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Abstract

We examine hurricane exposure as a systematic risk factor in the US stock market. Motivated by

a consumption-based asset pricing model with heterogeneous agents, we derive a necessary and

sufficient condition for a hurricane risk premium in the cross-section of stock returns. Empiri-

cally, we find that – in the period from 1995 to 2020 – stocks that react negatively to aggregate

hurricane losses outperform stocks that react positively by almost 9% p.a. The hurricane pre-

mium is not explained by standard asset pricing risk factors nor stock characteristics. Our

results emphasize the importance of climate risk for firms’ cost of capital.
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“We cannot quantify the exact effects climate change has on

weather related catastrophes, but it is clear that climate

change is a systemic risk to the global macroeconomy.”

Jerome-Jean Haegeli,

Group Chief Economist at Swiss Re

1. Introduction

The economic repercussions of natural disasters have become increasingly severe. Ongoing

population growth, urban sprawl into hazard-prone areas (such as coastlines, flood plains, or

tectonic faults) and, most recently, anthropogenic climate change have led to a clear upward5

trend in disaster losses throughout the last three decades (Botzen et al., 2019). The risk has

reached alarming magnitudes: in the three years 2017, 2018, and 2019, natural catastrophes

caused combined economic damages of about USD 600 billion around the world (Swiss Re,

2020), more than the annual GDP of Sweden.1 Weather-related perils, such as cyclones and

floods, have increased threefold since the 1980s and are responsible for the lion’s share of global10

disaster losses (Hoeppe, 2016).2 The most violent type of natural hazard faced by households

and businesses in the U.S. are Atlantic hurricanes, which account for eight of the ten costliest

disasters in the history of the country.3 Hurricane risk is highly dynamic, because hurricane

activity exhibits seasonality and varies with the North Atlantic sea surface temperature (SST) on

interannual and decadal time scales (Kossin & Vimont, 2007; Smith et al., 2010; Hallam et al.,15

2019). The last three decades were the hottest ever measured (Sippel et al., 2020). Thus,

unsurprisingly, these periods also set new records with regard to extreme hurricane events4 and

their economic impacts.5

Against this background, we study whether hurricane activity has become a systematic risk

factor in the financial markets. We focus on hurricane risk over other natural perils, because20

1The World Bank reports Sweden’s GDP in 2019 at around USD 530 bn.

2The frequency of geophysical events, in contrast, has remained largely constant.

3See Insurance Information Institute: Facts + Statistics: U.S. catastrophes.

4Sandy (2012) was the largest hurricane ever observed in the Atlantic. Harvey (2017) offloaded the largest

quantity of rain in US history. Ophelia (2017) formed furthest northeast of all known category 3 hurricanes.

Irma (2017) sustained wind speeds of 300 kilometers per hour longer than any other storm before it.

5Seven of the ten costliest disasters between 2010 and 2019 were hurricanes (see to Statista.com).

2

https://data.worldbank.org/indicator/NY.GDP.MKTP.CD?locations=SE
https://www.iii.org/fact-statistic/facts-statistics-us-catastrophes
https://www.statista.com/statistics/1088712/costliest-natural-disasters-last-decade-us/


it is geographically widespread, economically severe and follows clear patterns over time. To

predict the existence of a hurricane risk premium, we propose a theoretical framework rooted in

consumption-based asset pricing. Specifically, we build on the model of Constantinides & Duffie

(1996) with heterogeneous agents subject to idiosyncratic consumption shocks, for which hurri-

canes are a prime example. The major protection gaps among U.S. households and businesses25

with regard to hurricane losses (in particular flood-related ones) warrant the assumption that

risk sharing in the economy is strictly limited. First, we modify the original model by means of

the extended Stein’s Lemma (see Söderlind, 2009). This allows us to decompose the expected

excess return for risky assets into two components. The first one is governed by the correlation

of an asset’s excess return with aggregate consumption growth. The second one depends on30

the correlation between the asset’s excess return and the cross-sectional variance of individual

consumption growth. Subsequently, we advance the model into a theory for the risk premium

on hurricane-sensitive assets. To this end, we further decompose the expected excess return

into i) correlations between macroeconomic fundamentals (consumption growth; consumption

inequality) and aggregate hurricane loss growth (AHLG) as well as ii) the correlation between35

the excess returns on risky assets and AHLG. This decomposition allows us to pursue an iden-

tification strategy in two steps, evaluating both a necessary and a sufficient condition for a

hurricane risk premium.

Our empirical analyses start with the correlations between macroeconomic fundamentals

and AHLG. We compute AHLG (per capita) from a long-term data set of real U.S. hurricane40

losses published by Weinkle et al. (2018), spanning the period from 1900 to 2017. In addition,

we use unfiltered non-durable goods and services consumption data (per capita) from Kroencke

(2017), which is available for the years 1928 to 2018, and state-level income data (per capita)

from the Bureau of Economic Analysis (BEA), which spans the time period between 1948 and

2019. We draw on the latter to estimate consumption inequality. It turns out that there is no45

statistically significant long-run correlation between aggregate consumption growth and AHLG.

However, we do find AHLG to be significantly positively correlated with the variance of state-

level income growth from the mid 1990s onward. Since then individuals were thus confronted

with large AHLG rates at times when consumption inequality and thus marginal utility was

high. This provides necessary (but not sufficient) evidence for the emergence of hurricanes as a50

fundamental economic risk factor during the last 25 years.

Next, we examine the existence of a hurricane risk premium as well as its size and dynamics

through a set of established asset pricing tests on all common U.S. stocks in the CRSP database
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between January 1963 and December 2020. We begin with univariate sorting (value and equally-

weighted) based on the stocks’ betas with regard to AHLG. As our hurricane loss data is recorded55

on an annual scale, we follow Adrian et al. (2014) and Chen & Yang (2019) in constructing a

factor mimicking portfolio based on the 25 size and book-to-market sorted Fama-French test

assets. The factor mimicking portfolio allows us to run all subsequent analyses with monthly

excess return time series. For each stock, we then estimate a time-varying beta with regard to

the AHLG mimicking portfolio by means of 60-month rolling regressions. We use these AHLG60

betas to assign the stocks to quintile portfolios in every month. Depending on their business

model, their exposure and a storm’s landfall location, firms can both suffer or benefit from the

occurrence of a hurricane.6 These opposing economic consequences are captured by their AHLG

beta. Stocks with negative AHLG betas exhibit low returns when hurricane loss growth is high.

They should therefore carry a risk premium over stocks with positive AHLG betas.65

Indeed, we find that the average monthly excess return monotonically increases from the

portfolio with the largest positive average AHLG beta to the portfolio with the largest negative

average AHLG beta. Consistent with our theory and the empirically-documented correlation

between AHLG and income inequality, the effect is driven by the last two and a half decades

in the sample. The exact same time period is characterized by abnormally warm sea surface70

temperatures in the North Atlantic and a scientifically-documented surge in hurricane activity

(Goldenberg et al., 2001; Klotzbach & Gray, 2008). The effect is highly significant and large:

between 1995 and 2020, a zero-investment portfolio of stocks with negative minus positive hur-

ricane risk sensitivity (NMP), as measured by the AHLG beta, earned an average excess return

of 0.74 percent per month (8.85 percent p.a.), with a t-statistic of 3.79. The largest part of this75

spread withstands an adjustment for risk exposure to the Capital Asset Pricing Model (CAPM),

the Fama & French (1992) three-factor, and the Carhart (1997) four-factor model. Moreover,

the outcome is robust across two alternative measurements of AHLG.7

We continue with multivariate analyses. Fama & MacBeth (1973) regressions show that

the effect of the AHLG betas stays statistically and economically strong when we control for80

firm-specific characteristics, such as market beta, size, idiosyncratic volatility and coskewness.

6Construction firms, for example, may experience a demand surge effect as the demand for skilled labour

increases in the aftermath of severe natural disasters (see, for example, Döhrmann et al., 2017).

7In addition to the Weinkle et al. (2018) data set, we use hurricane losses from EM-DAT, and the excess

returns on a portfolio of single-peril US Windstorm catastrophe bonds.
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Subsequently, we turn our attention to the time series and cross-sectional properties of the

zero-investment portfolio NMP. First, we regress its monthly time series of excess returns on

a broad battery of ten alternative factor models.8 All of them leave us with large significant

positive alphas of at least 0.505 percent per month (6.06 percent p.a.). Second, we show that85

adding NMP to the Fama & French (1992) three-factor model as well to its extension with the

Carhart (1997) momentum factor, substantially reduces pricing errors in the cross section of 25

test portfolios sorted by size and hurricane risk sensitivity.

In the next step, we inspect the economic mechanism behind the hurricane risk premium.

As firms can exhibit close economic links (Cohen & Frazzini, 2008) and shocks from natural90

disasters are known to strongly propagate in production networks (Barrot & Sauvagnat, 2016),

we rely on textual analysis of public financial statements rather than the geographic location of

establishments for the identification of hurricane risk exposures. Following Cohen et al. (2020),

we download all complete 10-K, 10-K405 and 10-KSB filings from the EDGAR website of the U.S.

Securities and Exchange Commission (SEC), which covers the time period from 2000 to 2017.95

We then match them with the stock market data from CRSP and the accounting information

from Compustat. Using this combined sample, we search for firms that mentioned the keyword

hurricane loss at least once in in their financial statements and identify the states in which

they are incorporated. This allows us to split the sample in two parts: states in which at

least one headquartered firm was actually impacted by a hurricane and those in which no such100

incidents were reported. In doing so, we are able to map economic hurricane risk exposure into

a geographic pattern. By repeating the univariate sorting for these two subsamples, the risk

premium can be attributed to the states that are economically (not just geographically) exposed

to hurricane risk. The other subsample, in contrast, shows no significant effect.

Another important aspect of the economic mechanism is the time varying nature of hurri-105

cane risk. Specifically, hurricane occurrence frequencies are not constant throughout the year.

Instead, most activity is concentrated in the Atlantic hurricane season from June to Novem-

ber, with the risk peaking in the third quarter (see, e.g., Goldenberg et al., 2001). We exploit

8Those are the Fama & French (1992) and Carhart (1997) models with the following extensions: the

Chabi-Yo et al. (2018) crash risk factor, the Sadka (2006) liquidity factor, the Pástor & Stambaugh (2003) liq-

uidity factor, the Bali et al. (2011) lottery factor, the Baker & Wurgler (2006) sentiment index (orthogonalized),

the Frazzini & Pedersen (2014) betting-against-beta factor, the Fama-French short- and long-term reversal fac-

tors, the Fama & French (2015) operating profitability and investment factors, as well as the investment and

profitability factors Hou et al. (2014)
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this strong time series pattern for identification. First, we show graphically that the average

quarterly excess returns of NMP are inversely related to hurricane occurrence frequencies. A110

time series regression of NMP on dummy variables for quarters two to four provides evidence

for a significantly lower excess return in the third quarter compared to the first quarter. Next,

we filter out the noise in the quarterly NMP series by means of a three-quarter rolling mean

and examine autocorrelation function (ACF), partial autocorrelation function (PACF) and peri-

odogram. All three diagnostics point to a seasonal first-order autogregressive process, which we115

confirm by fitting an ARIMA(1,0,2)(1,0,0)4 model. The significant coefficient for the first-order

seasonal autoregressive process provides further conclusive evidence for an annually repeating

pattern consistent with the underlying hurricane risk itself.

We also determine to which extent the hurricane risk premium varies across firm size. To

this end, we run double sorts. We first sort all stocks in a given month on their average120

market capitalisation over the preceding 60 months. Within the resulting market capitalization

quintiles, we then sort the stocks into five portfolios based on hurricane beta. We can confirm the

hurricane risk premium for medium-sized and larger firms, but not for the smallest 40 percent

of firms. We attribute this finding to the lesser economic links among the latter.

Finally, we examine the hurricane risk premium by industry. To this end, we split our125

sample along SIC divisions and separately sort on hurricane risk beta in each subsample. We

find significant hurricane risk premiums for four out of ten industry divisions: construction,

manufacturing, services, as well as finance, insurance and estate. This is consistent with earlier

results in the literature, documenting that hurricane risk may affect firms via direct exposures,

supply chain disruptions, revenue drops, order book effects, and labor market reactions.130

Our results have a whole number of important implications. First, we unveil a novel transmis-

sion channel through which extreme weather events unfold a major economic impact. Second, a

natural disaster risk that used to be unrelated to financial risks has become a systematic factor.

