Authors calculations based on Commonfund data.
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Figure 9: Residuals between Actual and Fitted
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Explanation: Figure 9 shows that the residuals between actual and the fitted Model 3 (using the last case
shown in Figure 8) are nearly normally distributed. Figure 10 shows a QQ plot for these residuals. If the
blue line overlapped perfectly with the red line then the residuals would be perfectly normally distributed.
Data Source: Author calculations based on Commonfund data.
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B Proofs

Theorem 1

Stage 2 For given donation vector ~g and investment level λ of the endowment fund, the
optimal private investment decision vector (α̂1, ..., α̂N) is the solution to the follow-
ing maximization problem

max
α1,...,αN

N

∑
i=1

EU (λ,~α,~g) =
N

∑
i=1

E [u (1 + αi x̃− gi)] + NE

[
v

(
N

∑
i=1

gi + λx̃

)]
.

The FOCs are

∂ ∑N
i=1 EU (λ,~α,~g)

∂αi
= E

[
x̃u′ (1 + αi x̃− gi)

]
= 0.

The SOCs are

∂2 ∑N
i=1 EU (λ,~α,~g)

∂α2
i

= E
[

x̃2u′′ (1 + αi x̃− gi)
]
< 0,

and thus satisfied. For αi = 0, we derive

∂ ∑N
i=1 EU (λ,~α,~g)

∂αi
|αi=0= 0.

α̂i = 0 for all i = 1, .., N is thus the unique global maximum.

For a given investment level λ of the endowment fund, the social planner picks the
gift vector (ĝ1, ..., ĝN) to maximize

N

∑
i=1

EUi

(
λ,~̂α =~0,~g

)
=

N

∑
i=1

u (1− gi) + NE

[
v

(
N

∑
i=1

gi + λx̃

)]
.

The FOCs are

∂ ∑N
i=1 EUi

(
λ,~0,~g

)
∂gi

= −u′ (1− gi) + NE

[
v′
(

N

∑
i=1

gi + λx̃

)]
= 0.
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The SOCs are satisfied since

∂2 ∑N
i=1 EUi

(
λ,~0,~g

)
∂g2

i
= u′′ (1− gi) + NE

[
v′′
(

N

∑
i=1

gi + λx̃

)]
< 0.

The unique optimal donation ĝi (λ) is thus the solution to the FOC

u′ (1− ĝi (λ)) = NE

[
v′
(

N

∑
i=1

ĝi (λ) + λx̃

)]
.

This condition implies ĝ1 (λ) = ... = ĝN (λ) = ĝ (λ) and thus

u′ (1− ĝ (λ)) = NE
[
v′ (Nĝ (λ) + λx̃)

]
.

Stage 1 The optimal investment decision of the endowment fund λ̂ is the solution to the
following maximization problem

max
λ

ΩSO (λ) = u (1− ĝ (λ)) + E [v (Nĝ (λ) + λx̃)] .

The FOC is

Ω′SO (λ) = −ĝ′ (λ) u′ (1− ĝ (λ)) + E
[(

Nĝ′ (λ) + x̃
)

v′ (Nĝ (λ) + λx̃)
]
= 0.

Substitution of the FOC at Stage 2 yields

Ω′SO (λ) = E
[
x̃v′ (Nĝ (λ) + λx̃)

]
= 0.

The concavity of v (·) implies

Ω′SO (λ) > 0 for all λ < 0,

Ω′SO (0) = 0, and,

Ω′SO (λ) < 0 for all λ > 0.

Expected utility is thus globally concave in λ and λ̂ = 0 is the unique global maxi-
mum. Last, the FOC for ĝ

(
λ̂ = 0

)
then yields

u′ (1− ĝ (0)) = Nv′ (Nĝ (0)) .
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Note: If u ≡ v, then ĝ (0) > 1
N+1 as

u′
(

1− 1
N + 1

)
< Nu′

(
N · 1

N + 1

)
and u′′ < 0.

Extension: ĝ is [increasing in, independent of, decreasing in] N ⇐⇒ Rv (Nĝ) [<,=,>] 1.

Proof. Implicitly differentiating the FOC for the socially optimal gift, ĝ, with respect
to N yields

−ĝN · u′′ (1− ĝ) = v′ (Nĝ) + N (g + NĝN) v′′ (Nĝ) ,

with ĝN = ∂ĝ
∂N . This implies

ĝN = − v′ (Nĝ) + Nĝ · v′′ (Nĝ)
u′′ (1− ĝ) + N2v′′ (Nĝ)

,

and thus

sign (ĝN) = sign
(
v′ (Nĝ) + Nĝ · v′′ (Nĝ)

)
= sign (1− Rv (Nĝ)) .

