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SUMMARY

In this approach, the complexity of the self-organizing microstructure of the stock exchange is explicitly
taken into consideration: the process of offers and trades as well as the adjustment of individual
expectations are modelled with help of a (stochastic) jump process. Its abilities are illustrated by
modelling the continuous quotations of asset prices at an auction type stock exchange. The functional
form of the transition (hazard) rates is chosen to reflect the individual preferences and expectations as
well as the economic environment. The model is described in detail and examples of Monte Carlo
simulation results are presented.
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1. INTRODUCTION

The number of articles dealing with the microstructure of stock exchanges increases
continuously. The main reason might be that the organizational structure of most stock
exchanges has changed and is still in progress. There is increasing discussion of main issues,
such as, e.g., market maker auction markets, electronic screen based trading versus the floor
trading, the abolition of dual trading and the installation of circuit breakers and several similar
questions. Such a discussion becomes fruitful especially if it rests on the explicit rules
governing the actions, on the organizational structure and the behavioural attitudes of the
market participants.

The central problem is to determine the most suitable level of abstraction for the
investigation of the functioning of the ‘stock exchange’ system (cf. De Bono, Reference 1,
p. 30, slightly adjusted). The prevailing level hitherto has been the macrolevel. The increasing
number of investigations at the microlevel strongly indicates that a macrolevel description is
no longer the most appropriate one. Several microlevel approaches can be discerned.

Firstly, there is the econometric description of the stock quotations, in particular the
behaviour of the share price relatives. Among the most advanced methods currently used are
ARCH-models and their recent variants (cf. Bollerslev et al.?). However, there is no doubt
that besides the eminence this econometric approach merits, its explaining power is confined
to relations that are within the abilities of the underlying formal model. A different approach
without these restrictions is that of artificial neural networks. This concept seems to be
appropriate for handling questions of data-feeding raised by our approach.
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Secondly, the behavioural approach in finance has to be mentioned. It embodies an explicit
(cf. Hunter and Coggin’) or implicit (cf. Bagwell*) criticism of the efficient capital market
hypothesis (cf. LeRoy® for a general critical survey). Three basic aspects emerge: the market-
clearing equilibrium, the no-arbitrage condition, and the rational-expectations approach,
including learning and information processing.

Starting with the last, we can explain and also relate the other two concepts to our approach.
A commonly cited implication of the rational expectations hypothesis is that an agent’s
expectation of a variable is an unbiased estimate of its future value (cf. Williams, Reference
6, and the references therein). The individual forecasts must be free of systematic and easily
correctable biases (cf. Lucas’ and Bullard®). These statements are derived from the basic
maxim of Muth that the economy does not waste information (cf. Muth?®).

The economy, or market, has to be comprehended as the ensemble of all its individual parts.
Even if the market does not waste information, one cannot conclude that every individual is
able to forecast the future quotations correctly. Everyday experience teaches the contrary.
Muth’s global statement implies that the market’s efficient information processing yields a
frequency distribution, not a point estimate, of the corporation’s fundamental value that
determines the actual quotation. This distribution can be understood as the universe of point
estimates of all market participants. Even if every individual might have a different estimation,
it is not necessary to estimate all individual valuations of the fundamentals; the shape of the
distribution already suffices. '

But trading is performed at the level of individuals. Therefore, the motives for trading have
to be formulated at the individual level. They depend on the relation between the individual
estimations and the actual quotations. We assume that every individual believes that his
expected value will be equal to the later quoted price. We assume rational expectations at the
subjective individual level, not at the whole market level. We are therefore able to handle the
exploitation of arbitrage opportunities explicitly (cf. the illustrative description of arbitrage
decision processes in a different context by Wilborg!®) and are not forced to disregard their
existence.

The basic rule for trading is derived from the oldest maxim of investment banking: buy low,
sell dear. The market participant can buy now (or go short if that is possible according to the
market rules) and sell at the end of the planning period (whatever that might be, one week,
or month, etc.) at a price that he assumes to equal his expectation. This rule is justified by the
following aspects.

1. An assumption about the individual forecasts has to be made to derive motivations for
trading, viz. buying or selling.

2. The model must have regard to the adjustment of individual expectations according to
the processing of information the market performance entails.

3. The adjustment of expectations and the formation of price quotations must be modelled
so as to be independent.

It is not adequate in our opinion to disqualify market participants with estimates different
from an equilibrium price as noise traders (cf. De Long et al.'!).

The basic problem in modelling the capital market is the relation between subjective
estimates and objective quotations emerging as a compromise between the buyer’s and seller’s
subjective valuations. The value estimates have to be determined by aspects of their own, not
with regard to price quotations. This paradigm is penetrating the capital market discussion.
Duménil and Lévy!? investigate the possibilities of micro-adjustments towards a long term
equilibrium, even if they deal with markets of real goods, not confined to financial markets.
As a further step in this direction, Morck et al.'® have discussed the distribution of wealth
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between smart investors and noise traders. They start with the treatise of the importance of
the market organization as such. The explicit addressing of the influence of institutional
aspects requires explicit modelling of the market microstructure.

However, most of the models applied are only abstract descriptions of the real stock
exchange. Greenwald and Stein'® feature two types of trader and continuous trading, but do
not cover efficient information processing. Pliska and Shalen'® investigate the effects of
regulations on trading activity, construct individual demand and supply functions, but
determine the price by a global market clearing condition that is not encountered in real
continuous quotations markets. Friedman'® allows for learning and constructs a sort of
acceptable buy-and-sell order determined with regard to an estimated mean of the distribution
of value. He has to attack his complex model by means of simulations.

Another approach to investigating stock market performance relies on Markov models.
Turner et al.'’ study the possibilities of learning. McQueen and Thorley'® apply Markov
chains to test the predictability of stock returns. Most of the analytical models employed in
social sciences came originally from physics or other engineering sciences: there is a
progression from hard to soft sciences (cf. Engelen'?). With the help of those models one can
explain self-organization (cf. Arthur?®). Arthur is one of the prominent authors discussing the
problem of self-organization. Another prominent scholar is Haken?! who develops the concept
of synergetics to describe the phenomena of self-organization systematically. Both scholars use
the master equation as one of the central tools. Weidlich and Haag?? introduce this concept
in the modelling of social problems. Our approach leads also to a master equation, namely we
are applying a Markov process in continuous time with discrete state space to describe the
dynamics of the capital market.