Hence, insurance markets, which historically enabled the sharing of such risks throughout the

economy, are potentially converging to the broader capital markets much faster than previously135

thought. Third, firms that are threatened by hurricane risk, either directly or through close

economic links, nowadays exhibit a higher cost of equity than their unexposed peers. Many of

these firms already pay higher insurance premiums for the coverage of their physically-exposed

property. An elevated cost of equity exacerbates this issue and may thus have a major impact

on future business decisions such as the geographical location of establishments or the selection140

of suppliers. Fourth, in the face of climate change, economic integration, and an ever-increasing
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concentration of production factors in coastal regions, the impact of hurricane risk can be ex-

pected to rise even further, making it likely that the premium will persist in the long run.9

The remainder of this paper is organized as follows. In Section 2, we review the related

literature. Section 3 lays the theoretical foundation for the hurricane risk premium in form145

of an extended consumption-based asset pricing model with heterogeneous agents subject to

individual consumption shocks. In Section 4, we then discuss the systematic properties of

hurricane risk, estimate AHLG and test the empirical correlations between AHLG as well as

consumption growth and consumption inequality, respectively. Section 5 contains the main asset

pricing tests, including the construction of the AHLG mimicking portfolio, univariate sorting on150

AHLG betas, multivariate Fama & MacBeth (1973) regressions, robustness tests with regard to

different measurements of hurricane losses, time series regressions on a broad range of established

factor models, and an analysis of the cross-sectional pricing fit for 25 test portfolios sorted by

size and momentum. In the penultimate Section 6, we further explore the economic mechanism

behind our empirical results, mapping firm’s economic hurricane exposure into a geographic155

pattern. Finally, in Section 7, we summarize our findings and draw our conclusion.

2. Related Literature

Our work directly contributes to a growing literature on the links between natural disasters

and financial markets. Aspects covered so far include the immediate response of stock returns

for local firms (Shan & Gong, 2012; Bourdeau-Brien & Kryzanowski, 2017; Seetharam, 2017),160

potential stock market reactions to trillion-dollar catastrophes (Mahalingam et al., 2018), as well

as the impact of the uncertainty caused by impending hurricanes on option-implied volatilities of

exposed firms (Kruttli et al., 2019) and on market liquidity (Rehse et al., 2019).10 To the best of

our knowledge, there is very little research to date that examines the asset pricing implications

of natural disasters in general and of hurricane risk in particular. This is surprising, given the165

wide array of economic repercussions documented for such extreme events. Two exceptions are

Hong et al. (2019) and Lanfear et al. (2019). The former search for a drought risk premium in

the stock returns of food companies, whereas the latter provide evidence that the well-known

9See NOAA Global Warming and Hurricanes: An Overview of Current Research Results for an extrapola-

tion of hurricane risk in the 21st century.

10A related literature looks at the effects of sea level rise on real estate markets (Bernstein et al., 2019;

Baldauf et al., 2020; Keys & Mulder, 2020; Murfin & Spiegel, 2020; Bakkensen & Barrage, 2021).
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book-to-market equity and momentum factors are sensitive to hurricane risk.

Moreover, we add to the thriving research stream on the economics of natural disasters.11 Ex-170

tant studies in this field have considered the impact on growth (Strobl, 2011; Cavallo et al., 2013;

Felbermayr & Gröschl, 2014), consumption (Sawada & Shimizutani, 2008; Aladangady et al.,

2017), income (Miljkovic & Miljkovic, 2014), firm sales (Addoum et al., 2020), and local la-

bor markets (Belasen & Polachek, 2008; McIntosh, 2008). Further studies have focused on

post-disaster recovery effects (Döhrmann et al., 2017; del Valle et al., 2020), major implications175

of NatCat risk for policymakers (Michel-Kerjan & Kunreuther, 2011; Pindyck & Wang, 2013;

Martin & Pindyck, 2015) as well as the economics of climate change, which will likely magnify

future losses from atmospheric natural disasters (Stern, 2008; Custodio et al., 2021).

Given the latter thought, this paper evidently also contributes to the to the rapidly expanding

climate finance literature, which has previously concentrated on the questions whether regula-180

tory uncertainty and carbon risk are priced in option and stock markets (Braun et al., 2019c;

Ilhan et al., 2020; Ardia et al., 2020; Bolton & Kacperczyk, 2021a,b; Sautner et al., 2021), what

impact climate change could have on asset values (Dietz et al., 2016), and how climate risks can

be hedged (Baker et al., 2020; Andersson et al., 2016; Engle et al., 2020). In addition, our find-

ings are linked to recent work on the importance of climate risks for institutional investors185

(Roth Tran, 2019; Krueger et al., 2020) and firms’ access to capital (Schüwer et al., 2019).

Our paper also speaks to the emerging literature on asset pricing for insurance risks that

originated from studies of coupon and yield spreads in markets for catastrophe bonds (Braun,

2016; Gürtler et al., 2016). Related studies in this area examined how NatCat exposure impacts

the cost of capital of insurance companies (Ben Ammar et al., 2018; Barinov et al., 2020), the190

implied volatilities of options on insurer stocks (Ben Ammar, 2020), and the expected excess

returns on funds specializing in investable insurance risk (Braun et al., 2019b). Further relevant

work analyzed severe NatCat risk in the context of consumption-based asset pricing models

(Dieckmann, 2019; Braun et al., 2019a). Most recently, scholars in this area have begun to con-

sider implied event probabilities for valuation and the prediction of seasonality (Beer & Braun,195

2021; Herrmann & Hibbeln, 2021).

Finally, our results enrich a particular stream of the general asset pricing literature, which

incorporates rare disasters into representative investor consumption-based models to explain the

historically-observed equity premium (Rietz, 1988; Barro, 2006; Berkman et al., 2011; Gabaix,

11For a comprehensive overview of this literature, refer to Kousky (2014) and Botzen et al. (2019).
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2012; Wachter, 2013). While these studies focus on political and economic events, such as wars200

and recessions, anecdotal evidence indicates that the most extreme natural disasters may lead

to a severe economic contractions, too.12 Due to their extraordinarily long recurrence periods,

however, the impact of such mega catastrophes on asset prices is hard to measure empirically.

We focus on annually recurring hurricane risk that may not be extreme enough to enter into

the marginal utility of the representative investor, but can increase consumption heterogeneity205

in the economy.

3. Theoretical Foundation

Our theory for the hurricane risk premium builds on consumption-based asset pricing with

heterogeneous agents subject to idiosyncratic consumption shocks (Mankiw, 1986; Weil, 1992;

Heaton & Lucas, 1996; Constantinides & Duffie, 1996; Gomes & Michaelides, 2011). Hurricanes210

are a prime example for an aggregate shock that does not spread equally throughout the economy.

Ex ante a large fraction of households and businesses are exposed. Ex post, however, the

consumption loss is concentrated among a few. Hurricanes can have direct and indirect impacts

on households and businesses. Even without direct damage to physical assets, there are a variety

of economic channels such as disruptions of production networks, supply chains, purchase and215

sales activities, and utility lifelines, through which hurricane risk may hit far beyond the region

immediately affected by the event (Hallegatte, 2015).

Apart from consumer heterogeneity, we assume incomplete consumption insurance, imply-

ing that there are no contingent-claims markets that allow for full risk sharing among the

heterogeneous agents in the economy (Mankiw, 1986). This is a reasonable conjecture, be-220

cause insurance against large-scale natural disaster risk is often unavailable or unaffordable.

Accordingly, empirical evidence rejects the consumption insurance hypothesis in the context of

large-scale natural disasters (Sawada & Shimizutani, 2007). The reluctance of insurance compa-

nies to provide widespread coverage has, among others, been explained by high capital require-

ments, market imperfections, and nondiversification traps (Jaffee & Russell, 1997; Froot, 2001;225

12For instance, the San Francisco earthquake in 1906 reduced U.S. GNP by 1.5-1.8 percentage points and

contributed to the financial crisis and stock market crash in 1907 (Odell & Weidenmier, 2004).
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Ibragimov et al., 2009).13 With regard to hurricanes, storm surge and extreme precipitation

pose a major problem, as they overburden sewage systems and result in widespread flooding of

urban agglomerations. Despite the availability of subsidized coverage from the National Flood

Insurance Program (NFIP), only five percent of homeowners are insured against such direct

flood losses.14 In addition to such direct consequences, large-scale flooding events are known to230

inflict serious business interruption losses on the economy (Vilier et al., 2014).

We start with the model of Constantinides & Duffie (1996). Assume that consumers exhibit

homogeneous preferences, but heterogeneous consumption (income) processes that are nonsta-

tionary and heteroskedastic.15 Markets are arbitrage-free and consumption comprises labor

income plus investment proceeds. The model’s main asset pricing implications are reflected by235

the following Euler equation:

Et[R̃
e
t+1] = −

covt[H̃t+1, R̃
e
t+1]

Et[H̃t+1]
, (1)

where R̃e
t+1 represents the excess return of a risky asset and H̃t+1 denotes the stochastic discount

factor (SDF) or pricing kernel. With constant relative risk aversion (CRRA) represented by the

power utility function over time-t consumption Ct, the pricing kernel H̃t+1 is defined as follows:

H̃t+1 = β

(

C̃t+1

Ct

)
−α

exp

(
α (α+ 1)

2
γ̃2
t+1

)

. (2)

240

Here, α equals the RRA coefficient16, β is the subjective time-discount factor, and γ̃2
t+1 is the

variance of the cross-sectional distribution of individual consumption growth (income inequal-

ity). An asset carries a risk premium, if individuals expect its future excess returns to exhibit

a negative covariance with H̃t+1. For homogeneous consumers, γ̃2
t+1 = 0 so that (1) reduces to

13Attempts to solve the problem through alternative risk transfer solutions and public private partnerships

have been increasing in recent decades (Cummins, 2006; Cummins & Trainar, 2009). Nevertheless, natural

disaster protection gaps remain substantial (Holzheu & Turner, 2018).

14See Munich Re (2020): The flood insurance gap in the United States.

15In both Mankiw (1986) and Constantinides & Duffie (1996), the idiosyncratic income processes are consistent

with a given aggregate income process, as, e.g., faced by a representative investor.

16Since u(Ct) =
C

1−α

t

1−α
, for α → 1, we have u(Ct) = ln(Ct). Note that, since the elasticity of intertemporal

substitution ψ is the reciprocal of the RRA coefficient α, the standard power utility function does not allow for

a disentanglement of time and risk preferences. The marginal utility is u′(Ct) = C−α
t
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the Euler equation of the standard representative-investor consumption-based model.245

Through (2), the RRA coefficient α enters the covariance in (1), which hampers an empirical

estimation of the model. Therefore, we draw on the extended Stein’s Lemma introduced by

Söderlind (2009) to analytically isolate α:

Assume (a) the joint distribution of x̃ and ỹ is a mixture of n bivariate normal distributions;250

(b) the mean and variance of ỹ is the same in each of the n components; (c) h(ỹ) is a differen-

tiable function such that E[|h′(ỹ)|] < ∞. Then, cov[x̃, h(ỹ)] = E[h′(ỹ)] · cov[x̃, ỹ].

Given the log SDF is Gaussian, we can proceed as follows. Recognizing that x̃ = R̃e
t+1,

ỹ = ln(H̃t+1), and h(·) = exp(·), we may decompose the covariance covt[H̃t+1, R̃
e
t+1] in (1) as

follows:

covt[H̃t+1, R̃
e
t+1] = Et[H̃t+1] · covt[h̃t+1, R̃

e
t+1], (3)

with h̃t+1 = ln(H̃t+1). Denoting log consumption growth ∆c̃t+1 = ln(C̃t+1/Ct), we obtain the

following expression for the log SDF:

h̃t+1 = ln(β)− α∆c̃t+1 +
α(α+ 1)

2
γ̃2
t+1, (4)

which implies

covt[h̃t+1, R̃
e
t+1] = −α · covt[∆c̃t+1, R̃

e
t+1] +

α(α+ 1)

2
covt[γ̃

2
t+1, R̃

e
t+1] (5)

The second covariance on the right hand side will be nonzero, if the cross-sectional variance of

individual consumption growth is correlated with the excess return of the risky asset. By means255

of (3) and (5), we may restate the risk premium (1) as follows:

Et[R̃
e
t+1] = ρt[∆c̃t+1, R̃

e
t+1] · σt[∆c̃t+1] · σt[R̃

e
t+1] · α (6)

− ρt[γ̃
2
t+1, R̃

e
t+1] · σt[γ̃

2
t+1] · σt[R̃

e
t+1] ·

α(α+ 1)

2
.

In addition to the variables of the classical representative investor model included in the

first summand of (6), we have a second driver of the risk premium, governed by the correlation

ρt[γ̃
2
t+1, R̃

e
t+1] as well as the standard deviations σt[γ̃

2
t+1] and σt[R̃

e
t+1]. Hence, the model predicts

a risk premium for assets, whose future excess returns are expected to positively correlate with260

aggregate consumption growth and negatively correlate with consumption inequality. Both

implications are empirically testable.
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Next, we interlace hurricane risk as a fundamental economic risk factor. To this end, let

∆ ˜ahlt+1 = ln( ˜AHLt+1/ ˜AHLt) be log AHLG, with ˜AHLt denoting aggregate hurricane losses at

time t. We proceed by demeaning and standardizing the key random variables ∆c̃t+1, γ̃
2
t+1, and265

∆ ˜ahlt+1. This allows us to decompose the correlations in (6) as follows:17

Et[R̃
e
t+1] =

(

ρt[∆c̃t+1,∆ ˜ahlt+1] · ρt[R̃
e
t+1,∆

˜ahlt+1] + Et[∆c̃∗t+1R̃
e∗
t+1]

)

· α

−
(

ρt[γ̃
2
t+1,∆

˜ahlt+1] · ρt[R̃
e
t+1,∆

˜ahlt+1] + Et[∆γ̃∗2
t+1R̃

e∗
t+1]

)

·
α(α+ 1)

2
. (7)

c̃∗t+1, R̃
e∗
t+1 as well as ∆γ̃∗2

t+1 reflect those components of the random variables c̃t+1, R̃
e
t+1 and

γ̃2
t+1 that are orthogonal to ∆ ˜ahlt+1.