Theorem 2

Without loss of generality we consider investor 1. Given the donations of all other in-
vestors ~g−1 = (g2, ..., g N), their investment levels~α−1 = (α1, ..., αN), and the investment
level λ of the endowment, investor 1’s best response function α∗1 (λ,~α−1,~g−1) is given by
the solution to the following maximization problem

α∗1 (λ,~α−1,~g−1) ∈ arg max
α1

EU1 (λ, α1,~α−1, g1,~g−1) with

EU1 (λ, α1,~α−1, g1,~g−1) = E [u (1 + α1x̃− g1)] + E

[
v

(
g1 +

N

∑
i=2

gi + λx̃

)]
.

The FOC for the best response function is

∂EU1 (λ, α1,~α−1, g1,~g−1)

∂α1
= E

[
x̃u′ (1 + α1x̃− g1)

]
= 0.
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The SOC for the best response function holds as

∂2EU1 (λ, α1,~α−1, g1,~g−1)

∂α2
1

= E
[

x̃2u′′ (1 + α1x̃− g1)
]
< 0 for all (λ, α1,~α−1, g1,~g−1) .

Evaluating the FOC at α1 = 0 yields

∂EU1 (λ, α1,~α−1, g1,~g−1)

∂α1
|α1=0= 0 for all (λ,~α−1, g1,~g−1) .

α∗1 (λ,~α−1, g1,~g−1) = 0 is thus the unique global maximum. Analogously, α∗i (λ,~α−i, gi,~g−i) =

0 for all i and it is thus the unique global maximum of the best response function of in-
vestor i. Thus, α∗i (λ, gi,~g−i) = 0 for all i is the unique Nash equilibrium for all (λ, gi,~g−i).

Given the donations ~g−1 of all other investors, investor 1’s best response function
g∗1 (λ,~g−1) is given by the solution to the following maximization problem

g∗1 (λ,~g−1) ∈ arg max
g1

EU1 (λ, g1,~g−1) with

EU1 (λ, g1,~g−1) = u (1− g1) + E

[
v

(
g1 +

N

∑
i=2

gi + λx̃

)]
.

The FOC for the best response function is

∂EU1 (λ, g1,~g−1)

∂g1
= −u′ (1− g1) + E

[
v′
(

g1 +
N

∑
i=2

gi + λx̃

)]
= 0.

The SOC for the best response function holds as

∂2EU1 (λ, g1,~g−1)

∂g2
1

= u′′ (1− g1) + E

[
v′′
(

g1 +
N

∑
i=2

gi + λx̃

)]
< 0.

Therefore, there exists a unique solution g∗1 (λ,~g−1) to the above optimization problem
which is determined by the FOC. We denote the Nash equilibrium by (g∗1 (λ) , ..., g∗N (λ))

which satisfies

u′ (1− g∗1 (λ)) = u′ (1− g∗i (λ))

= E

[
v′
(

N

∑
i=1

g∗i (λ) + λx̃

)]
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for all i. Thus g∗1 (λ) = ... = g∗N (λ) = g∗ (λ) which is given by the FOC

u′ (1− g∗ (λ)) = E
[
v′ (Ng∗ (λ) + λx̃)

]
.

Theorem 3

1. Implicitly differentiating the FOC for the Nash equilibrium gift policy functions,
g∗ (λ), with respect to N yields

−g∗N (λ) u′′ (1− g∗ (λ)) = (g∗ (λ) + Ng∗N (λ)) E
[
v′′ (Ng∗ (λ) + λx̃)

]
,

with g∗N (λ) =
∂g∗(λ)

∂N . This implies

g∗N (λ) = − g∗ (λ) E [v′′ (Ng∗ (λ) + λx̃)]
u′′ (1− g∗ (λ)) + NE [v′′ (Ng∗ (λ) + λx̃)]

< 0.

2. We derive the first- and second-order effects of changes in the investment policy λ

on the Nash gift policy functions g∗ (λ). Implicitly differentiating the FOC for the
Nash equilibrium with respect to λ yields

−g∗′ (λ) u′′ (1− g∗ (λ)) = E
[(

Ng∗′ (λ) + x̃
)

v′′ (Ng∗ (λ) + λx̃)
]

,

i.e.,

g∗′ (λ) = − E [x̃v′′ (Ng∗ (λ) + λx̃)]
u′′ (1− g∗ (λ)) + NE [v′′ (Ng∗ (λ) + λx̃)]

.