The key role of our approach is played by the modelling of the transition rates. They are
not held constant but influenced by the behaviour of the individuals and the market state. This
is achieved by observing that all changes of the state of the market are caused by activities of
the market participants. These activities are based on the preferences and information
processing abilities of the individuals. This concept allows us to study the performance of the
stock market as a self-organizing social phenomenon at the microlevel regarding all the
peculiar rules and regulations of stock markets. It is also possible to rely on market
participants behaving as real human beings and not on the artificial concept of theoretical
agents (cf. Arthur®®). It might also provide a solid basis for developing a description of
phenomena at the macrolevel in terms of several equilibria or dynamics induced by self-
organization (cf. Arthur ez al.,? Durlauf®®). Such phenomena may occur as underpricing or
overpricing in issuing new equity rights.

In the following we describe the basic structure of the concept, illustrating how the
individual processing of information disclosed by stock market performance is connected with
the activities of individuals causing a change of the state of the market. The link is provided
by the corresponding transition rates. The progress of the probability function of the market
state is determined by the master equation, a linear differential equation. But, due to its vastly
high dimension and the explicitly incorporated rules governing the activities at the stock
market, it becomes so complex that it can be solved neither analytically nor numerically by
discretization. Therefore, we pursue Monte Carlo simulations to gain an impression of the
model’s implications.

The organization of the paper is as follows. In Section 2, the structure of the model is briefly
described, including a description of the state variables with their meaning, range and initial
values (Section 2.1), the transitions and admissible actions together with their interrelations
(Section 2.2), and the general structure of the transition rates (Section 2.3). In Section 3.1, the
economic meaning of the state variables and the role they play are discussed. The
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determination of the admissible alternatives corresponding to market activities (offers, trades
or cancels of valid offers) of the market participants is presented in Section 3.2. In Section 3.3,
the computation of the quantity of shares to be traded or offered is described. The concrete
modelling of the transition rates is defined in Section 3.4. In Section 4, the simulation
technique and some typical results are demonstrated. The functioning of the process is
analysed in Section 4.1. The simulation technique in accordance with the functioning of the
process is described in Section 4.2. Some simulation results are prescribed in Section 4.3.

2. THE STRUCTURE OF THE MODEL

In this section, we briefly describe the mathematical structure of the model without the small
detail. The detail and economic reasoning is the subject of Section 3.

We consider a stock market of continuous quotations of M single assets, labelled j
GeJ=1{1,..., M}), constituted by N individuals, the agents, labelled / (i€ I={1,..., N}).
Formally, the market is assumed to be a time homogeneous conservative Markov process
(Z)): >0 in continuous time with values in the discrete countable set Z, the stafe space. The
process is completely determined by the set of possible transitions together with the
corresponding transition rates when the initial distribution is given (for the relevant stochastic
theory we refer to Feller?®).

2.1. The state variables

The state vector z € Z, called the market state, is a multidimensional vector of several
variables capturing the information attached to the current market status including also
variables bearing the relevant information of the past:

7= (p,POf, qof’ m’ptl, d", X, y’ﬁ,ﬁext) € y 4
Z=Nx N %72 x 77 x 77 x 77 x 209 x 7% x NP x NI/
The set Z denotes the set of integers, N the set of positive integers and Z. the set of non-

negative integers.
The constituent variables are defined as follows:

p =(p)jcseN’
pj current price of asset j
P = (P ierje e N
pij price of a valid asset-j-offer of agent i

qof =(61i3'f)ie l,jEJEZIXJ
g3'  quantity of a valid asset-j-offer of agent i
m =(mj)jecse2’

m; market power of asset j
P =(p/jcez’
pj;" price trend of asset j
d" =(dj")jcseZ’
dj" counter-trend of asset j
x  =(xylierjes€Zy’
xi; number of shares of asset j held by agent i
y =iiecreZ’
y: amount of cash (invested in bonds) of agent i
P =Biierjes€ NI
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Dij price expectation of agent / for asset j

pnext =(ﬁiCjX()ie[,jEJ€ [NIXJ
pf" fundamental value estimation of agent / for asset j

The prices, amounts of cash, price expectations and fundamental value estimates are
measured as integer multiples of a given unit. The same holds for the number of shares held
and the quantities offered. The values of all variables except the fundamental value estimates
are changed by transitions during the trading session (the interval 0 < ¢ < fimax).

A maximum of one offer can be simultaneously valid for each agent and each asset. The
valid offers are stored in the fields p°f (prices) and ¢°f (quantities) with the sign convention that
positive quantities correspond to asks (offers to buy) and negative to bids (offers to sell).

At the beginning of the process (f = 0), the state variables have the following initial values:

pi=p): predetermined quotation, e.g. ,
the closing quotation of the previous stock exchange day
g =0: no offers valid (the value of pgf is arbitrary)
m;=0: no demand-supply pressure
pjf=d}=0: no trend
xij and yi: predetermined individual start portfolio, e.g.

sampled from a predetermined distribution

AexXt,

Dij=bi initial price expectations and fundamental value estimations coincide

Aext,

Di:

sampled from a predetermined distribution and
held fixed during the trading session

2.2. State transitions and activities

Every transition of the market state is brought about by agent activities. That is, there is
a one-to-one correspondence between possible transitions z — z’ and admissible actions of the
agents.

At each instant ¢, agent i has the choice between the following activities.

1.

Value adjustment V= (i, j, 8):

He may adjust his price expectation p;; of asset j by § = £ 1 units. If p;; =1, the down-
adjustment (7, j, ~1) is not admissible. This guarantees the positivity of price
expectations.

. Offer O=(, j, p,q), where O is an ask A if ¢ > 0 or a bid B if g < 0:

He may offer to buy or sell, respectively, the quantity | g | € N of shares of asset j at the
price p € N. We use the sign convention that positive quantities correspond to an ask (or
purchase), negative to a bid (or sale). The ask A = (i, j, p, q) is only admissible if y; > pg
and no bid of the agent for that asset is valid. Similarly, the bid B = (i, j, p, q) is only
admissible if x;; > | ¢| and no ask of the agent for the asset is valid.