18 Equation (7) predicts a hurricane risk premium based

on expected correlations between macroeconomic fundamentals and AHLG (ρt[∆c̃t+1, ˜ahlt+1],

ρt[γ̃
2
t+1,∆

˜ahlt+1]) as well as the excess return on a risky asset and AHLG (ρt[R̃
e
t+1,∆

˜ahlt+1]).270

Using the law of iterated expectations, it can be shown that this equation also holds for un-

conditional moments. This allows us to separate the empirical verification of the theory into

two steps, evaluating both a necessary and a sufficient condition. More specifically, for a hur-

ricane risk premium to arise, we need i) AHLG to be (negatively) correlated with aggregate

consumption growth and/or (positively) correlated with consumption inequality and ii) AHLG275

to be negatively correlated with the excess return on the risky asset.

17The mathematical derivation underlying the decomposition of ρt[∆c̃t+1, R̃
e
t+1] and ρt[γ̃2t+1, R̃

e
t+1] can be

found in the Appendix (Section 8). Specifically, we apply Equation (23) with X = ∆c̃t+1 and X = γ̃2t+1,

respectively, as well as Y = ∆ ˜ahlt+1 and Z = R̃e
t+1

18Note that (7) does no longer contain standard deviations, because the variables have been standardized.
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4. Hurricane Risk

4.1. Systematic Properties

Hurricane risk is severe19 and not locally contained, making it a plausible systematic risk

factor. Judging by hurricane occurrences since the mid 19th century, every county along the U.S.280

East Coast and Gulf Coast is exposed (Zeng et al., 2009). Hurricane Katrina alone, the single

most expensive natural disaster in American history, caused losses across six states.20 Taking

into account the ever-growing integration of economies through firm-linkages and production

networks (Cohen & Frazzini, 2008; Barrot & Sauvagnat, 2016), it is clear that hurricanes can

cause losses to businesses geographically far away from their landfall location. Hurricanes are285

also known to impact firms through management reactions (Dessaint & Matray, 2017), cash

flow shocks (Brown et al., 2021), reallocation of capital (Cortés & Strahan, 2017), and credit

constraints (Collier et al., 2020). There are even immediate connections between hurricane risk

and stock markets through overreactions of fund managers and fire sales by hurricane-struck

investors with spontaneous liquidity needs (Tubaldi, 2021; Alok et al., 2020).290

In addition, hurricane risk follows clear patterns over time, an important property that can

be exploited for identification. Specifically, hurricane activity exhibits seasonality and varies

with the North Atlantic sea surface temperature (SST) on interannual and decadal time scales

(Kossin & Vimont, 2007; Smith et al., 2010; Hallam et al., 2019).21 Research indicates that,

after a time of subdued hurricane risk in the 1970s and 1980s, we have been in an active295

period since 1995 (Goldenberg et al., 2001; Klotzbach & Gray, 2008). The scientific concept

of hurricane activity comprises frequency, duration and intensity of storms (Kossin & Vimont,

2007).22 Extreme hurricanes are more frequent in active periods compared to quiet periods

(Donnelly & Woodruff, 2007). Intensity is also higher: the number of events with hurricane-force

winds stronger than 200 kilometers (250 kilometers) per hour have doubled (tripled) compared300

to the 1980s (Kossin, 2018). Finally, hurricane decay speed has declined so that storm systems

last longer and wreak havoc further inland (Li & Chakraborty, 2020; Chavas & Chen, 2020).

19Hurricanes account for the by far largest fraction of natural disaster losses in the U.S. (Swiss Re, 2019).

20See Insurance Information Institute: Hurricane Katrina: The Five Year Anniversary.

21The climate phenomena behind these variations are the El Niño Southern Oscillation and the Atlantic

Multidecadal Oscillation.

22Both duration and intensity are major drivers of a cyclone’s destructiveness (Emanuel, 2005).
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4.2. Measurement

To construct our hurricane risk factor, we use a long and complete dataset provided by

Weinkle et al. (2018), consisting of 197 hurricanes in the continental U.S. from 1900 to 2017.23305

The main data includes the year and state of occurrence for each event, its rank on the Saffir-

Simpson scale,24 and the economic losses in contemporaneous US-Dollars. The data also includes

economic losses normalized by means of the Pielke Landsea 2018 (PL18) and Collins Lowe

2018 (CL18) methodologies. Normalization is an important aspect in natural disaster research,

because it adjusts the losses of historical events to present-day societal conditions. Thus, one310

may rule out inflation, increases in wealth, and population growth as loss drivers and compare the

destructiveness of events across time. Finally, the following items are available on an occurrence-

year and present-day basis: aggregate wealth, population in affected counties, population in the

U.S., number of housing units in affected counties, number of housing units in the U.S., real

wealth per capita, and real wealth per housing unit.315

Figure 1 shows the PL18 normalized aggregate hurricane losses from 1977 to 2017 together

with the smoothed Atlantic Multidecadal Oscillation (AMO) Index, published by NOAA. The

AMO measures the SST variability in the North Atlantic on a decadal timescale. Evidently, the

AMO switched into a warm phase after 1995. Scientific research shows that the same time period

is characterized by a clear upward trend in Accumulated Cyclone Energy (ACE) and the Power320

Dissipation Index (PDI) (Villarini & Vecchi, 2012).25 Moreover, the geographic region in which

cyclones can form has expanded and the storms themselves are able to travel greater distances

away from the topics, reaching previously unharmed locations (Lucas et al., 2014; Kossin et al.,

2014). Thus, unsurprisingly, the average PL18 damage in the US jumped from USD 10.5 billion

for the period from 1977 to 1994 to more than USD 23.5 billion between 1995 and 2017. Some325

of these developments may already be attributable to anthropogenic forcing rather beyond the

usual cyclical patterns (Sobel et al., 2016). The onset of climate change will therefore further

add to the significance of hurricane risk (Emanuel, 2005, 2017).

23We will confirm the robustness of all our main empirical results on additional hurricane loss datasets.

24Hurricanes are assigned a rank of one to five, based on their maximum sustained wind speed (see NOAA).

Events of all five categories can cause storm surge and severe flooding. Major hurricanes in the categories 3 to 5

additionally deal catastrophic wind damage and may therefore lead to casualties.

25Both ACE and PDI are aggregates of intensity, frequency, and duration and therefore represent a concise

metrics of hurricane activity over a whole season.
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Figure 1: AMO and Aggregate Hurricane Losses (AHL)

This figure shows the Atlantic Multidecadal Oscillation (AMO) Index in ◦C (left axis) together with aggregate
hurricane losses (AHL) from Weinkle et al. (2018) normalized based on the PL18 methodology (right axis).
The black curve represents a four-year moving average of the AMO Index.

4.3. Correlations with Macroeconomic Fundamentals

In the following, we investigate the empirical correlations between log AHLG (∆ ˜ahl), log330

consumption growth (∆c̃), and consumption inequality (γ̃2) as a necessary condition for a hurri-

cane risk premium. All three variables are considered in real terms.26 ∆ ˜ahl is calculated based

on the Weinkle et al. (2018) aggregate hurricane losses (per capita). Moreover, we compute

log consumption growth ∆c̃ from unfiltered non-durable goods and services consumption data

(per capita) provided by Kroencke (2017).27 Finally, we estimate γ̃2 by means of the state-level335

cross-sectional variance of income growth, using annual personal income statistics (per capita)

from the BEA.28 Table 1 shows a range of descriptive statistics for the aforementioned variables

together with the relevant correlations for the time periods 1978−1994 and 1995−2017.

26We adjust nominal figures using the Consumer Price Index (CPI) (base year 2012).

27Kroencke (2017) argues that the National Income and Product Accounts (NIPA) consumption data are

subject to measurement errors generated by time aggregation and filters.

28State-level consumption data is unavailable. Hence, measuring consumption inequality through income

inequality is a common procedure in the asset pricing literature (see, for example, Chen & Yang, 2019) and

beyond (see, for example, Attanasio & Pistaferri, 2016).
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distribution correlations

1978−1994 mean median s.d. min. max. ∆ ˜ahl p-val.

∆ ˜ahl 0.325 0.581 3.639 −6.840 5.830 1.000

∆c̃ 1.918 1.249 2.494 −2.593 7.123 0.298 0.245

γ̃2 0.142 0.114 0.084 0.038 0.337 −0.209 0.421

1995−2017 mean median s.d. min. max. ∆ ˜ahl p-val.

∆ ˜ahl 0.087 −0.097 3.428 −8.194 8.163 1.000

∆c̃ 1.403 1.346 2.005 −2.944 4.717 0.001 0.995

γ̃2 0.398 0.260 0.358 0.126 1.624 0.369 0.083*

Table 1: Descriptive Statistics and Correlations for AHLG and Macroeconomic Fundamentals

This table shows the mean, median, standard deviation (s.d.), minimum and maximum for the annual time
series of log AHLG (∆ ˜ahl), log consumption growth (∆c̃), and consumption inequality (γ̃2). Moreover, it
includes empirical estimates for the correlations ρ[∆c̃,∆ ˜ahl] and ρ[γ̃2,∆ ˜ahl], which are necessary conditions
for a hurricane risk premium our theoretical framework.

We find log consumption growth to be generally uncorrelated with log AHLG: ρ[∆c̃,∆ ˜ahl]

does not significantly differ from zero in any of the two time periods. Only the most extreme340

natural disasters have loss potentials great enough to affect aggregate consumption growth

and thus enter the marginal utility of a representative agent (Bauer et al., 2013; Braun et al.,

2019b).29 Such events, however, are clearly too rare to drive an empirical correlation on a

decadal time scale. The correlation between AHLG and consumption inequality (ρ[γ̃2,∆ ˜ahl]),

in contrast, is positive and significant for the time period 1995 to 2017. Further evidence in this345

regard is given by Figure 2, which depicts the 10-year rolling correlation between γ̃2 and ∆ ˜ahl

together with the AMO Index time series from Figure 1. If individuals form their expectations

for the next period based on historical data, this is a measure for ρt[γ̃
2
t+1,∆

˜ahlt+1]. It is

conspicuous that the latter turned positive and significant around the same time at which the

most recent AMO warm phase began. We thus have a necessary condition for a hurricane risk350

premium from 1995 onwards. There are two plausible explanations for this development. One is

the possibility that the enduring active period for Atlantic hurricanes discussed in the previous

section gives rise to a larger number of scenarios in which high AHLG coincides with peaks

in consumption inequality. The second one is a potential direct impact of hurricane activity

29As an example, consider a mega-thrust earthquake that directly hits a densely populated area of major

economic importance such as the San Francisco bay area (Odell & Weidenmier, 2004).
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on state-level consumption inequality. Apart from dealing property losses to households and355

businesses, natural disasters may depress economic activity (Botzen et al., 2019). Hurricanes in

particular have been shown to impact production, wages, as well as employment, thus sharply

reducing income and consumer spending in affected states (Auffret, 2003; Belasen & Polachek,

2008; Aladangady et al., 2017). In the next section, we will examine the sufficient condition for

the risk premium, that is, asset (excess) returns which are negatively correlated with AHLG.360
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Figure 2: AMO and the Correlation Between Consumption Inequality and AHLG

This figure shows the annual time series of the Atlantic Multidecadal Oscillation (AMO) Index in ◦C (left axis)
together with the 10-year rolling correlation between AHLG and consumption inequality (ρt[γ̃2t+1,∆

˜ahlt+1])
(right axis). Consumption inequality is measured by the state-level cross-sectional variance of personal
income growth per capita (BEA data). The black and grey curves represent four-year moving averages of
ρt[γ̃2t+1,∆

˜ahlt+1] and the AMO Index, respectively.
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5. Hurricane Risk Sensitivity and the Cross Section of Stock Returns

5.1. Stock Market Data

We consider all common stocks in the Center for Research in Security Prices (CRSP) trading

data base (share code 10 and 11) on the NYSE, AMEX, and NASDAQ from January 1, 1963

through December 31, 2020. This is the usual time period for empirical asset pricing studies,365

because an expansion of the CRSP database in August 1962 dramatically increased the number

of available stocks (see, e.g., Kelly & Jiang, 2014). Following Chabi-Yo et al. (2018), we exclude

the stocks with the 1 percent lowest and the 5 percent highest market capitalisation in a given

month t.30 This leaves us with a total of 3,863,192 firm-month return observations. All returns

are converted into excess returns using the 1-month T-Bill rate. In addition to the CRSP data,370

we download 25 Fama-French benchmark portfolios sorted by size and book-to-market equity

from Ken French’s website. Finally, we merge our excess return data with annual information

on firm fundamentals from CRSP/Compustat Merged Fundamentals Annual database.