Evaluating this equation at λ = 0 yields g∗′ (0) = 0. Taking the second deriative of
the FOC of the Nash equilibrium with respect to λ yields

−g∗′′ (λ) u′′ (1− g∗ (λ)) +
(

g∗′ (λ)
)2 u′′′ (1− g∗ (λ))

= Ng∗′′ (λ) E
[
v′′ (Ng∗ (λ) + λx̃)

]
+ E

[(
Ng∗′ (λ) + x̃

)2 v′′′ (Ng∗ (λ) + λx̃)
]

.

Evaluating this equation at λ = 0 yields

−g∗′′ (0) u′′ (1− g∗ (0)) = Ng∗′′ (0) v′′ (Ng∗ (0)) + E
[

x̃2
]

v′′′ (Ng∗ (0)) ,

which implies

g∗′′ (0) = −
E
[
x̃2] v′′′ (Ng∗ (0))

u′′ (1− g∗ (0)) + Nv′′ (Ng∗ (0))
.
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λ = 0 is a local minimum if and only if g∗′′ (0) > 0. This holds if and only if
v′′′ (Ng∗ (0)) > 0 which is identical to the condition Pv (Ng∗ (0)) > 0.

3. Now suppose Pv (·) > 0. This implies

E
[
x̃v′′ (Ng∗ (λ) + λx̃)

]
< 0 for all λ < 0, and,

E
[
x̃v′′ (Ng∗ (λ) + λx̃)

]
> 0 for all λ > 0,

and thus

g∗′ (λ) < 0 for all λ < 0,

g∗′ (0) = 0, and,

g∗′ (λ) > 0 for all λ > 0.

λ = 0 is thus the global minimum of g∗ (λ).

Theorem 4

The endowment fund selects the optimal investment strategy λ∗ by maximizing the ex-
pected utility of a single donor, Ω (λ). It is thus given by the solution to the following
maximization problem

λ∗ ∈ arg max
λ

Ω (λ) = u (1− g∗ (λ)) + E [v (Ng∗ (λ) + λx̃)] .

The first derivative is

Ω′ (λ) = −g∗′ (λ) u′ (1− g∗ (λ)) + E
[(

Ng∗′ (λ) + x̃
)

v′ (Ng∗ (λ) + λx̃)
]

.

Substitution of the condition for the Nash equilibrium at Stage 2 yields

Ω′ (λ) = E
[(
(N − 1) g∗′ (λ) + x̃

)
v′ (Ng∗ (λ) + λx̃)

]
.

Evaluating this derivative at λ = 0 yields Ω′ (0) = 0.
The second derivative is given by

Ω′′ (λ) = (N − 1) g∗′′ (λ) E
[
v′ (Ng∗ (λ) + λx̃)

]
+E

[(
(N − 1) g∗′ (λ) + x̃

) (
Ng∗′ (λ) + x̃

)
v′′ (Ng∗ (λ) + λx̃)

]
.
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Evaluating this second derivative at λ = 0 yields

Ω′′ (0) = (N − 1) g∗′′ (0) v′ (Ng∗ (0)) + E
[

x̃2
]

v′′ (Ng∗ (0))

= − (N − 1)
E
[
x̃2] v′′′ (Ng∗ (0))

u′′ (1− g∗ (0)) + Nv′′ (Ng∗ (0))
v′ (Ng∗ (0)) + E

[
x̃2
]

v′′ (Ng∗ (0))

= E
[

x̃2
] (
− (N − 1) v′′′ (Ng∗ (0)) v′ (Ng∗ (0))

u′′ (1− g∗ (0)) + Nv′′ (Ng∗ (0))
+ v′′ (Ng∗ (0))

)
.

λ = 0 is a local minimum if and only if Ω′′ (0) > 0. With the FOC of the Nash equilibrium,
u′ (1− g∗ (0)) = v′ (Ng∗ (0)), we derive that Ω′′ (0) > 0 if and only if

(N − 1) Pv (Ng∗ (0)) > Au (1− g∗ (0)) + NAv (Ng∗ (0)) .

Corollary 1. If u (·) = v (·), then g∗ (0) = 1
N+1 and λ = 0 is a local minimum if and only if

P
(

N
N + 1

)
>

N + 1
N − 1

· A
(

N
N + 1

)
.

Theorem 5

The second inequality, Ω (λ∗) > Ω (λ = 0) with |λ∗| > 0, is the result of Theorem 4.
For the first inequality, note that the socially optimal λ̂ = 0, while the Nash equilibrium
implies |λ∗| > 0. (The value αi = 0 is optimal both socially and in the Nash equilibrium.)