. Trade T=(,J,0,q):

If an ask or a bid of agent /i meets (i.e. has the same price as) the valid offer
O =(i', J, p,q')—ask or bid—of an other agent i’, then | g| < |q’| shares of asset j are
traded: either i buys g shares of asset j from i’ when ¢ > 0 > q’, or i sells — g shares to
" when g < 0 < g’. Trades underlie the same admissibility conditions as asks or bids, i.e.
yiz pg and x; 2 —q.

Cancel C= (i, j):

He may cancel the valid offer O = (i, j, p, ¢') of himself. This activity is admissible when
an offer would be admissible (an ask if O is a bid—a bid if O is an ask) if O were not
valid.
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Activities are subdivided into two groups, the unobservable value adjustments and the
market events, namely the publically observable offers, trades and cancels. The set of
simultaneously admissible market events is further restricted. At the same time for the same
asset, an agent cannot be both a demander and a supplier, i.e. he may either offer an ask, agree
to a bid (buy) or cancel a bid or he may offer a bid, agree to an ask (sell) or cancel an ask.
This fundamental ask—bid decision depends on his current portfolio, his price expectation, the
current price and the currently valid offers. There are also restrictions concerning the price p
of offers and the acceptability of valid offers, and there is a rule concerning the computation
of the traded or offered quantity. The details can be found in Section 3. The state transitions
corresponding to the activities are given in Table I.

The transitions of pj* and d}" in the case of a trade are as follows. We distinguish two cases,
namely a trend continuation when the price change Ap = p — p; and p;" have the same sign,
and a counter-movement when they have opposite signs. First, Ap is added to both p," and

/" in any case. If, in the case of a continuation, a previous counter-trend is overcompensated,
i.e. d}" now has the same sign as the trend, then d}" is reset to 0. If, in the case of counter-
movement, | d;'| exceeds the critical value dmax| p)*|, then a trend reversal is indicated and
pj"is set to d}" and dJ is reset to 0.

Table I
Activity Transition
V=(Ia./!6) ﬁiijﬁlj+6r .
O=(iJ,p,q) P~ P, qij = g, mj~ m; + sign(q)
T=(,/,0,J,p.q")q) pi~ P, qli~ q' +q,mj~ m;+sign(q)

Xij = X+ q,Yi= Yi— pq, Xiij= Xij— 4, Vi = Yi+ pg
p)" and dj": see below
C=(i,Jj) a5 =0

2.3. Transition rates

The theory of stochastic processes tells us that the transition rate of a transition is
proportional to the probability that this transition is the next to occur. As transitions
correspond to chosen activities, transition rates are proportional to the choice probabilities.
So, we can and do use the logit model which, according to the economic theory of choice, is
consistent with the random utility maximization hypothesis (cf. McFadden?’ and Borsch-
Supan?®). That is, the transition rate A(z’,z) of the transition z — z' called forth by the
activity .« of agent i in state z is written in the form

Az, 2) = W-exp{®(H, 7))} (2.1)

where the constant W depends only on the type of activity, value adjustment or market event,
i.e.

W {WV 4 is a value adjustment 2.2)

Wr .o is a market event

The term ® (.7, z) corresponds to the deterministic part of the relative utility of the alternative
chosen (Bérsch-Supan?®). We call it the wutility potential. The utility potentials for different
activities depend on different sets of state variables. These dependencies on the one hand and
the effects of the transitions produced by the activities on the state variables on the other hand
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Figure 1. The interdependence of state and activity

are depicted in Figure 1. Activities appear in double framed boxes, state variables in single
frames.

In our model, there are only finitely many admissible transitions in each state so that the
process fulfils the condition of being conservative:

2 Mz',2)= - Nz,2) < 2.3)
'#z

The evolution of the market state z is then represented by the time evolution of the probability
function of z, P/(z), obeying the so called master equation (cf. Haken,2' Weidlich and Haag, 2

Landes and Loist!?°):
d
= Pi@)= 2, Nz, 2)P(2)— 3 Mz',2)Pi(z) (2.4)

z

dr bl 4 '

3. THE DETAILS

3.1. Detailed description of the state variables

At the beginning of the trading session, each agent i (i € I) possesses a subjective estimation
P of the fundamental value of each asset j (j € J), which is based on the intrinsic value and
the external information concerning the stock.

The fundamental value has to be understood as the present value of future annual earnings
described as random variables. The factors influencing the fundamental situation of a
corporation fluctuate much less frequently than actual market prices. We assume, therefore,
that there are no external effects causing a change in the fundamental situation in the short
run. Consequently, the estimates p" are assumed to be predetermined by external factors and
fixed during the trading session.

For each share, these subjective estimates may differ and, thus, constitute a distribution,
which is to be interpreted as the market estimation of the share’s intrinsic value. That is, we
do not assume that the market is able to compress the intrinsic value into a unique scalar
figure. Accordingly, we do not believe that there are rational expectations at the market level
in the sense that all agents have the same expectations of the intrinsic value which are also
equal to the realized equilibrium market price.

We do assume rational expectations at the individual level in the sense that every agent
believes that his expectation will be realized at the end of the planning period. This assumption

is the basis of the agent’s trading decision rules: if the rate of return of investment in the asset
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based on his expectation is above the reference rate (bond rate) r, he wants to buy, if it is
below, he wants to sell. This basic rule has to be modified for an operational implementation
as explained below (cf. Section 3.2).

The individual expectations just mentioned are the current price expectations pij of the
agents. Originating in A at ¢ =0, they undergo a permanent revision in the course of time
due to the observed market scenario. This accentuates the signal effect of stock market
performance. The individual adjustment to market information structures, the internal value
correction, is expressed as the difference Aﬁ,-i}“ between the current price expectation and the
fundamental value estimation:

B =PE + Api
The internal value correction is the result of learning from the information gained from the
observable process of market activities. In the valuation of assets, the agents account both for
the market climate independent externalities and the actual stock exchange performance.
To allow for strategic portfolio decisions, we explicitly include the current portfolio of each
agent in the model: the field y of capital and x of share holdings. The initial portfolios for each
agent are sampled from a predetermined distribution: the total wealth w;, sampled from a
Pareto distribution, is subdivided randomly into cash y; and a predetermined number kop: of
investments x;; in different shares:
) kopl
wi=Yi+ 2, XD,
y=1
The market events (offers, trades and cancels) are observed by all agents, they constitute the
explicitly observable market process. They influence the internal factors, which account for the
market performance. These are represented as follows.