5.2. AHLG Mimicking Portfolio

Since AHLG is measured on an annual basis, we project it into the excess return space so

as to obtain a mimicking portfolio that tracks the factor at a monthly frequency.31 To this end,

we proceed as follows. First, we run the following regression on the annual time series from

1963−2017:32

∆ ˜ahlt = κ0 + κ′

xXt + ut, (8)

where κ0 and κ′

x are coefficients and Xt represents the excess returns on a set of base assets.

For the latter, we select the 25 Fama-French benchmark portfolios. Subsequently, we normalize

the estimated weights κ̂′

x so that they sum to one:

ŵ′

x =
κ̂′

x

|
∑

κ̂′

x |
. (9)

We can then construct the factor-mimicking portfolio MP∆ ˜ahl
t by applying the percentage

weights ŵ′

x to the excess return time series of the base assets Xt at a monthly frequency:

MP∆ ˜ahl
t = ŵ′

xXt. (10)

30We will test the robustness of our main results against this selection in Section 6.

31This is common practice in related work (see, e.g., Adrian et al., 2014; Chen & Yang, 2019).

32Recall that, in contrast to our stock market data, the Weinkle et al. (2018) AHLG time series ends in 2017.
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The upper part of Table 2 includes summary statistics for the factor ∆ ˜ahl and the annual375

excess return time series of its mimicking portfolio MP∆ ˜ahl
t . The correlation between ∆ ˜ahl and

MP∆ ˜ahl
t amounts to 0.76. This is more than twice as high as the values reported for other

nontraded factors in recent work and thus implies a very good fit.33

distribution correlations

1963-2017 (a.) mean median s.d. min. max. MP∆ ˜ahl p-val.

MP∆ ˜ahl 0.051 0.157 0.766 −1.625 1.570 1.000

∆ ˜ahl 0.071 −0.049 3.312 −8.215 8.201 0.746 0.000***

1995-2017 (q.) mean median s.d. min. max. MP∆ ˜ahl p-val.

∆c̃ 1.412 1.463 1.713 4.994 −3.671 −0.118 0.262

γ̃2 0.561 0.183 1.401 9.807 0.063 0.178 0.089*

Table 2: Summary Statistics for AHLG and its Mimicking Portfolio

This table presents mean, median, standard deviation (s.d.), minimum and maximum for the time series of

the factor AHLG (∆ ˜ahl) and its mimicking portfolio (MP∆ ˜ahl), formed with 25 Fama-French benchmark
portfolios sorted by size and book-to-market equity. The upper part relates to annual time series data for the
sample period 1963−2017. The lower part includes the results for quarterly time series data in the period
1995−2017. ***, ** and * indicate significance at the one, five, and ten percent levels.

5.3. Univariate Sorting380

We now turn to the sufficient condition for a hurricane risk premium, that is, excess re-

turns which are negatively correlated with AHLG. The following analyses take advantage of the

plethora of stock market data from January 1963 to December 2020.34 To begin with, in each

month of the time series, we estimate a hurricane risk or AHLG beta (β∆ ˜ahl
i ) for all stocks i

in the respective cross section. This is done through the following time series regression with a

rolling window, comprising the 60 months prior to the evaluation date:

Re
i,t = αi + β∆ ˜ahl

i MP∆ ˜ahl
t + ui,t. (11)

33See, e.g., Adrian et al. (2014) and Chen & Yang (2019)

34We extend the mimicking portfolio to 2020, using the weights estimated from the annual time series in the

period 1963−2017.
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Here Ri,t and MP∆ ˜ahl
t are the monthly excess returns on the individual stocks and the mim-

icking portfolio, respectively. The 60-month rolling window ensures a sufficiently large num-

ber of observations for stable estimates and accounts for the time-varying character of hurri-

cane risk. Taking into account that the correlation between an asset’s excess return and the

mimicking portfolio is a strong proxy for the correlation between its excess return and AHLG

(ρ[R̃e
t+1,MP∆ ˜ahl

t ] ≈ ρ[R̃e
t+1,∆

˜ahl]), it is easy to see that the stocks’ hurricane betas measure

the sufficient condition for a hurricane risk premium:

β∆ ˜ahl
i = ρ[R̃e

t+1,MP∆ ˜ahl
t ]

σ[R̃e
t+1]

σ[MP∆ ˜ahl
t ]

. (12)

Economically, stocks of firms that suffer in the wake of hurricanes will exhibit excess returns

with a negative β∆ ˜ahl. On the other hand, stocks of firms that benefit from hurricanes will have

excess returns with a positive β∆ ˜ahl.35 Based on our theory, we therefore expect to find a risk

premium on the former relative to the latter. To examine this conjecture, we conduct univariate

out-of-sample portfolio sorts. For each month t in the time series, we sort the cross section385

of stocks into five value-weighted quintile portfolios based on their β∆ ˜ahl over the previous 60

months.36 If investors demand a hurricane risk premium, stocks with negative AHLG betas

should earn higher excess returns in the next month than stocks with positive AHLG betas.

Table 3 shows the results for the portfolio sorts in the time periods January 1968 to December

1994 (Panel a) and January 1995 to December 2020 (Panel b). We report the portfolio with the390

highest negative (positive) hurricane risk betas as portfolio 1 (portfolio 5) at the top (bottom).

The row labeled 1−5 contains the difference between the top and bottom quintiles. We will

hereafter refer to this zero-investment portfolio as NMP (negative minus positive hurricane risk

sensitivity). Average betas are included in the first column and average excess returns in the

second column. The remaining columns indicate the abnormal excess returns (alphas) that395

remain when regressing the excess return time series of the respective portfolios on the capital

asset pricing model (CAPM), the Fama & French (1992) three-factor model (FF3) and the

Fama & French (1992) three-factor model extended by the Carhart (1997) momentum factor.

35An example is the construction industry, which has full order books when rebuilding begins post disaster.

36We provide the same results for equally-weighted portfolios in the Appendix.
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Panel a) January 1968 to December 1994

Av. Beta Av. Return CAPM-Alpha FF3-Alpha Carhart-Alpha

Portfolio 1 −2.644 0.439% 0.013% 0.036% 0.050%

2 −1.452 0.538% 0.153% 0.088% 0.139%

3 −0.749 0.505% 0.139% 0.018% 0.049%

4 −0.077 0.558% 0.204% 0.001% 0.023%

Portfolio 5 +0.980 0.441% 0.031% −0.179% −0.227%

NMP (1−5) −3.624*** 0.022% −0.019% 0.216% 0.278%*

t-value (−144.69) (0.139) (−0.112) (1.299) (1.652)

Panel b) January 1995 to December 2020

Av. Beta Av. Return CAPM-Alpha FF3-Alpha Carhart-Alpha

Portfolio 1 −2.907 1.242% 0.316% 0.250% 0.328%

2 −1.367 0.985% 0.185% 0.077% 0.158%

3 −0.579 0.908% 0.213% 0.113% 0.171%

4 +0.138 0.837% 0.151% 0.089% 0.149%

Portfolio 5 +1.422 0.496% −0.292% −0.262% −0.239%

NMP (1−5) −4.329*** 0.746%*** 0.608%** 0.512%** 0.695%***

t-value (−116.11) (3.789) (2.832) (2.557) (3.080)

Table 3: Univariate Out-of-Sample Portfolio Sorts (Value Weighted)

This table shows the results for the out-of-sample portfolio sorts in the time periods 1968−1994 (Panel a)
and 1995−2020 (Panel b). All portfolios are formed on a value-weighted basis. The portfolio with the highest
negative (positive) hurricane risk betas is reported at the top (bottom). The row labeled NMP (1 − 5)
contains the difference between the top and bottom quintiles. Average betas are included in the first and
average excess returns in the second column. The remaining columns indicate the abnormal excess returns
(alphas) that remain when regressing the excess return time series of the respective portfolios on the capital
asset pricing model (CAPM), the Fama & French (1992) three-factor model (FF3) and the Fama & French
(1992) three-factor model plus the Carhart (1997) momentum factor. The sample covers all U.S. common
stocks traded on the NYSE/AMEX/NASDAQ. t-statistics are shown in parentheses and were computed using
Newey & West (1987) standard errors with 4 monthly lags. ***, ** and * indicate significance at the one,
five, and ten percent levels.

For both time periods, we observe considerable cross-sectional variation in the stocks’ hurri-

cane risk sensitivity. In Panel b), for example, the average AHLG betas range from −2.907 for400

portfolio 1 all the way up to +1.422 for portfolio 5. When considering column two, however,

the two time periods differ distinctively. Despite the significant and large difference between

the average betas of the quintile portfolios, Panel a) does not display a clear pattern in the

average excess returns. This is consistent with our results in the previous section (see Table 1),

according to which the necessary condition for a hurricane risk premium in the same time pe-405

riod was not fulfilled. In Panel b), on the other hand, the average excess returns exhibit a clean
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monotonic decrease from portfolio 1 to portfolio 5. Accordingly, the zero-investment portfolio

NMP would have earned a highly significant average excess return of 0.746 percent per month,

which is equivalent to 8.952 percent per year. Even after controlling for three common asset

pricing models in columns three to five, we are left with a significant abnormal excess return410

of at least 0.512 percent or 6.144 percent p.a., an order of magnitude comparable to several

existing anomalies.37
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Figure 3: Time-Varying Fama-French 3-Factor Alpha of the Zero-Investment Portfolio NMP

This figure shows the annual time series of the 10-year rolling Fama & French (1992) three-factor (FF3)
alpha for the zero-investment portfolio NMP on an equally-weighted basis (right axis). Annual values were
calculated as the average of the monthly FF3 alphas in each year. The graph also shows the 10-year
rolling correlation between AHLG and consumption inequality (ρt[γ̃2t+1,∆

˜ahlt+1]) (left axis) as a necessary
condition for the hurricane risk premium. Consumption inequality is measured by the state-level cross-
sectional variance of personal income growth per capita (BEA data). The black and grey curves represent
four-year moving averages of the two series. The time period is determined by the length of the original
sample (starting in 1963), the 60 months required for the rolling regressions that determine AHLG betas
(shifts to 1968) and the ten year rolling window required for the FF3 time series regressions.

37Chabi-Yo et al. (2018), for example, find a stock market crash-sensitivity premium of 4.32 percent p.a. for

the period from January 1963 to December 2012.
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Figure 3 complements Table 8 with an illustration of the time-varying Fama & French (1992)

three-factor (FF3) alpha for the zero-investment portfolio NMP on an equally-weighted basis.

The alphas have been calculated in two steps. First, we performed a 10-year rolling regression415

with the FF3 model over the monthly NMP time series. Second, we converted the resulting

monthly alphas into annual averages. This ensures comparability to the 10-year rolling corre-

lation between AHLG and consumption inequality, which is also shown in the graph. The two

solid curves represent four-year moving averages of both annual time series. The time period is

determined by the length of the original time series (starting in 1963), the 60 months required420

for the rolling regressions that determine the hurricane risk betas (shifts us to 1968) and the

ten year rolling window required for the FF3 time series regressions. We find that the hurricane

risk premium follows a clear upward trend since the mid-1990s. This is consistent with the fact

that both the necessary and sufficient conditions derived from our theoretical framework were

fulfilled in the same time period.425

5.4. Robustness of NMP Against Further Established Factors

Next, we regress the excess return time series of NMP on a comprehensive battery of major

factors from the extant asset pricing literature. We present the results of these analyses in

Table 4. Each model in columns one to seven combines MKT, SMB, HML from Fama & French

(1992) plus MOM from Carhart (1997) with one additional factor. The extensions include the430

Chabi-Yo et al. (2018) lower tail dependence factor (LTD), the Sadka (2006) liquidity factor

(SADKA), the Pástor & Stambaugh (2003) traded liquidity risk factor (PS), the Bali et al.

(2011) lottery factor (LOT), the Baker & Wurgler (2006) sentiment index (SENT),38 and the

Frazzini & Pedersen (2014) betting-against-beta factor (BAB). Furthermore, in models eight

through ten, we replace the Carhart (1997) momentum factor (MOM) with the Fama-French435

short-term plus long-term reversal factors (REVS, REVL), the investment and profitability

factors of Fama & French (2015) (CMA, RMW) and the investment and profitability factors of

Hou et al. (2014) (INV, ROE). In all ten cases, we are left with a statistically significant and

economically large positive abnormal excess return of at least 0.505 percent per month (6.06

percent p.a.). As our zero-investment portfolio of stocks with negative minus positive hurricane440

loss sensitivity withstands a broad range of established factor model specifications, it seems to

carry additional systematic risk information so far not explicitly carved out in the literature.