We then have

ΩSO

(
λ̂ = 0

)
= EU

(
λ̂ = 0, ĝ

(
λ̂ = 0

))
> EU ((λ∗, ĝ (λ∗))

> EU ((λ∗, g∗ (λ∗)) = Ω (λ∗) ,

where |λ∗| > 0. The first inequality comes from knowing that the socially optimal value
of λ̂ = 0 maximizes donor expected utility, equation (3). Hence, any other choice of λ 6= 0,
including the value in the Nash equilibrium, λ∗, must produce a smaller expected util-
ity, if inserted into the social optimal gift policy function. The second inequality follows
from the fact that the social optimum problem maximizes donor expected utility, thereby
producing a larger expected utility than in the Nash equilibrium, conditional on the same
value of λ.
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Example 2

Stage 2 The Nash equilibrium gifts g∗ (λ) are given by the condition

u′ (1− g∗ (λ)) = E
[
v′ (Ng∗ (λ) + λx̃)

]
.

Solving this condition for u (w) = ln (w) and x̃ following a two-point distribution
that takes the values +1 and −1 with equal probability yields equation (12)

g∗ (λ) =
N +

√
N2 + 4N (N + 1) λ2

2N (N + 1)
.

The first derivative of the gift policy function is

g∗′ (λ) =
2λ√

N2 + 4N (N + 1) λ2
.

Stage 1 The optimal investment strategy λ∗ is given by the solution to the maximization
problem

λ∗ ∈ arg max
λ

Ω (λ) = u (1− g∗ (λ)) + E [v (Ng∗ (λ) + λx̃)] .

For u (w) = ln (w) and x̃ following a two-point distribution we derive

Ω (λ) = ln (1− g∗ (λ)) +
1
2
(ln (Ng∗ (λ) + λ) + (Ng∗ (λ)− λ)) .

Note that both g∗ (λ) and Ω (λ) are symmetric in λ. We thus focus on λ ≥ 0.
Furthermore, the domain restriction λ < N ensures that Ω (λ) is well-defined, i.e.
1− g∗ (λ) > 0 and Ng∗ (λ)− λ > 0.

Substituting the condition for the Nash equilibrium gifts at Stage 2 into the first
derivative yields

Ω′ (λ) = E
[(
(N − 1) g∗′ (λ) + x̃

)
v′ (Ng∗ (λ) + λx̃)

]
=

N (N − 1) g∗′ (λ) g∗ (λ)− λ

(Ng∗ (λ) + λ) (Ng∗ (λ)− λ)
.
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The denominator is strictly positive. Solving the FOC Ω′ (λ) = 0 yields the solutions

λ = 0 and λ =

√
N(N−3)

4 .

Moreover, it can be shown that

Ω′ (0) = 0,

Ω′ (λ) > 0 for all 0 < λ <

√
N (N − 3)

4
,

Ω′
(√

N (N − 3)
4

)
= 0, and,

Ω′ (λ) < 0 for all

√
N (N − 3)

4
< λ < N.

Taking into account the symmetry of Ω (λ), we conclude that λ = 0 is a local mini-

mum and the global maximum is attained at |λ∗| =
√

N(N−3)
4 .

Evaluating the Nash equilibrium gifts at λ∗ implies

g∗ (λ∗) =
1
4

.

Example 3

Stage 2 The Nash equilibrium gifts g∗ (λ) are given by the condition

u′ (1− g∗ (λ)) = E
[
v′ (Ng∗ (λ) + λx̃)

]
.

Solving this condition for u (w) = −e−γw and x̃ following a normal distribution
with expectation 0 and variance σ2 yields equation (13)

g∗ (λ) =
1

N + 1

(
1 +

1
2

γσ2λ2
)

.

Note that E
[
e−γλx̃] = e

1
2 γ2σ2λ2

. The first derivative of the gift policy function is

g∗′ (λ) =
γσ2λ

N + 1
.
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Stage 1 The optimal investment strategy λ∗ is given by the solution to the maximization
problem

λ∗ ∈ arg max
λ

Ω (λ) = u (1− g∗ (λ)) + E [v (Ng∗ (λ) + λx̃)] .

For u (w) = −e−γw and x̃ following a normal distribution with expectation 0 and
variance σ2 we derive

Ω (λ) = −2e−
γ

N+1(N− 1
2 γσ2λ2).

The first derivative yields

Ω′ (λ) = −2γ2σ2

N + 1
λe−

γ
N+1(N− 1

2 γσ2λ2).

This implies

Ω′ (λ) > 0 for all λ < 0,

Ω′ (0) = 0, and,

Ω′ (λ) < 0 for all λ > 0.

λ∗ = 0 is thus the unique maximum. Evaluating the Nash equilibrium gifts at
λ∗ = 0 implies

g∗ (λ∗) =
1

N + 1
.
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