1. The vector p of current stock prices consists of the quoted prices of the last trades of each
asset except when there is no such trade, in which case p; equals its predetermined initial
value p).

2. The vector m of market powers of the assets measures the prevailing demand—supply
pressure with regard to each asset. Purchase orders have a rising effect while sales orders
induce a decrease of the value of m;,. In our present implementation, m; is the difference
between the numbers of demand and supply type actions that have occurred up to the
present instant. It is initialized by 0.

3. The vector p'" of price trends captures the current price tendencies. The current value of
p,* is the difference between the current price and the last trend reversal price of asset
J. Initially, it is set to 0.

4. The vector d' of counter-trends (initially 0) is the vector of counter-movements of the
price against the trend. It serves to determine a trend reversal of the price of asset j: if
the counter-trend exceeds the predetermined critical part dmax of the magnitude | p;*| of
the trend, then a trend reversal is indicated. In this case, the last trend reversal price
becomes p;— d;" and, hence, the trend becomes the counter-trend. The updating of p"
and d" is described in Section 2.2.

5. The fields ¢°f and p°f contain the information concerning the set of valid offers:

<0: the bid B= (i, J, pSt, qof) is valid
g5’ =0: there is no valid offer of agent i for asset j 3.1

>0: the ask 4 =(, j, pSl, q3f) is valid
Initjally there are no offers valid, i.e. q,-‘}-f= 0 at t=0. We define the sets
PP = (pdflgsf <0} and Pf* = {pJ|q) >0} of valid market bid and ask prices,
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respectively. We then define the maximal ask price and minimal bid price

pi* =max P, pPd=min PP (3.2)

ask

if the corresponding set is not empty. Formally, we put p#** =0 if there is no valid ask
and p }’i" = oo (or a vastly high price assumed never to be reached) if there is no valid bid.
The vector p™ = (p;™);es of current market cut prices is derived from p and the sets
of valid offer prices P/ and P#*:
_ P +0-5 if p;< pp
piM =max(pf** +0-5,min(p;, pf-0-5)) = { pP¥-05 if p>pr¢ (3.3)
i otherwise

The cut price cuts the range of prices for asset j into the market demand interval O, p™
of prices at which the market accepts a bid and the market supply interval [pf*, ©) of
prices at which the market accepts an ask. The cut price is to be understood as the
reference price for the fundamental ask—bid decision.

These variables reflect the information on the current capital market performance explicitly
perceptible for each agent. The vectors p, m and p' in conjunction with the individual
expectations of the fundamental values establish the driving forces of the unobservable process
of individual value adjustments by which the evolution of the field P of current price
expectations is driven. The price expectations in turn govern in conjunction with p, p° and
¢°' the explicit process of market events (cf. Figure 1).

3.2. The fundamental ask—bid decision and the set of admissible prices

For the discussion in this section we fix an agent i and an asset J. The decision of whether
the agent appears as a demander or a supplier of the asset rests on the question whether there
are prices which are acceptable for both the agent and the market. These prices then form the
set of admissible prices. Each such price determines an admissible market event which, except
for a cancel, is accompanied with a definite quantity g, the positive or negative volume of the
(intended) transaction, which depends deterministically on that price as well as on the price
expectation py; and the portfolio of the agent. The determination of these quantities is
described in Section 3.3.

The agent decides to invest or disinvest at a price p on the basis of the expected one-period
rate of return 7;; corresponding to his price expectation Pij, which is just the end-of-period price
he expects:

p(l + Fij) = pyj 3.4)
We assume that the agent has the opportunity to invest idle capital in bonds with a market

rate of return of r. He therefore wants to sell at all prices for which his expected rate of return
is below r and to buy at all prices for which fij is above r:

Fij < r = bid; Fij > r= ask 3.5)

Consequently, the whole range of prices is cut by the individual cut price

~

cut Dij
peut — 3.6
/ 1+r (3.6)

into the set (0, pf") of individually (for i) acceptable ask prices and the set (p§*, ©) of
individually acceptable bid prices:

cut

D > Di

cut

= bid; p < pf* = ask 3.7)
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On the other hand, as described in Section 3.1, the price range is also cut at the market side
into the set (0, p/™] of prices at which the market accepts a bid and the set [pf*, ®) of prices
at which the market accepts an ask.
Admissible prices must be acceptable for both the agent and the market. As prices are
positive integers, admissible ask prices belong to the set [pf™, p§")NN and admissible bid
cut

prices to the set (p{*, pf™*] NN. It is obvious that these sets cannot both be simultaneously
non-empty. There are admissible ask prices if the maximal individual ask price

ask

P =max{peN|p< pf" (3.8)

is not smaller than p** while there are admissible bid prices if the minimal individual bid price

pi¢=min{peN|p > pg" (3.9

is not greater than pf“'. This determines the fundamental ask—bid decision:
p,ejtsk pjcut = ask pbld cut = bid : (310)

In the former case, we want to say that the decision is to ask, in the latter to bid. It may happen
that the decision is neither to ask nor to bid. In that case, no market event actions (i.e. only
value adjustments) are admissible for the agent with regard to the asset. If, otherwise, the
decxsxon is to ask (bid, respectively) and there is a valid bid (ask, respectively) of i for J, i.e.
if g3t <0 (>0, respectively), then the only admissible market event action of the agent for
the asset is the cancelling C = (i, j) of that bid (ask, respectively). Let us now assume that this
situation is not true.

The central reasoning is that, firstly, each trade of a valid offer whose price is in the range
of corresponding admissible prices is admissible and that, secondly, offers at prices in the range
of admissible prices are admissible if and only if there is no admissible trade which is more
favourable for the agent with respect to the expected rate of return. This leads to the following
rules.