38SENT is orthogonalized with respect to a set of macroeconomic conditions
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January 1995 to December 2020

NMP (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

1 MKT 0.087 0.216∗∗ 0.150∗ 0.054∗ 0.123∗ 0.083 0.089 0.199∗∗ 0.165∗∗∗ 0.139∗∗

1 SMB 0.013 0.163∗∗ 0.152∗∗ 0.017 0.073 0.121 0.041 0.112 0.104∗∗ 0.050∗∗

1 HML 0.233∗ 0.425∗∗ 0.488∗∗∗ 0.225∗ 0.354∗∗∗ 0.447∗∗∗ 0.205∗∗ 0.430∗∗∗ 0.136 0.187

1 MOM −0.067 −0.108 −0.110 −0.072 −0.072 −0.109 −0.079

2 LTD −0.177

3 SADKA 1.069

4 PS 0.128∗∗

5 LOT 0.008

6 SENT 0.129

7 BAB 0.046

8 REVS −0.167∗

8 REVL −0.114

9 RMW 0.235

9 CMA 0.118

10 INV 0.171

10 ROE 0.047

alpha 0.695∗∗ 0.643∗∗ 0.532∗ 0.660∗∗∗ 0.579∗∗ 0.656∗∗ 0.662∗∗∗ 0.529∗∗ 0.505∗∗∗ 0.582∗∗

t-value (3.080) (2.381) (2.071) (2.919) (2.327) (2.529) (2.857) (2.637) (2.553) (2.452)

R2
adj

0.068 0.268 0.254 0.088 0.128 0.229 0.068 0.151 0.070 0.065

sample period (1995-

2020)

(1995-

2012)

(1995-

2012)

(1995-

2020)

(1995-

2020)

(1995-

2010)

(1995-

2020)

(1995-

2020)

(1995-

2020)

(1995-

2020)

Table 4: Time Series Regressions of NMP (Value Weighted) on Established Factors

This table shows the results for ten time series regressions of NMP (value-weighted) on established factors.
The sample period is January 1995 to December 2020. All t-statistics are based on Newey & West (1987)
standard errors with 4 monthly lags. To save space, we report the t-statistics for the abnormal returns
(alphas), but not for the regression coefficients. ***, ** and * indicate significance at the one, five, and ten
percent levels. Model (1) contains the market factor (MKT), consisting of all CRSP stocks, together with
SMB and HML (Fama & French, 1992) as well as MOM (Carhart, 1997). The subsequent models (2) through
(7) enrich model (1) with: the Chabi-Yo et al. (2018) lower tail dependence (LTD) factor, the Sadka (2006)
liquidity factor (SADKA), the Pástor & Stambaugh (2003) liquidity risk factor (PS), the Bali et al. (2011)
lottery factor (LOT), the Baker & Wurgler (2006) sentiment index (SENT), and the Frazzini & Pedersen
(2014) betting-against-beta factor (BAB). In models (8) through (10), we we replace the Carhart (1997)
momentum factor (MOM) with the Fama-French short-term plus long-term reversal factors (REVS, REVL),
the investment and profitability factors of Fama & French (2015) (CMA, RMW) and the investment and
profitability factors of Hou et al. (2014) (INV, ROE).
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5.5. Robustness of NMP Against Alternative Measurements for AHLG

So far, the key variable in our empirical analyses has been AHLG computed from the

Weinkle et al. (2018) hurricane loss data. Yet, if the hurricane risk premium is really driven by445

a fundamental economic mechanism, we should be able to confirm the results with other data

sets for hurricane losses. We begin with the International Disasters Database (EM-DAT), which

contains annual aggregate economic losses for various types of natural disasters in the United

States. The database was launched by the Centre for Research on the Epidemiology of Disasters

(CRED) in 1988. Economic losses in the EM-DAT database are available for the time period450

1900 to 2017 and reported on a contemporaneous USD basis.39 To rule out inflation effects, we

adjust the data using the CPI index (base year 2009), provided by the Weinkle et al. (2018). We

compute ∆ ˜ahlt from the annual EM-DAT storm losses, reestimate the weights for the monthly

mimicking portfolio on the ∆ ˜ahlt time series from 1982 to 2017, and determine the hurricane

betas (β∆ ˜ahl) for each monthly cross section of stocks between 1995 and 2020.40 Subsequently,455

we rerun our out-of-sample sorting analysis and form the zero-investment portfolio NMP.

The results of this robustness analysis for our main time period (1995−2020) and the stocks

with significant AHLG betas can found in Panel a) of Table 5. Consistent with our previous

findings, stocks with negative AHLG betas earned higher future excess returns than stocks

with positive AHLG betas. The zero-investment portfolio NMP (1−5) exhibits a statistically460

significant and economically large average excess return of 0.796 percent per month (9.552

percent p.a.), which cannot be explained by the CAPM, the Fama & French (1992) three-factor

model or its extension with the Carhart (1997) momentum factor.

As an additional measure for aggregate hurricane risk, we draw on the excess return time

series of the Swiss Re U.S. Wind Catastrophe Bond Performance Index [Bloomberg ticker:465

SRUSWTRR]. Catastrophe bonds (cat bonds) are floating rate notes that securitize various

types of NatCat risk.41 Investors in U.S. wind cat bonds obtain a pure play exposure to the

39For a small number of years (particularly early on), EM-DAT losses are unavailable. We fill these gaps with

five-year rolling averages.

40We extend the time period for the construction of the mimicking portfolio from 1995−2017 to 1982−2017

to obtain a sufficient number of annual observations for a stable estimation of the 25 weights. As for the

Weinkle et al. (2018) data, we extend the excess return time series of the mimicking portfolio to 2020. We

exclude the stocks with the lowest 1 percent and 10 percent highest market capitalisation in a given month t.

41For a detailed explanation of cat bonds see, for example, Braun (2016).

25

https://public.emdat.be/


insured losses caused by major hurricane events. Since insured losses and economic losses are

highly correlated, the excess returns on the aforementioned Swiss Re performance index are an

ideal measure for aggregate hurricane risk, which does not require the factor projection into the470

return space through a mimicking portfolio. Before calculating betas for each monthly cross

section of stocks, we orthogonalize the excess returns of the cat bond index with respect to the

market factor. Once more, we remove the stocks with the 5 percent highest and 1 percent lowest

market cap. in each month and calculate betas for all monthly cross sections of stocks. As the

cat bond index has been launched in 2002, we decide to use a 36-month instead of 60-month475

rolling window for the betas. In doing so, we are able to retain a longer time series for the

analysis of NMP. Our evaluation time period therefore comprises the years from 2005 to 2020.

Panel b) of Table 5 contains the results for our robustness test with the cat bond index

return time series. Two points are important to note. First, the betas now reflect a stock’s

sensitivity with regard to the excess returns on the cat bond index instead of AHLG. Second,480

the cat bond index exhibits an inverse relationship with AHLG. That is, if AHLG is high,

cat bond excess returns will be low. This implies that, in contrast to Panel a), the portfolio

with the largest negative (positive) average beta comprises the least (most) hurricane-risky

stocks. Therefore, NMP in row number six is now calculated by subtracting the excess return

time series of portfolio 5 from that of portfolio 1 (instead of vice versa). Consistent with our485

previous findings, stocks with positive cat bond index betas earned higher future excess returns

than stocks with negative cat bond betas. The zero-investment portfolio NMP (5−1) again

exhibits a statistically significant and economically large average excess return of 0.947 percent

per month (11.364 percent p.a.), which cannot be explained by the CAPM, the Fama & French

(1992) three-factor model or its extension with the Carhart (1997) momentum factor.490
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Panel a) EM-DAT Database, Storm Losses

January 1995 to December 2020

Av. Beta Av. Return CAPM-Alpha FF3-Alpha Carhart-Alpha

Portfolio 1 −0.146 1.318% 0.595 0.566 0.517

2 0.091 1.029% 0.234 0.202 0.299

3 0.235 0.721% −0.202 −0.201 −0.020

4 0.363 0.738% −0.400 −0.363 −0.146

Portfolio 5 0.602 0.522% −0.817 −0.755 −0.624

NMP (1−5) −0.749*** 0.796%* 1.411%*** 1.321%*** 1.141***

(−40.754) (1.664) (3.681) (3.942) (3.615)

Panel b) Swiss Re US Wind Cat Bond Index

January 2005 to December 2020

Av. Beta Av. Return CAPM-Alpha FF3-Alpha Carhart-Alpha

Portfolio 1 −2.594 0.405% 0.642 0.481 0.469

2 −0.909 0.684% 0.043 0.063 0.062

3 0.005 0.741% 0.067 0.057 0.047

4 0.947 0.877% 0.097 0.093 0.099

Portfolio 5 2.791 1.352% 0.353 0.199 0.240

NMP (5−1) 5.385*** 0.947%*** 1.003*** 0.785*** −0.782***

(−27.146) (3.809) (3.379) (3.390) (3.337)

Table 5: Univariate Out-of-Sample Portfolio Sorts (Value Weighted)

This table shows the results for the out-of-sample portfolio sorts. All portfolios are formed on a value-weighted
basis. The row labeled NMP contains the zero-investment portfolio, capturing the hurricane risk premium.
Panel a) presents the results for the EM-DAT storm loss data. The weights of the annual mimicking portfolio
were estimated based on the data sample from 1982-2020. We focus on all firms with significant AHLG betas
(73 percent of the overall sample). Panel b) shows the results based on the Swiss Re US Wind Cat Bond
Performance Index, which does not require a mimicking portfolio. Since this index is only available from
January 2002 on on monthly basis, we resort to a 36-month instead of 60-month rolling regression window
for the estimation of the betas. This leads to the evaluation period from 2005 to 2020. Due to the fact
that cat bonds exhibit negative returns when AHLG is high, NMP in Panel b) is calculated as portfolio 5
minus portfolio 1 instead of 1 minus 5 as in all previous analyses. Average betas are included in the first and
average excess returns in the second column. The remaining columns indicate the abnormal excess returns
(alphas) that remain when regressing the excess return time series of the respective portfolios on the capital
asset pricing model (CAPM), the Fama & French (1992) three-factor model (FF3) and the Fama & French
(1992) three-factor model plus the Carhart (1997) momentum factor. The sample covers all U.S. common
stocks traded on the NYSE/AMEX/NASDAQ. t-statistics are shown in parentheses and were computed using
Newey & West (1987) standard errors with 4 monthly lags. ***, ** and * indicate significance at the one,
five, and ten percent levels.
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5.6. Multivariate Evidence

Below, we add multivariate evidence based on Fama & MacBeth (1973) regressions in the pe-

riod from 1995 to 2020. Specifically, for each month t in the time series, we run a cross-sectional

regression of the excess return realized in the subsequent month t + 1 on a set of firm-specific

variables measured in t. The latter comprises each firm’s AHLG beta, its size represented by the495

log market capitalization, its idiosyncratic excess return volatility, the coskewness of its excess

return with the market’s excess return, and the stock’s market beta. We follow Ruenzi et al.

(2013) and calculate the latter three measures based on a 6-year rolling window, leading up

to month t. Table 6 presents the time-series averages of the monthly cross-sectional regression

coefficients together with Newey & West (1987) robust standard errors and significance levels.500

January 1995 to December 2020

return(t+1) return(t+1) return(t+1) return(t+1) return(t+1)

β∆ ˜ahl
−0.071** −0.071*** −0.068*** −0.056*** −0.033*

(−2.505) (−2.654) (−3.129) (−3.017) (−1.828)

size −0.073 −0.106*** −0.111*** −0.119***

(−1.349) (−2.581) (−2.706) (−2.628)

idiosyncratic vol. −0.020** −0.014 −0.023***

(−1.173) (−0.773) (−1.749)

coskewness −0.798*** −0.639***

(−3.538) (−3.287)

market beta 0.219

(1.296)

alpha 0.971*** 1.837** 2.545*** 2.313*** 2.375***

(2.891) (2.012) (4.025) (3.793) (3.741)

Table 6: Multivariate Fama & MacBeth (1973) Regression Results

This table presents the results of multivariate Fama & MacBeth (1973) regressions of excess returns in month

t+1 on AHLG beta β∆ ˜ahl, size (log of market capitalization), idiosyncratic excess return volatility (idiosyn-
cratic vol.), coskewness of the stock’s excess returns with the market’s excess returns (coskewness), and market
beta in month t. The sample period is January 1995 to December 2020. In line with Ruenzi et al. (2013),
idiosyncratic are calculated based on data until month t. The analysis covers all U.S. common stocks traded
on the NYSE/AMEX/NASDAQ. The t-statistics in parentheses were computed using Newey & West (1987)
standard errors with 4 monthly lags. ***, ** and * indicate significance at the one, five, and ten percent
levels.
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The first column shows the effect of the AHLG beta in isolation. As already found in our

previous results, a stock’s hurricane risk sensitivity has a statistically significant impact on the

excess return in the next month. Stocks with a positive AHLG beta earn lower future excess

returns than those with a negative AHLG beta. Economically, the former act as a hurricane risk505

insurance for stock portfolios. In contrast, the latter suffer when hurricane losses grow, causing

investors to demand a hurricane risk premium. In columns two to five, we consecutively add the

firm-specific controls size, idiosyncratic excess return volatility (idiosyncratic vola), coskewness,

and market beta. Consistent with the existing asset pricing literature, all but one of these

variables exhibit a statistically significant impact on the next-month returns. Nevertheless, the510

coefficient for the AHLG beta stays statistically significant negative throughout.