We consider first the case that the decision is to ask, i.e. that

ask [p cut’ pusk] NN = ]

For each price pf; of a valid bid in P4 N P, the purchase T=(, J, (i', j, p®% a5, q) of
the definite quantity (as mentioned above) of q,0 < g < L gt |, shares of the asset to agent

" at that price is admissible. For all prices p in P#% which are not greater than or equal to
the price of any valid bid, i.e.

cut

pi™ < p < min{pf*, pf - 1)
the corresponding admissible action is an ask 4 = (i, /, p, q), ¢ > 0. If phd—_1< p*, no ask
is admissible.
It remains to discuss the case that the decision is to bid, i.e. that

PBld [pllj)ld’ D} ut] NN # 0

The situation is completely analogous to that in the ask case. The sale of | ql,0< —-¢g < q, ,,
shares of the asset at the price p,, to agent /', i.e. T=(,J, (', J, p,,,q, ,) q),q <0,
admissible if pPfie PS9N P while the bid B—(I Js D), q <0, is admissible for each
price p€ Pbld Wthh is not smaller than or equal to the price of a valid ask, i.e.

piM=pz max(!’t‘fnda PJaSk + 1)

No bid is admissible if p** +1 > ps*.
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3.3. The determination of the quantity

The quantity g associated with an admissible offer or trade of asset j of agent / is that signed
(positive for ask/purchase, negative for bid/sale) volume of the (intended) transaction which
is optimal with respect to a certain individual objective function under certain restrictions.
There are the budget restrictions of agent i not to invest for credit, i.e. y; > pg, and not to
make future sales, i.e. x;; = —q. In the case of a trade, the volume is also not allowed to
exceed the volume |q,9§~| of the corresponding valid offer. In case of a sale, the no-credit
restriction of the trading partner, agent /', has also to be kept.

The individual objective function is the risk-adjusted portfolio return, i.e. the expected rate
of return of the agent’s ‘intended’ portfolio, which results from performing the intended
transaction, adjusted by a risk measure. In our model we do not use the traditional risk
adjustment proportional to the covariance or correlation between the share and a market
portfolio. We rather assume that risk is measured as the deviation of the (intended) portfolio
from a certain predetermined target portfolio, which is given by the aspired distribution
(s§")je su o) of the portions of the portfolio positions on the total wealth w; of the portfolio.
The index j = 0 corresponds to capital (invested in bonds).

Our risk adjustment term corresponding to a portfolio y;, (xij)jcs at prices (p;)jey is
proportional to the sum S; of the squared differences of the portfolio portions

JYi XijDj .
S0=2, S"’zT,I-)j’ jeJ (3.11)
on the portfolio wealth
wi= yi+ ZJ Xypj (3.12)
je€
and the target portfolio portions s{*':
M
Si= 2 (sij—s§) (3.13)
Jj=0
The risk-adjusted rate of return of the portfolio is then the term
Wi i " R
R,'=—-£- 1 —%E,‘HSKS,'; w;=y;(1 +I‘)+ Z XijPij (3.14)
Wi jeJ

risk
i

The parameter £/ measures the risk aversion of agent i. The objective function is then the
term R; evaluated at the intended portfolio
Yi—pq, Xxi+q; (Xij)j =

with current prices for the assets j' # j and the intended price p for the asset j under
consideration. It becomes a function of ¢ depending on the fixed price p. Only the terms w;,
sio and s;; depend on g but not w;. Denoting the relative wealth of the intended investment by
s = pq[wi, we obtain

wi=yi(l+r)+ ZJ Xiybij + q(Bij— p(L + 1) = WP + wi(Fyy = r)s
J€

sio=(yi— pg)wi=sh~s and sy=(x;+q)p/wi=s\+s

as functions of s (the superscript 0 corresponds to g = 0). The objective is then to maximize

A 0
w
R,'(S) = Wl

i

=1+ (fij—r)s— %Ei"Sk<(S?o =SB =+ (sh— T+ P+ 2 (sy - Sﬁ"’“)2>
JER)

After a little straightforward algebra, we obtain

Ri(s)= R — £/5K (s — s*)? (3.15)
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where R* = Ri(s™) is the global maximum of R; (whose value is not needed further) attained at

1 X Fij—
s*=5 [(S?O—Si%Xt)“(Sg‘"siejt)+_J;i£] (3.16)
The corresponding quantity is then given by
Wi X X F’“ -r
q*=$ [(S?O_sl%‘)_(s%—siejt)'*' J;isk] 3.17)
1

What is really needed is not the globally optimal quantity but the integer valued quantity which
maximizes R;in a given interval [q1, 21, ¢1, @2 € N. As R; is a quadratic function the solution
is to choose that integer g € (g1, g2] which is nearest to q*:

a1 if ¢* < aqu
g={round(g*) ifq1<q*<q (3.18)
9 if ¢* > q2

The just mentioned interval of admissible quantities is to choose so that the admissibility
conditions for the corresponding activity are met. These are, in particular:

ask: positive quantity and no credit allowed:
gi1=1, gx=max{neN|n < yip)
bid: negative quantity and no future sales allowed:
1= =Xy, G2=—1
purchase: positive quantity, no credit allowed and trading volume bounded by the supplied
quantity of the corresponding valid bid of agent i’:
g1=1, g2=min(|g?|, max{neN|n< yip})

sale: negative quantity, no future sales, no credit allowed (for the trading partner i')
and trading volume bounded by the asked quantity of the corresponding valid
ask of agent i':

g1 = —min(xy, g7}, max{n € N|n < yi[p}), q2=—1

In our modelling, we have assumed that the agents aspire to a target portfolio of kopi + 1
equal portions. That is, for each agent i there is a subset J; of kop elements of J such that
1 , .
LS‘i‘E)xt = Siz'xt = m s J € Ji; s,§-’“ = 0, JE€ J\J;
The set J; is not determined explicitly but assumed to be variable. The asset under
consideration is assumed to belong to J; if and only if the activity is an ask or purchase or

the number &; of different assets held by the agent (the size of the set of all j€ J with positive
Xi;j) is not greater than kopi. This yields:

ask/purchase or k; < Kopt

SIS
— - __x'+_ s .._A . A: . 3.19
T3 p T e ! bid/sale and ki > Kopt 3.19)
kopt+1

3.4. The transition rates in detail

In this section we want to present our modelling of the transition rates. As mentioned in
Section 2.3, we use the logit model to determine the structure of the transition rate A (z’, z)
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of the transition z — z' (cf. (2.1)): transition rates are proportional to an exponential function
whose exponent is the utility potential of the activity causing the transition.