5.7. NMP and the Cross Section of Expected Excess Returns

In this section, we show that adding NMP to the Fama & French (1992) three-factor model

as well to its extension with the Carhart (1997) momentum factor, substantially reduces pricing

errors in the cross section of 25 test portfolios sorted by size and hurricane risk sensitivity. In515

Figure 4, we have plotted the model-predicted expected excess returns (vertical axis) against the

average realized excess returns (horizontal axis) for the relevant time period from January 1995

to December 2020. Test portfolios, for which the models’ pricing errors are small, closely align

along the 45-degree line. Evidently, NMP does improve the fit of both baseline specifications

shown in subfigures (a) and (c). This graphical finding is underlined by a decrease in the root520

mean squared errors (RMSE) from 0.223 in (a) to 0.177 in (b) and from 0.237 in (c) to 0.185 in

(d). Hence, NMP carries pricing information not included in the market factor, the high minus

low (HML) book-to-market factor, the small minus big (SMB) size factor, and the momentum

(MOM). In the next section, we probe NMP with an even larger set of established factors.
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(a) FF Three-Factor Model
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(b) FF Three-Factor Model + NMP

Average Realized Excess Return

F
it
te

d
 E

x
p
ec

te
d
 E

x
ce

ss
 R

et
u
rn

0.0 0.4 0.8 1.2 1.6 2.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

(c) FF Three-Factor Model + Momentum
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(d) FF Three-Factor Model + Momentum + NMP

Figure 4: Model-Predicted versus Realized Mean Excess Returns

In this figure, the model-predicted expected excess returns (vertical axis) for 25 test portfolios sorted by size
and hurricane beta are plotted against the corresponding average realized excess returns (horizontal axis).
The sample period is January 1995 to December 2020. The smallest pricing errors can be found along the
dashed 45-degree line.
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6. Exploring the Economic Mechanism525

6.1. Geographic versus Economic Hurricane Risk Exposure

Firms can suffer from direct or indirect impacts of natural disasters (Botzen et al., 2019).

The former are mainly damages to physical property. The latter refer to all changes in economic

activities caused by the disaster, such as supply chain interruptions, shortages of upstream

inputs, and plunges in sales due to reduced consumer spending in disaster-struck areas. In many530

cases, production facilities, suppliers and customers are not geographically co-located with the

firm’s headquarters. Nevertheless, there are strong economic links (Cohen & Frazzini, 2008)

and shocks from natural disasters have been shown to strongly propagate through production

networks (Barrot & Sauvagnat, 2016).42. Hence, hurricanes can affect firms far away from their

actual landfall location. This insight precludes a proper identification of the true hurricane risk535

exposure based on headquarters and production facilities from Compustat/CRSP in combination

with hurricane landfall data.

To tackle this issue, we rely on textual analysis of public financial statements rather than the

geographic location of establishments. Following Cohen et al. (2020), we download all complete

10-K, 10-K405 and 10-KSB filings from the SEC’s EDGAR website, spanning the time period540

2000−2017. We then match them with the CRSP stock market data. In doing so, we are able

to project economic hurricane risk exposure into a geographic pattern. Specifically, we identify

the headquarter location of all firms, which mentioned “hurricane loss” at least once in in their

publicly available financial reports. Figure 5 illustrates the results in comparison to a NOAA

map that shows the landfall states of all hurricanes between 1815 and 2012. As expected,545

the majority of the firms, which reported hurricane losses in their financial statements are

headquartered in East Coast or Gulf Coast states. Those include Alabama (AL), Florida (FL),

Georgia (GA), Louisiana (LA), Mississippi (MS), North Carolina (NC), New York (NY), South

Carolina (SC), and Texas (TX). In addition, however, we also find firms reporting hurricane

losses in states that are clearly disconnected from the actual physical events: Arizona (AZ),550

California (CA), Colorado (CO), Minnesota (MT), Oklahoma (OK), Oregon (OR), Utah (UT)

and Washington (WA).

We exploit this finding to split our sample into two parts: states in which at least one

headquartered firm was affected by a hurricane and states in which no firm disclosed hurricane

42In a current contribution, Buraschi & Tebaldi (2021) present a model for contagion in network economies

firms and determine the asset pricing implications of the network topography.
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losses. Subsequently, we then repeat the univariate sorting on both subsamples. We expect555

to see a risk premium for those firms, that are economically exposed to hurricane risk, be it

through physical assets that are located inside the disaster area or through a deeper layer of

economic linkages. Table 3 summarizes the results. The average excess return of the NMP

portfolio (1-5) in the subsample of states with firms that reported hurricane losses amounts to

a positive and significant 0.443 percent per month (5.316 percent p.a.). In contrast, the NMP560

portfolio formed from stocks in the remaining states without reports of hurricane losses turns

out to be insignificant. This illustrates that economic rather than geographic exposure is the

relevant basis for the hurricane risk premium.

Panel a) Headquarters with Hurricanes

Av. Beta Av. Return

Portfolio 1 −3.116 1.367%

2 −1.455 1.084%

3 −0.611 0.917%

4 +0.164 0.787%

Portfolio 5 +1.524 0.489%

NMP (1−5) −4.639*** 0.878%**

t-value (−126.29) (4.203)

Panel b) Headquarters without Hurricanes

Av. Beta Av. Return

Portfolio 1 −2.311 0.955%

2 −0.959 1.004%

3 −0.317 0.835%

4 +0.319 0.792%

Portfolio 5 +1.537 0.693%

NMP (1−5) −3.847*** 0.261%

t-value (−160.79) (1.109)

Table 7: Spatial Out-of-Sample Portfolio Sorts (Value Weighted)

This table shows the results for the out-of-sample portfolio sorts in the time periods 1995−2020. All portfolios
are formed on a value-weighted basis. The portfolio with the highest negative (positive) hurricane risk betas is
reported at the top (bottom). The row labeled NMP (1−5) contains the difference between the top and bottom
quintiles. Average betas are included in the first and average excess returns in the second column. The sample
in the upper panel covers all U.S. common stocks traded on the NYSE/AMEX/NASDAQ with headquarter
location in the following states: AL, AZ, CA, CO, FL, GA, LA, MS, MT, NC, NY, OK, OR, SC, TX, UT,
WA. The sample in the lower panel covers all U.S. common stocks traded on the NYSE/AMEX/NASDAQ
with headquarter location in the remaining states. ***, ** and * indicate significance at the one, five, and
ten percent levels.
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(a) Historical Hurricane Landfalls (1815−2012)
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(b) Economic Hurricane Exposure Map

Figure 5: Geographic vs. Economic Hurricane Exposure (2000−2017)

This figure shows actual hurricane landfalls between 1815 and 2012 (a) as reported by NOAA in comparison
to states in which headquartered firms reported hurricane losses between 2000 and 2017 (b).
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6.2. Hurricane Risk Over Time

In addition to the multidecadal dynamics driven by the AMO (see Figures 1 to 3), hurricane565

risk follows a clear intra-year pattern that can be exploited for identification. Specifically,

hurricane risk is highest during the Atlantic hurricane season from June to November, peaking

in the third quarter (see, e.g., Hallam et al., 2019). Outside the season, it is virtually zero.

Figure 6 shows that the average excess returns of NMP in each quarter behave inversely to

the corresponding hurricane arrival frequencies.43 We seek to confirm this finding by way of570

a time series regression of the quarterly NMP excess returns on dummy variables for Q2, Q3

and Q4 (Q1 forms the base category), in which we control for differences in the annual market

environment via year fixed effects (FE).44 As the Breusch Pagan and Ljung-Box (lag of 3) tests

turn out significant, all standard errors are heteroskedasticity and autocorrelation consistent

(HAC). Panel a) of Table 8) shows a significant negative coefficient for the third quarter.575

Next, we run a seasonal ARIMA model. Before we estimate the latter, we reduce the noise in

the quarterly NMP series through a three-quarter rolling mean.45 The smooth series is plotted

in Figure 7 a). Next, we turn to the periodogram, ACF and PACF shown in Figure 7 b), c)

and d) to identify an adequate model structure. The oscillating decline in the ACF is a sign for

seasonality. The significant spikes at the first two lags of the ACF point to an MA(2) (second-580

order moving average), essentially picking up our filter. The PACF also shows a significant

spike at lag one, indicative of an AR(1) (first-order autoregressive process). Further notable

spikes occur at lags four and eight, reflecting a seasonal pattern recurring every four quarters.

This is consistent with the large spike in the periodogram at a period of 3.6 (frequency 0.2778),

which corresponds to the peak of the hurricane season in late August/early September. Given585

these observations, we fit an ARIMA(1,0,2)(1,0,0)4 to the smooth quarterly NMP series and

report the results in Panel b) of Table 8. The significant coefficient for the first-order seasonal

autoregressive process SAR(1) at the fourth period provides further conclusive evidence for an

annually repeating pattern. Hence, NMP adheres to the same intra-year seasonality as the

underlying hurricane risk itself.590

43We use modeled instead of historical arrival frequencies, since those reflect the intra-year distribution of

hurricane risk across time horizons that reach way beyond the historical records. The frequencies have been

estimated by the catastrophe modeling firm AIR Worldwide and are published in Herrmann & Hibbeln (2021).

44In line with recent results by Hassani & Yeganegi (2020), we run the Ljung-Box with a lag of 3.

45This includes the current and previous two data points. The smooth quarterly series thus begins in Q3/1995.
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Figure 6: Quarterly Return Pattern of the Zero-Investment Portfolio NMP

This figure shows the average excess return per quarter of the zero-investment portfolio NMP on a value-
weighted basis. The graph also shows the long-term hurricane arrival frequency in each quarter as estimated
by the catastrophe risk modeling firm AIR. Due to the peak of the Atlantic hurricane season in August and
September, Q3 is the most active period in terms of hurricane occurrence. This is mirrored by NMP, which
tends to exhibit the lowest excess returns in Q3.

Panel a) TS Regression Panel b) SARIMA (smooth NMP)

coeff. p-val. (NW) sig. coeff. p-val. (NW) sig.

Intercept 1.0300 0.2784 AR(1) 0.2532 0.0105 **

Q2 −1.8547 0.1879 MA(1) 0.9350 0.0000 ***

Q3 −2.7255 0.0321 ** MA(2) 1.0000 0.0000 ***

Q4 −1.1560 0.3505 SAR(1) 0.3542 0.0004 ***

df 75 df 98

Year FE Yes AIC 4.1450

BP 39.8430 0.0683 * BIC 4.2737

LB(3) 11.7330 0.0084 *** LB(3) 1.1184 0.7726

Table 8: Time Series Analysis of the Zero-Investment Portfolio NMP

In Panel a), we report the coefficients (including intercept), p-values, significance levels and degrees of freedom
(df) for a time series (TS) regression of the quarterly NMP series on dummy variables for the second, third and
fourth quarter (first quarter forms the base category). We control for different annual regimes through year
fixed effects (FE). In line with the significant Breusch-Pagan (BP) and Ljung-Box (LB) (lag of 3) tests, all
standard errors are heteroskedasticity and autocorrelation consistent (HAC). Panel b) contains the coefficient
estimates for an ARIMA(1,0,2)(1,0,0)4 model fit to the smoothed (three-lag rolling mean) quarterly NMP
series. The model structure has been identified via the ACF and PACF patterns in Figure 7 The significant
first-order seasonal autoregressive component SAR(1) at the fourth period indicates an annually repeating
pattern in the smoothed quarterly NMP series. ***, ** and * indicate significance at the one, five, and ten
percent levels.
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Figure 7: Time Series Patterns of the Zero-Investment Portfolio NMP

The four subfigures show: a) the quarterly excess returns of NMP over time (grey dots) together with the
smoothed time series (rolling average of lag 3) and vertical dotted lines indicating the third quarters of
each year, b) the periodogram of the smooth NMP time series, c) the autocorrelation function (ACF) of the
smooth NMP time series and d) the partial autocorrelation function (PACF) of the smooth NMP time series.
All indicators point to a seasonal pattern with a lag of about four quarters, reflecting the seasonality of the
underlying natural peril.
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6.3. Hurricane Risk Across Industries

Next, we explore the hurricane risk premium across industries. To this end, we split our

sample of firms along SIC divisions and sort the stocks in each subsample based on hurricane

risk beta. We find significant hurricane risk premiums for four out of ten industry divisions:

construction (SIC codes 1500-1799), manufacturing (SIC codes 2000-3999), services (SIC codes595

7000-8999), as well as finance, insurance and real estate (SIC codes 6000-6799). The respective

results are summarized in Table 9.46 To the best of our knowledge, there is no empirical research

on the impact of natural disasters on firm profitability in different industries. We thus carefully

interpret the results against known macroeconomic effects.

A significant hurricane risk premium for the financials division is highly plausible. Property-600

casualty insurers (p/c) are often particularly exposed to natural disaster risk (see Lamb, 1995)

and recent work has documented that this impacts their costs of capital (see Ben Ammar et al.,

2018).47 There is also evidence of adverse effects on banks (see Schüwer et al., 2019) and Real

Estate Investment Trusts (see Rehse et al., 2019).