By adequate formulation of the transition rates, some activities may be favoured while
others are suppressed according to the market and the individual situation expressed by the
value of z. Our effort lies in an attempt to capture all relevant facts concerning the capital
market—the institutional regulations as well as the pattern of individual behaviour—and
incorporate them appropriately into the model. This is achieved by setting up restrictions
which manifest themselves in the admissibility of activities (cf. Sections 2.2 and 3.2) and in
defining suitable utility potentials, which take account of preferences of individual behaviour
in a formal manner.

Our approach is based decidedly on the differentiation between value adjustments which are
not known to the public and market events which are openly observable. The dynamics of
these different types of activity are different, which led us to choose different proportionality
constants W in formula (2.1), the reagibility parameters Wy and Wg (cf. (2.2)) describing the
speed of reacting, for the two types. Also the functional form of the utility potentials and the
variables on which they depend differ. According to formula (2.1) it suffices to describe
the utility potentials.

The utility potentials for each activity are the result of the superposition of a number of
relevant factors. This is achieved by the representation of the utility potentials as the weighted
sum of partial utility potentials, as we will see below. We call the weights the coupling
parameters. We assume that the set I of agents is partitioned into a small number g of groups
I, ..., I, which are homogeneous with respect to the coupling parameters, i.e. each coupling
parameter may have g different values, one for each group.

We start our description with the utility potential ®y(J, j,$,z) for a value adjustment
V =(,/,0). It is decomposed into four parts and signed with the sign of é because influences
which favour upwards adjustments disfavour at the same time downwards adjustments:

®y(i, J, 8,2) = 8[nf B (2) + 0™ (2) + 9P RPN 2) + IR ()], i€l (3.20)
The four partial potentials are:

1. The external potential
Aext ~ X L3 A ext A
ext _ 5% sion( HE — Pis
5 (7) = | Bij Dij| Aei (Pij Bij) (.21
Dij

We assume that the intrinsic value estimation of the agent remains always the basis for
the corresponding price expectation. This means that there is a stimulus to reattract p;;
to p5‘, which is the stronger the more these two terms diverge from each other. The
parameter x > 0 is the degree of the external force. It is near one (usually >1) where
x =1 corresponds to the linear case.

2. The market information potential

off(z) = PPy (3.22)
Pi
High prices increase the readiness for an upwards adjustment, low prices for a
downwards adjustment. The market information potential favours adjustments which
decrease the distance between p; and p;.
3. The market power potential

. ] mi
) =p i1 -p) = 3 (3.23)
! Pi (=) MJ;J D’
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accounts for the influence of the prevailing demand—supply pressure, expressed as the
vector m, on the adjustment of price expectations. A positive climate at the stock
exchange, represented by a demand pressure (positive market power), favours upwards
adjustments, a negative climate (supply pressure) downwards adjustments. The total
potential is decomposed into a part which represents the relative market power of the
asset under consideration and a part which measures the average relative power of the
whole market. The parameter p weights the influence of the single asset against that of
the whole market.
4. The price trend potential

{ pJ 1 3 J il
&S @ =p gt (-p) o 2 — (3.24)
pi—pJ M ;7&y pj'— b}
The same argumentation as for the market power potential is valid also for the price
trends. The trends come in relative to the last trend reversal price p; — p}*. The same
weighting parameter p is used.

The coupling parameters 55, 7/, »P°" and 5/ measure the relative influence of the

corresponding potential for an agent in the respective group 1.

We now describe the utility potentials for market events. In our modelling, the quantity g
is not part of the basic decision of which activity at which price is to be chosen, so that the
utility potential does not depend on g. For the purpose of defining the utility potential,
it suffices to characterize a market event by the quadrupel E = (,j, p, a), where i is the

cut

agent, j the asset and p the price which, in case of a cancel, is defined by p;™, and
ae{-3, -2, -1,1,2,3} characterizes the activity:

1 offer
|a| =42 trade sign(a) = {
3 cancel

+1 ask, purchase, cancel of bid
—1 bid, sale, cancel of ask

For each market event E = (i, j, p, a), we distinguish three partial potentials:
®(E, z) = £/790"% (a) + £ (a, p, 7) + £/4'9[ (a, p,2), i€l (3.25)

The coupling parameters of agents of group I, for the partial potentials are £/, £/P and £/™°.
The trade potential

0 if |a|=1

trade —
) {1 if |a] > 1 (3.26)

increases the probability of a trade or cancel as compared with an offer because, as we assume,
the agents prefer a sure trade now to an uncertain trade in the future. A cancel is treated here
like a trade with himself.

The other two potentials must be analysed together. They are designed to treat the ask-type
(a > 0) and bid-type (a < 0) activities symmetrically. The range of admissible prices is an
interval [p’, p”] whose extreme points p’ and p” are the prices pf* and p{"' (cf. Section 3.2):

cut

[p',p"]=[p™, p§" if a>0;, [p,p"]l=I[pi pi*lifa<0

Considered as a function of p, the realization potential 5 measures how likely it is that
the market accepts the price p, while the individual preference potential <I>,-"}’ expresses the
individual preference of the agent to realize high returns. Thus, the realization potential is
increasing (decreasing) and the individual preference potential is decreasing (increasing) in p
if @ > 0 (a < 0). The strength of both is the relative positive difference of the price p and the
corresponding extreme price, pf* for the realization potential and p{* for the individual
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preference potential. The difference is to be taken relative to the greater of the two prices which
are subtracted. We obtain:
@?mexyzﬁp—pﬁwp 20 (3.27)

cut cut

pi" = p)lp; a<o

cut

(pij - p)/picjm a>0 (328)
(p-pi"p a<o0

By this modelling, both potentials vary from 0 to (p” — p')/p”, the extrema being attained at
the extreme points of the interval. The increasing potential is strictly concave and the
decreasing is linear in p. The additive weighted (by the coupling parameters) superposition of
both is a strictly concave function of price p, which has a maximum in the interval (p’, p”)
at Jyp'p"” if and only if the quotient vy of the coupling parameter of the increasing and that
of the decreasing potential is in the interval (p’'[p”, p"[p").