Moreover, service-related industries contract when public life comes to a halt after the dis-605

aster (see Vigdor, 2008). A particularly vulnerable service sector in this regard is the tourism

industry, which may also be hit by the destruction of key accommodation and transportation

infrastructure. Manufacturing businesses on the other hand suffer from power outages and

supply chain disruptions, even if they are geographically further away from but economically

interconnected to the event (Barrot & Sauvagnat, 2016).610

The last of the four divisions for which we document a significant hurricane risk premium

is the construction sector. This result seems to be at odds with post-event demand-surge

effects (see Döhrmann et al., 2017). However, there are several indications for reductions in

the profitability of construction firms following major hurricanes. Hsiang (2010), for example,

report a positive growth effect for the sector, but significantly higher labor costs. Similarly,615

Belasen & Polachek (2008) find average worker earnings to rise in hurricane struck counties.

46The results for the remaining industry divisions without significant effects are available from the authors

upon request. Those are agriculture, forestry and fishing (SIC codes 0100-0999), mining (SIC codes 1000-1499),

transportation, communications, electric, gas and sanitary services (SIC codes 4000-4999), wholesale trade (SIC

codes 5000-5199), retail trade (SIC codes 5200-5999), and public administration (SIC codes 9100-9729).

47If we drill down to the industry instead of division level and exclusively consider p/c insurance stocks (SIC

code 6331), the average excess return of the zero investment portfolio NMP increases to 0.70 percent per month

(8.4 percent p.a.).
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Vigdor (2008) reports an increase in the average weekly wage of New Orleans construction

workers of almost 40 percent after Hurricane Katrina. Cui et al. (2015) highlight that the

sector industry is affected by hurricanes through the disruption of construction projects and the

decline in new building permits, which can lead to lasting losses for several years. Finally, in his620

analysis of direct and indirect effects of cyclones on different industries, Kunze (2021) documents

beneficial demand effects, but no overall significant positive effect for the construction sector. He

delivers a good summary of what might be at play: “One reason could be that the destruction

of productive capital outweighs the higher number of orders”.

Panel a) Manufacturing Services

Av. Beta Av. Exc. Return Carhart-Alpha Av. Beta Av. Exc. Return Carhart-Alpha

Portfolio 1 −3.044 1.265 0.301 −3.311 1.215 0.295

2 −1.480 1.058 0.247 −1.517 1.131 0.264

3 −0.627 1.027 0.311 −0.626 1.005 0.233

4 0.149 0.820 0.090 0.230 0.943 0.175

Portfolio 5 1.521 0.726 −0.182 1.666 0.561 −0.324

NMP (1-5) 4.565 0.540 0.483** 4.977 0.654 0.619**

t-value 110.780 2.224 2.086 77.339 2.664 2.314

Panel b) Finance, Insurance and Real Estate Construction

Av. Beta Av. Exc. Return Carhart-Alpha Av. Beta Av. Exc. Return Carhart-Alpha

Portfolio 1 −2.156 1.175 0.301 −3.096 1.975 0.715

2 −0.985 0.942 0.146 −1.754 1.471 0.433

3 −0.424 0.813 0.033 −0.937 1.297 0.295

4 0.093 0.892 0.148 −0.207 0.688 −0.174

Portfolio 5 0.971 0.663 −0.116 0.903 0.691 −0.109

NMP (1-5) 3.126 0.512 0.417* 3.999 1.284 0.825*

t-value 81.721 2.545 1.756 63.757 2.521 1.657

Table 9: Industry Analysis

This table shows the results for the out-of-sample portfolio sorts within industry sectors in the time periods
1995−2020. All portfolios are formed on a value-weighted basis. The portfolio with the highest negative
(positive) hurricane risk betas is reported at the top (bottom). The row labeled NMP (1 − 5) contains the
difference between the top and bottom quintiles. Average betas are included in the first and average excess
returns in the second column.
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6.4. Hurricane Risk Across Market Capitalizations625

To test whether the hurricane risk premium depends on firm size, we conduct double-sorts.

Each month, we first sort all stocks on the average market capitalisation over the prior 60

months. Subsequently, within each market capitalization quintile, we sort the stocks into five

portfolios based on hurricane beta. Panel a) of Table 10 contains the average monthly excess

returns of the double sorted portfolios (market capitalisation × hurricane beta) on a value-630

weighted basis without winsorization. In Panel b), we report the results that were obtained by

excluding the 1 percent smallest and 5 percent largest firms according to average market cap.

Interestingly, the effect is generally absent for the 40 percent of firms with the lowest market

capitalizations, potentially due to lesser interdependencies and network effects among small

firms. The 60 percent of firms with the highest market capitalizations, in contrast, exhibit635

cross-sectional excess return differences based on hurricane risk.48 Upon closer inspection, the

effect seems to be largest for medium sized firms and then decreases again towards the last

size quintile. This could be attributable to the fact that business diversification and general

resilience is higher for large caps relative to mid caps. The winsorization applied in Panel b)

is overall consistent with these observations. However, it shifts the peak of the hurricane risk640

premium by one notch to the right along the size dimension. The results for equally-weighted

portfolios do not look materially different. They are available from the authors upon request.

48There is anecdotal evidence that even large tech giants are increasingly concerned about their natural

disaster risk exposure. The Google holding company Alphabet, for example, has recently sought protection

against earthquake losses through a catastrophe bond (see Artemis.bm).
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Panel a) No Winsorization

Market Cap. Low 2 3 4 High

Portfolio 1 0.67 0.96 1.19 1.22 1.06

2 1.06 1.12 1.14 1.03 0.88

3 0.92 0.83 0.95 0.88 0.85

4 0.77 0.99 0.88 0.82 0.60

Portfolio 5 0.61 0.65 0.45 0.64 0.61

NMP (1−5) 0.06 0.31 0.74* 0.59** 0.45**

t-value 0.24 1.55 3.49 3.05 2.07

Panel b) Winsorization

Market Cap. Low 2 3 4 High

Portfolio 1 0.67 0.92 1.13 1.31 1.18

2 1.02 1.13 1.15 0.98 0.96

3 0.93 0.84 0.98 0.87 0.89

4 0.77 0.94 0.91 0.78 0.88

Portfolio 5 0.63 0.62 0.47 0.62 0.68

NMP (1−5) 0.04 0.30 0.66*** 0.69*** 0.50***

t-value 0.15 1.53 3.04 3.61 2.77

Table 10: Dependent Bivariate Portfolio Sorts (Size and Hurricane Beta), Value Weighted (1995−2020)

This table shows the results of bivariate portfolio sorts on size (first step) and hurricane beta (second step).
Firm size is measured as the average market capitalization over the 60 months prior to the sorting date.
Hurricane beta is estimated by means of a rolling regression over the 60 months prior to the sorting date. All
portfolios are value weighted. Panel a) contains the results for the full sample of firms without winsorization.
For the results reported in Panel b), we have excluded the firms with the 1 percent smallest and 5 percent
largest average 60-month market caps in each month.
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7. Conclusion

In this paper, we theoretically and empirically investigate the impact of hurricanes as a sys-

tematic risk factor on asset prices. Building on a consumption-based asset pricing model with645

heterogeneous agents following Constantinides & Duffie (1996), we identify a necessary and suf-

ficient condition for a hurricane risk premium in the cross-section of stock returns. The necessary

condition demands that aggregate hurricane loss growth (AHLG) is positively correlated with

the variance of state-level income growth; the sufficient condition states that an asset’s return is

negatively related to AHLG. We examine both theoretical predictions for a hurricane premium650

in the cross-section of stock returns empirically. First, our results reveal that the correlation

between AHLG and the variance of state-level income growth is significantly positive from 1995

to 2020, a period that is characterized by increased disaster losses from hurricane activity. Sec-

ond, we find that stocks with a high sensitivity to hurricanes have higher future returns than

stocks with a low sensitivity in this period. This hurricane premium is statistically significant655

at the 1% significance level and amounts to 8.9% per annum. The premium is not explained by

traditional asset pricing risk factors nor firm characteristics, such as size, idiosyncratic volatility

or coskewness. Turning to the economic mechanism behind the premium, we analyze firms’

actual reports of hurricane losses in their financial statements. In line with intuition, we find

that the hurricane premium is large and statistically significant only for those firms that were660

affected by a hurricane in the past, and, hence, show an increased likelihood for being hit by a

hurricane in the future. We also document that excess returns on our hurricane risk factor follow

the same seasonal pattern as the underlying hurricane risk itself. Furthermore, the hurricane

risk premium exists for medium and large but not small firms and for industry divisions with

plausible exposures to hurricane risk. This study provides a new perspective on the association665

between natural disasters and asset pricing. Acknowledging the positive relationship between

firms’ hurricane betas and future returns, we provide strong empirical evidence that firms –

that are threatened by hurricane risk – exhibit higher cost of equity than their unexposed peers.

How companies can react to this climate risk factor a is a potential interesting topic for future

research.670

41



References

Addoum, J. M., Ng, D. T., & Ortiz-Bobea, A. (2020). Temperature Shocks and Establishment

Sales. Review of Financial Studies , 33 , 1331–1366.

Adrian, T., Etula, E., & Muir, T. (2014). Financial Intermediaries and the Cross-Section of

Asset Returns. Journal of Finance, 69 , 2557–2596.675

Aladangady, A., Aron-Dine, S., Dunn, W. E., Feiveson, L., Lengermann, P., & Sahm, C. (2017).

The Effect of Hurricane Matthew on Consumer Spending. SSRN Electronic Journal , October .

Alok, S., Kumar, N., & Wermers, R. R. (2020). Do Fund Managers Misestimate Climatic

Disaster Risk? Review of Financial Studies , 33 , 1146–1183.

Andersson, M., Bolton, P., & Samama, F. (2016). Hedging Climate Risk. Financial Analysts680

Journal , 72 , 13–32.

Ardia, D., Bluteau, K., Boudt, K., & Inghelbrecht, K. (2020). Climate Change Concerns and

the Performance of Green Versus Brown Stocks. SSRN Electronic Journal , October .

Attanasio, O. P., & Pistaferri, L. (2016). Consumption Inequality. Journal of Economic Per-

spectives , 30 , 2–28.685

Auffret, P. (2003). High Consumption Volatility: The Impact of Natural Disasters? Working

Paper, World Bank , January .

Baker, M., & Wurgler, J. (2006). Investor Sentiment and the Cross-Section of Stock Returns.

Journal of Finance, 61 , 1645–1680.

Baker, S. D., Hollifield, B., & Osambela, E. (2020). Asset Prices and Portfolios with Externali-690

ties. SSRN Electronic Journal , May .

Bakkensen, L., & Barrage, L. (2021). Flood Risk Belief Heterogeneity and Coastal Home Price

Dynamics: Going Under Water? NBER Working Paper , February .

Baldauf, M., Garlappi, L., & Yannelis, C. (2020). Does Climate Change Affect Real Estate

Prices? Only If You Believe in it. Review of Financial Studies , 33 , 1256–1295.695

Bali, T. G., Cakici, N., & Whitelaw, R. F. (2011). Maxing Out: Stocks as Lotteries and the

Cross-Section of Expected Returns. Journal of Financial Economics , 99 , 427–446.

42



Barinov, A., Xu, J., & Pottier, S. W. (2020). Estimating the Cost of Equity Capital for Insurance

Firms With Multiperiod Asset Pricing Models. Journal of Risk and Insurance, 87 , 213–245.

Barro, R. J. (2006). Rare Disasters and Asset Markets in the Twentieth Century. Quarterly700

Journal of Economics , 121 , 823–866.

Barrot, J.-N., & Sauvagnat, J. (2016). Input Specificity and the Propagation of Idiosyncratic

Shocks in Production Networks. Quarterly Journal of Economics , 131 , 1543–1592.

Bauer, D., Phillips, R., & Zanjani, G. (2013). Financial Pricing of Insurance. In G. Dionne

(Ed.), Handbook of Insurance chapter 22. (pp. 627–645). New York, NY: Springer New York.705

Beer, S., & Braun, A. (2021). Market-Consistent Valuation of Natural Catastrophe Risk. Journal

of Banking and Finance, in print .

Belasen, A. R., & Polachek, S. W. (2008). How Hurricanes Affect Wages and Employment in

Local Labor Markets. American Economic Review , 98 , 49–53.

Ben Ammar, S. (2020). Catastrophe Risk and the Implied Volatility Smile. Journal of Risk and710

Insurance, 87 , 381–405.

Ben Ammar, S., Eling, M., & Milidonis, A. (2018). The Cross-Section of Expected Stock Returns

in the Property/Liability Insurance Industry. Journal of Banking and Finance, 96 , 292–321.

Berkman, H., Jacobsen, B., & Lee, J. B. (2011). Time-Varying Rare Disaster Risk and Stock

Returns. Journal of Financial Economics , 101 , 313–332.715

Bernstein, A., Gustafson, M., & Lewis, R. (2019). Disaster on the Horizon: The Price Effect of

Sea Level Rise. Journal of Financial Economics , 134 , 253–272.

Bolton, P., & Kacperczyk, M. T. (2021a). Do Investors Care about Carbon Risk? Journal of

Financial Economics , in print .

Bolton, P., & Kacperczyk, M. T. (2021b). Signaling through Carbon Disclosure. SSRN Elec-720

tronic Journal , January .

Botzen, W. J., Deschenes, O., & Sanders, M. (2019). The Economic Impacts of Natural Disas-

ters: A Review of Models and Empirical Studies. Review of Environmental Economics and

Policy , 13 , 167–188.

43



Bourdeau-Brien, M., & Kryzanowski, L. (2017). The Impact of Natural Disasters on the Stock725

Returns and Volatilities of Local Firms. Quarterly Review of Economics and Finance, 63 ,

259–270.

Braun, A. (2016). Pricing in the Primary Market for Cat Bonds: New Empirical Evidence.

Journal of Risk and Insurance, 83 , 811–847.

Braun, A., Ben Ammar, S., & Eling, M. (2019a). Asset Pricing and Extreme Event Risk:730

Common Factors in ILS Fund Returns. Journal of Banking and Finance, 102 , 59–78.

Braun, A., Luca, D., & Schmeiser, H. (2019b). Consumption-Based Asset Pricing in Insurance

Markets: Yet Another Puzzle? Journal of Risk and Insurance, 86 , 629–661.

Braun, A., Utz, S., & Xu, J. (2019c). Are Insurance Balance Sheets Carbon-Neutral? Harnessing

Asset Pricing for Climate Change Policy†. Geneva Papers on Risk and Insurance: Issues and735

Practice, 44 , 549–568.

Brown, J. R., Gustafson, M., & Ivanov, I. (2021). Weathering Cash Flow Shocks. Journal of

Finance, 76 , 1731–1772. doi:10.2139/ssrn.2963444.

Buraschi, A., & Tebaldi, C. (2021). Financial Contagion in Network Economies and Asset

Prices. SSRN Electronic Journal , June.740

Carhart, M. M. (1997). On Persistence in Mutual Fund Performance. Journal of Finance, 52 ,

57–82.

Cavallo, E. A., Galiani, S., Noy, I., & Pantano, J. (2013). Catastrophic Natural Disasters and

Economic Growth. Review of Economics and Statistics , 95 , 1549–1561.

Chabi-Yo, F., Ruenzi, S., & Weigert, F. (2018). Crash Sensitivity and the Cross Section of745

Expected Stock Returns. Journal of Financial and Quantitative Analysis , 53 , 1059–1100.

Chavas, D., & Chen, J. (2020). Hurricanes Last Longer on Land in a Warming World. Nature,

587 , 200–201.

Chen, Z., & Yang, B. (2019). In Search of Preference Shock Risks: Evidence from Longevity

Risks and Momentum Profits. Journal of Financial Economics , 133 , 225–249.750

Cohen, L., & Frazzini, A. (2008). Economic Links and Predictable Returns. Journal of Finance,

63 , 1977–2011.

44

http://dx.doi.org/10.2139/ssrn.2963444


Cohen, L., Malloy, C., & Nguyen, Q. (2020). Lazy Prices. Journal of Finance, 75 , 1371–1415.

Collier, B. L., Haughwout, A. F., Kunreuther, H. C., & Michel-Kerjan, E. O. (2020). Firms’

Management of Infrequent Shocks. Journal of Money, Credit and Banking , 52 , 1329–1359.755

Constantinides, G. M., & Duffie, D. (1996). Asset Pricing with Heterogeneous Consumers.

Journal of Political Economy , 104 , 219–240.

Cortés, K. R., & Strahan, P. E. (2017). Tracing out Capital Flows: How Financially Integrated

Banks Respond to Natural Disasters. Journal of Financial Economics , 125 , 182–199.

Cui, Y., Liang, D., & Ewing, B. T. (2015). Empirical Analysis of Building Permits in Response760

to Hurricane Landfalls. Natural Hazards Review , 16 .

Cummins, J. D. (2006). Should the Government Provide Insurance for Catastrophes? Federal

Reserve Bank of St. Louis Review , 88 , 337–379.

Cummins, J. D., & Trainar, P. (2009). Securitization, Insurance, and Reinsurance. Journal of

Risk and Insurance, 76 , 463–492.765

Custodio, C., Ferreira, M. A., Garcia-Appendini, E., & Lam, A. (2021). Economic Costs of

Climate Change. SSRN Electronic Journal , August .

Dessaint, O., & Matray, A. (2017). Do Managers Overreact to Salient Risks? Evidence from

Hurricane Strikes. Journal of Financial Economics , 126 , 97–121.

Dieckmann, S. (2019). A Consumption-Based Evaluation of the Cat Bond Market. Advances in770

Pacific Basin Business, Economics and Finance, 7 , 1–26.

Dietz, S., Bowen, A., Dixon, C., & Gradwell, P. (2016). Climate Value at Risk’ of Global

Financial Assets. Nature Climate Change, 6 , 676–679.
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Pástor, L., & Stambaugh, R. F. (2003). Liquidity Risk and Expected Stock Returns. Journal

of Political Economy , 111 , 642–685.

Pindyck, R. S., & Wang, N. (2013). The Economic and Policy Consequences of Catastrophes.885

American Economic Journal: Economic Policy , 5 , 306–339.

Rehse, D., Riordan, R., Rottke, N., & Zietz, J. (2019). The Effects of Uncertainty on Market

Liquidity: Evidence from Hurricane Sandy. Journal of Financial Economics , 134 , 318–332.

49

http://dx.doi.org/10.1002/wcc.251


Rietz, T. A. (1988). The Equity Risk Premium: A Solution. Journal of Monetary Economics ,

22 , 117–131.890

Roth Tran, B. (2019). Divest, Disregard, or Double Down? American Economic Review:

Insights , 1 , 241–256.

Ruenzi, S., Ungeheuer, M., & Weigert, F. (2013). Extreme Downside Liquidity Risk. Working

Paper, University of Mannheim, July .

Sadka, R. (2006). Momentum and Post-Earnings-Announcement Drift Anomalies: The Role of895

Liquidity Risk. Journal of Financial Economics , 80 , 309–349.

Sautner, Z., van Lent, L., Vilkov, G., & Zhang, R. (2021). Pricing Climate Change Exposure.

SSRN Electronic Journal , April .

Sawada, Y., & Shimizutani, S. (2007). Consumption Insurance Against Natural Disasters:

Evidence from the Great Hanshin-Awaji (Kobe) Earthquake. Applied Economics Letters , 14 ,900

303–306.

Sawada, Y., & Shimizutani, S. (2008). How Do People Cope with Natural Disasters? Evidence

from the Great Hanshin-Awaji (Kobe) Earthquake in 1995. Journal of Money, Credit and

Banking , 40 , 463–488.
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8. Appendix

8.1. Decomposing Correlations

Consider three random variables X, Y and Z. If X is correlated with Y and Y is correlated955

with Z, then X must also be correlated with Z. To see this, assume that all three random

variables have a zero mean (E[X] = E[Y ] = E[Z] = 0) and unit variance (E[X2] − E[X]2 =

E[Y 2]−E[Y ]2 = E[Z2]−E[Z]2 = 1). This can always be achieved by demeaning and standard-

izing the variables. Now, express X and Z as linear combinations of Y and a second component

denoted X∗ and Z∗, respectively, which is independent of Y :960

X = aY +X∗, (13)

Z = bY + Z∗. (14)

The expectation of X times Y is

E[XY ] = E[(aY +X∗)Y ] (15)

= aE[Y 2] + E[Y X∗],

and the expectation of Z times Y equals

E[ZY ] = E[(bY + Z∗)Y ] (16)

= bE[Y 2] + E[Y Z∗].

E[Y X∗] and E[Y Z∗] are zero by design. Recall thatX and Y have zero means and unit variances,

implying that their standard deviations are
√

E[X2] = 1 and
√

E[Y 2] = 1. Consequently, a and

b represent the correlations between X and Y (ρ[X,Y ]) as well as Z and Y (ρ[Z, Y ]):965

a = E[XY ] =
E[XY ]

√

E[X2] · E[Y 2]
= ρ[X,Y ], (17)

b = E[ZY ] =
E[ZY ]

√

E[Z2] · E[Y 2]
= ρ[Z, Y ]. (18)
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Next, we derive the variances of X∗ and Z∗. To this end, first rewrite the variances of X

and Z, using (13) and (14):

E[X2] = a2E[Y 2] + 2aE[Y X∗] + E[X∗2] (19)

= a2 + E[X∗2] = 1,

E[Z2] = b2E[Y 2] + 2bE[Y Z∗] + E[Z∗2] (20)

= b2 + E[Z∗2] = 1.

Insert a = ρ[X,Y ] and b = ρ[Z, Y ] to obtain the following expressions for the variances of X∗
970

(
E[X∗2]

)
and Z∗

(
E[Z∗2]

)
:

E[X∗2] = 1− ρ[X,Y ]2, (21)

E[Z∗2] = 1− ρ[Z, Y ]2. (22)

Finally, inserting a = ρ[X,Y ] and b = ρ[Z, Y ] in (13) and (14) and taking the expectation of X

times Z, delivers the correlation of X and Z (ρ[X,Z]) as a function of ρ[X,Y ] and ρ[Z, Y ]:

ρ[X,Z] = (E[XZ]− E[X] · E[Z]
︸ ︷︷ ︸

=0

)/
√

(E[X2]− E[X]2) · (E[Z2]− E[Z]2)
︸ ︷︷ ︸

=1

(23)

= ρ[X,Y ] · ρt[Z, Y ] · E[Y 2] + ρ[X,Y ] · E[Y Z∗]
︸ ︷︷ ︸

=0

+ ρ[Z, Y ] · E[Y X∗]
︸ ︷︷ ︸

=0

+E[X∗Z∗]

= ρ[X,Y ] · ρ[Z, Y ] + E[X∗Z∗].

Hence, the sign of ρ[X,Z] depends on the product of ρ[X,Y ] and ρ[Z, Y ]. More specifically,

ρ[X,Z] will be positive, if both ρ[X,Y ] and ρ[Z, Y ] are positive or negative. On the other hand,975

ρ[X,Z] will be negative, if ρ[X,Y ] is negative and ρ[Z, Y ] is positive, or vice versa. Apart

from the correlations ρ[X,Y ] and ρ[Z, Y ], the strength of ρ[X,Z] additionally depends on the

expectation E[X∗Z∗]. Dissecting the latter by means of cov [X∗, Z∗] = E [X∗Z∗]−E [X∗] ·E [Z∗]

yields:

E[X∗Z∗] = ρ[X∗, Z∗]
√

E[X∗2] · E[Z∗2] + E[X∗] · E[Z∗]. (24)
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For given means and standard deviations of X∗ and Z∗, E[X∗Z∗] will take on the largest980

possible value for (ρ[X∗, Z∗]) = 1 and the smallest possible value for (ρ[X∗, Z∗]) = −1.

8.2. Sorting Results for Equally-Weighted Portfolios

Panel a): January 1968 to December 1994

Av. Beta Av. Return CAPM-Alpha FF3-Alpha Carhart-Alpha

Portfolio 1 −3.055 0.632% 0.194% −0.027% 0.045%

2 −1.463 0.675% 0.286% 0.039% 0.137%**

3 −0.727 0.713% 0.344%** 0.057% 0.105%*

4 −0.025 0.769% 0.244%** 0.072%** 0.133%**

Portfolio 5 +1.408 0.642% 0.02% −0.141%** −0.133%

NMP (1−5) −4.464*** −0.009% −0.054% 0.114% 0.178%

t-value (−121.36) (−0.406) (0.269) (0.943) (1.295)

Panel b): January 1995 to December 2020

Av. Beta Av. Return CAPM-Alpha FF3-Alpha Carhart-Alpha

Portfolio 1 −3.493 1.327% 0.305% 0.252% 0.487%*

2 −1.387 1.173% 0.372%* 0.263%** 0.411%***

3 −0.565 1.004% 0.308%* 0.202%** 0.316%***

4 +0.184 0.955% 0.262% 0.175%* 0.284%***

Portfolio 5 +1.889 0.799% −0.101% −0.127% 0.031%

NMP (1−5) −5.382*** 0.528%*** 0.405%*** 0.379%** 0.469%***

t-value (−142.65) (3.460) (2.671) (2.617) (3.004)

Table 11: Univariate Out-of-Sample Portfolio Sorts (Equally-Weighted)

This table shows the results for the out-of-sample portfolio sorts in the time periods 1968−1994 (Panel a)
and 1995−2020 (Panel b). All portfolios are formed on an equally-weighted basis. The portfolio with the
highest negative (positive) hurricane risk betas is reported at the top (bottom). The row labeled NMP (1−5)
contains the difference between the top and bottom quintiles. Average betas are included in the first and
average excess returns in the second column. The remaining columns indicate the abnormal excess returns
(alphas) that remain when regressing the excess return time series of the respective portfolios on the capital
asset pricing model (CAPM), the Fama & French (1992) three-factor model (FF3) and the Fama & French
(1992) three-factor model plus the Carhart (1997) momentum factor. The sample covers all U.S. common
stocks traded on the NYSE/AMEX/NASDAQ. t-statistics are shown in parentheses and were computed using
Newey & West (1987) standard errors with 4 monthly lags. ***, ** and * indicate significance at the one,
five, and ten percent levels, respectively.
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