(I)iijp(a’ D, z)= {

4. SIMULATION

The time evolution of the market state can be described by its single time probability
distributions which obey the master equation. Although this is a linear equation, it is
practically impossible to find an explicit theoretical solution as well as a direct numerical
solution because of the vastly high dimension of the master equation.

A way out of this dilemma is a solution by Monte Carlo simulation. This also helps us to
understand the dependence of the structure of the solutions on the set of parameter values.

The simulations are designed in accordance with the functioning of the process, which will
be described first.

4.1. The functioning of the process

As is known from the theory of jump processes, the waiting time between two transitions,
i.e. the time the process stays in state z until it jumps, is exponentially distributed with
parameter A(z), the sum of the transition rates of all possible transitions. The probability that
the state then jumps to z’ is just N(z', 2)/A(2).

This structure can already be used to simulate the process. But this would not reflect the
underlying economic structure. The above mathematical structure is exactly the same when the
process development is described as follows.

Let 7o be the start time, i.e. the time at which a market event has occurred, and let zo be
the state at #o. Let 7(i, j, #) be independent exponentially distributed random reaction times
with parameter \(z(/, j, .), 20), the transition rate of the transition from zo to z(i, j, ) forced
by the admissible action .« For each i and j, let T'(i, j) be the minimum over all T(, j, &)
when . runs through the set of all admissible actions for agent / and asset j in state zo, and
let .«; be the action at which the minimum is attained. This can be interpreted so that agent
i decides to carry out action «; at time fo + T(/, j). Further, let 7" be the minimum of all
T(, /) attained at (i*, j*). Then the next transition is produced by the action «%** of agent i*
for asset j*. We must distinguish two cases.

The first case is that this action is a market event. Then it is observed by all agents, and their
decisions based on the information given by zo lose their validity. The process starts anew in
the same situation as at 7o but at the new state z(i*, j* Ai* i*).

The second case is that this action is a value adjustment. Then it is not observed by the other
agents. The set of admissible actions and their transition rates of all pairs (i, j) except (i*, j*)
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do not change. The remaining reaction times T(i,j) — T* for all these pairs and a new
independent reaction time for (i*, j*) obtained by the same method as at 7o now compete for
the shortest reaction time to elect the action which is carried out next and produces the next
transition. '

Again, this action could be a market event (Case 1 applies) or a value adjustment (Case 2
applies), and so on. One can show that such a progress exactly defines the same distribution
of waiting times and next-jump probabilities as those theoretically demanded (cf. Landes et
al., Reference 30, p. 100). But this description is much more well-adapted to the real economic
situation.

4.2. The simulation technique

As already mentioned, the simulation technique follows the running scheme described
above. At the beginning, the initial values are set as described in Section 3.1. In particular,
the internal value estimates are sampled from a given distribution which, in the present
implementation, is a mixture of truncated normal distributions.

The following algorithm starting at Step 1 with ¢ = 0 describes the simulation.

Step 1. For all pairs (i, j), all admissible actions and the corresponding transition rates are
computed. For all these actions, uniformly distributed pseudo random numbers on
(0,1] are generated. Their negative logarithms divided by the corresponding
transition rate then yield simulated realizations of the corresponding reaction times.
Separately for each pair (i, j), the minima #;; of these reaction times are computed.
Let .«7; be the actions at which these minima are attained. Proceed with Step 2.

Step 2. The minimum ¢* over all #; is computed. Let (i*, j*) be the corresponding pair. The
reaction time ¢* is added to ¢. If the resulting ¢ is greater than or equal to the maximal
time fmax, then stop. Otherwise, if &= +4** is a market event then proceed with
Step 4 else with Step 3.

Step 3. The transition corresponding to the value adjustment .«* is performed. For all pairs
(i, /) # (i*, j*) the reaction times #;; are replaced by #;; — t*. For the pair (i*, j*) new
reaction times for the corresponding admissible actions, their minimum ¢* ;* and the
corresponding action .«** are computed as in Step 1. Proceed with Step 2.

Step 4. The transition corresponding to the market event .~ is performed. Proceed with
Step 1.
At equally spaced times, the current states of the simulated paths are stored. For each
parameter set, a number of paths are generated. The parameters are as follows.

ext inf

1. The coupling parameters 5/, n/™, 9P, n/* of agents of group I, I=1,..., g, of the
partial potentials of the utility potential for value adjustments.

2. The coupling parameters £/, £[P, £/9¢ of agents of group I, /=1, ..., g, of the partial
potentials of the utility potential for market events.

3. The risk aversion parameters £/*% which are also group specific, i.e. equal for members

i of the same group 17,.

The reagibility parameters Wy and W of the adjustment and market event process.

The specific impact p of asset j on the potentials ® P and $;".

The degree x of the external potential.

The market rate of return r.

The critical value dmax of the counter-trend.

S AN



COMPLEXITY MODELS IN FINANCIAL MARKETS 225

mwarx - 215.09 Tra nae 2200
VUad
.
I i I
iy, AN, 1 %’
it I {101
i Ui I /)
lllfl” i NI HITIEEI)
/11
1 | Thussen l 238 =38
x : 178.00 na 1700
Vad na Trd
| SO
/1174 1t I[ lllllllllll fii
i/l iy I MW
”%%%% 11111 MIHMWHIIH
I/l I 1l %/ ’;%”””
R
I
2 [Comnerzbank] 243 243
»x : 158.00 max - 80 .00
vad 02 Trd
. / it {1141
T %I [%l 9]//
) o, I,
/ / ’
3 | Dt. Bank | gae e4e
H 15 .00
@ 170.00
Umd Trd

[
' il ”m
ﬁ I‘ \ﬂﬂww”’”qw I
iy
) "t'” i ’

¢
’fi’

i oy
=
=
=
-~
=
bty
S5

==

’ ) ‘ \‘

{! i . uﬂ.‘-' H"a\'!i"-

/ ', l)‘,}’m[!jp[ﬁ‘,ﬁ'#f lf WW\
ll!l/ﬂ/'lﬂ IM iy ‘ d{ W" fEve)
|
lm%%fm.ﬂ% M " ! \?\" v

[Commerzbank] 243

243

Figure 2. Four simulations of distributions of price expectations (left) and prices (right)
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9. The number kop of different assets in the target portfolio.
10.The parameters wo and {, of the Pareto distribution of the wealth of the agents at = 0.
11.The maximal time span fmax.

The computations are carried out on an eight-transputer network. Nevertheless, the
computation times are still so high that only a limited number of simulation results are
available as yet.

4.3. Some simulation results

We now present a few simulation results in graphical form. We worked with 10 shares and
40 agents subdivided into five groups, labelled A to E. Each group represents a certain kind
of stock market speculator characterized by a set of group specific parameter values.

For each parameter constellation, 200 paths with fmax = 10 are simulated. We thus obtain at
each time ¢ < 10 for each asset j a distribution of 200 quoted prices and a distribution of 8000
price estimates. In the graphics depicted in Figure 2, these simulated distributions are shown
at 10 time points (the left for the price expectations, the right for the quoted prices).

We show here examples of four different types of scenario. In the first, we observe a slight
increase of both mean prices and expectations, the distributions remain unimodal but become
more and more diffuse. In the second, there is a strong decline of both mean prices and
expectations, the distributions are unimodal again. In the third, the prices decrease and remain
unimodal while the initially bimodal expectations distribution becomes unimodal. In the
fourth, we see a strong increase of mean prices and expectations, the expectations remain
unimodal while the prices become diffuse.

We hope to detect classes of parameter constellations leading to typical performance
scenarios. As different constellations correspond to different behavioural attitudes of the
agents, this leads to a methodology for characterizing these attitudes and relating them to
typical phenomena at the macrolevel. This goes beyond the scope of this paper.

Table I1
No. Par. Val Group T,ext ninf npot 77" Eip Etrade Ercal gnsk
In(WEg) -3-8 A 0-1 0:2 0-0 0-3 0-8 0-0 0-1 1-0
In(Wv) —4-4 B 0-2 0:2 0-0 0-3 0-8 0-0 0-1 1-0
1 p 0-5 C 0-3 0-2 0-0 0-3 0-8 0-0 0-1 1-0
X 1-0 D 0-4 0-2 0-0 0-3 0-8 0-0 0-1 1-0
dmax 0-:05 E 0-5 0-2 0-0 0-3 0-8 0-0 0-1 1-0
In(Wg) —-3-8 A 0-1 54 0-0 1-0 0-8 0-0 0-1 1-0
In(Wvy) —4-4 B 0-1 54 0-0 1:0 0-8 0-0 0-1 10
2 o 0-5 C 0-1 54 0-0 1-0 0-8 0-0 0-1 10
X 1-0 D 0-1 54 0-0 1-0 0-8 00 0-1 1-0
dmax 0-05 E 0-1 54 0-0 1-0 0-8 00 0-1 1:0
In(WEg) -3-8 A 0-0 20 0-0 0-0 08 0-0 0-1 1-0
In(Wy) —-4-4 B 0-0 20 0-0 0-0 0-8 00 0-1 1-0
3 o 0-5 C 0-0 20 0-0 0-0 0-8 0-0 01 1-0
X 1:0 D 0:0 20 0-0 0-0 0-8 0-0 0-1 1-0
dmax 0-02 E 0-0 20 0-0 0-0 0-8 0-0 0-1 1-0
In(Wg) —-6:0 A 3-1 1:0 0-3 2:0 0-0 0:0 0-0 1:0
In(Wv) —-6-5 B 3:1 1-0 0-3 2-0 0-0 0-0 0-0 1:0
4 {p 0-8 C 3-1 1-0 0-3 2:0 0-0 0-0 0-0 1-0
X 2:0 D 3-1 1-0 0-3 2:0 0-0 0-0 0-0 1-0
dmax 0-10 E 3-1 1-0 0-3 2-0 0-0 0-0 0-0 1-0
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The parameter values are as follows. Common to all four simulations are r = 0-01, kop = 5,
wo = 30 000, and ¢, = 1. The others are collected in Table II.

CONCLUSIONS

Even if we assume that we are breaking new ground, there are previous results that we are
relying upon and to which our approach is related. The comparison to the literature helps to
point out the peculiarities of our approach. A detailed elaboration of the relation to the main
body of the literature is provided by Landes and Loistl,2® and Loist! and ReiB.3* A condensed
version of the one stock model is presented in Landes and Loistl.** The computation of the
fundamental value distribution on annual report figures is illustrated in Landes and Loistl. *?

The synergetic view has been developed by Hermann Haken.?! Weidlich and Haag?? applied
the concept in the modelling of social phenomena. Both publications are mentioned by Brian
Arthur®® (p. 23); he stresses the independence of the transitions: they can be made only one
unit at a time. He underlines that models of this fixed-size, Markov-transition kind are
standard in genetics, epidemiology and in areas of physics. This statement must not be
misunderstood as though the application of such a model to problems in economics requires
no major changes. The concept of synergetics fundamentally relies on the dominance of
individuals’ activities and their interactions at the microlevel.

Phenomena at the macrolevel are consequences of micro-events. A description of economic
interdependencies at the macrolevel must rest on the activities at the microlevel. Establishing
macrorelations without that basis might lead to economic theorems endanged by
untrustworthiness. Both the rising scepticism about (monetary) macroeconomics and the rising
investigations of the capital markets’ microstructure underline the discomfort with the
prevailing global concepts. We believe that, for example, a valid description of the market
microstructure has to rest on the individuals’ activities and consistent integration into
institutional rules. The activities have to be determined by explicit behavioural attitudes and
the continuous processing of information entailed in the market performance. The main
difference between our approach and Brian Arthur’s positioning of that sort of Markov
models is the discussion of the transition rates. We break up the global given transition rates
(a concept that is, of course, well known in science) into single components determined by
behavioural attitudes. As the transition rates govern the realization of activities we are thus
able to integrate the acting agents into the factors causing a change in the state of the capital
market.

Thus, the detailed elaboration of factors determining the transition rates provides the
possibility of explicitly modelling the variability and richness of (capital) market scenarios at
an extent that goes far beyond the hitherto prevailing description by stochastic processes given
by the results of probability theory. e.g. Duffie.?' The integration of both approaches might
be very promising.
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