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ABSTRACT
This is the first paper to jointly analyze the three main cyber loss datasets (Advisen, SAS OpRisk
and PRC), yielding the most comprehensive cyber loss data yet considered in the literature. We
first study the problem of report delay bias by applying a two-stage model and document a faster
rate of increase for cyber risk frequency compared with the original data. Based on these results,
we then focus on the time dynamics of cyber risk frequency and severity, where we separately study
the properties of full distribution and tail of loss severity. We find the loss distribution of cyber
events shifts leftwards for both monetary loss and non-monetary loss (such as accounts/records
breached) in the recent period, but the trend of tail risk is different for these two types of loss.
Based on our new multiple change point detection method, we show the tail risk of non-monetary
loss is increasing, while the other is not, although they both consistently exhibit heavy-tailedness
over time. Our results are important for cyber risk management and understanding the insurability

of cyber risk.
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I. Introduction

In 2007, an American department store chain, TJX, was hacked and nearly 94 million credit
cards information have been exposed (ABC 2007)). This was the largest recorded data breach
incident at the time, but just several years later, more and more data breach incidents exceeding
this magnitude occur. Among them, Yahoo’s incident in 2013 was the largest, involving nearly 3
billion user accounts (Reuters/[2017). Not only the extreme cyber events are becoming more and
more frequent, the overall frequency and severity are also changing quickly. For example, [FBI
(2020) reports 300% increase in reported cybercrimes during the COVID-19 period. The recent
report of McAfee (2020) estimates the cost of global cybercrime at $1 trillion, a more than 50%
increase from the 2018 estimate ($600 billion). Also, recent academic research (e.g., Jamilov, Rey
& Tahoun|2021)) emphasizes that cyber risks have increased significantly globally.

Although all these examples clearly illustrate the huge and increasing importance for businesses
and societies, the existing knowledge on the empirical properties of cyber risk is relatively limited.
This study intends to utilize three main cyber risk databases to control the bias in data and
understand the time dynamics of cyber risk by identifying potential change points in time.

One issue of data bias that has been studied in both general statistics and actuarial science is
report delay, which relates to the structural delay between the event date and observation date.
However, there is no literature studying report delay for cyber risk due to the limit of data. Using
the unique information in our data, we are able to correct this bias by developing a two-stage
statistical model based on the work of [Stoner & Economou (2020). The results show that after
accounting for report delay, the trend of frequency is increasing much faster than what we see in
raw data.

Building on the results of bias correction, we study the time dynamics of cyber risk frequency,
especially at understanding whether there have been fundamental shifts over the years. More
specifically, we apply the recent statistical method (Baranowski, Chen & Fryzlewicz 2019) to detect
the unknown number of change points in the time series data of cyber risk. We find multiple change
points in the recent period, leading to a faster rate of increase.

We also analyze the dynamics of cyber risk severity. Traditionally, the analysis of loss severity
focuses on the first moment of the distribution, but this leaves out certain useful information.
Following the most recent advances in statistics (Dubey & Miller 2020), we consider the full
distribution of cyber risk, which can provide a more comprehensive understanding. Surprisingly, the
results show that in recent years the distribution of cyber risk shifts to the left, indicating lower loss
severity. This might be driven by the increasing number of small losses with the higher frequency
of cyber risk or a result of more reports given stricter regulation of information transparency.

Given the extreme nature of cyber risks and manifold discussions around their insurability (e.g.,
Biener, Eling & Wirfs 2015), the tail of the loss severity distribution requires a deeper look. We
apply several non-parametric methods to measure tail risk such as Hill’s estimator and OLS log-log
rank-size estimator, together with optimal threshold selection method. We show that cyber risk

is extremely heavy-tailed with infinite mean and variance in most of the cases. In addition, we



develop a new multiple change point detection method for tail risk based on |Ibragimov & Miiller
(2016)) and show that the trends for monetary loss and number of accounts/records per event are
different. While the tail risk for the number of accounts/records is increasing over the years, the
actual monetary loss is becoming less heavy-tailed.

The theoretical work on cyber risk has begun as early as the beginning of this century (e.g.,
Gordon & Loeb|2002), but due to the limit of data, the empirical work is at least one decade
lagging behind with Maillart & Sornette] (2010) among the earliest works to use data breach loss
informationE] Still today most empirical works rely heavily on the data breach dataset provided
by the Privacy Rights Clearinghouse (e.g., Kamiya, Kang, Kim, Milidonis & Stulz 2021; |Farkas,
Lopez & Thomas [2021}; and Bessy-Roland, Boumezoued & Hillairet|[2021)), which does not provide
information on the financial loss of incidents and thus limits the use for risk management. Thus,
the contribution of our paper is to provide a comprehensive analysis of the time dynamics of cyber
risk in different dimensions by analyzing the most comprehensive datasets over a long time period.
Utilizing the most recent and advanced statistical methods, we address limitations of existing
empirical studies and enhance the knowledge on the dynamics of cyber risk frequency and severity.
The results can provide more clarity on the empirical properties of cyber risk and shed light on the
ambiguious results in the literature.

Another contribution is to be the first to provide empirical evidence on the problem of cyber
data bias and extend a statistical model to control it. In many related studies (Maillart & Sornette
2010, Wheatley, Maillart & Sornette [2016, Farkas et al. |2021), the authors have questioned the
reliability of data and discussed the potential issues that this can bring about. However, due to
the limitation of data, few studies have proposed useful methods for the evaluation of data bias.
Together with the more detailed incident-level data, we start by addressing one type of the issues
(report delay) and find more convincing evidence on the increasing speed of cyber risk over the
years.

We also contribute to the literature about change point detection by developing a new multiple
change point detection method for tail risk. There are some works on multiple change point
detection, but mostly not for tail risk. |(Candelon & Straetmans (2006) is one of a few that focuses
on multiple change point detection for tail risk, extending from the work of |Quintos, Fan & Phillips
(2001)). However, this method is not directly applicable to our case as there are excessive zeros in
our data which might bias the results. Therefore, we develop a new method for our purpose with
the approach from |Ibragimov & Miiller| (2016)).

Our work relates to the literature that study statistical properties of cyber riskE] Various
studies focus on modeling cyber risk, showing the heavy-tailed property of cyber risk severity such as
Wheatley et al.|(2016)), [Eling & Wirfs (2019) and |[Farkas et al. (2021)) with different frameworks. For

"We acknowledge that information security has been an evergreen IT topic before this century, but few of them
are based on the economic (and risk management) perspective. Therefore, we refer to|Gordon & Loeb| (2002) as one
of the earliest papers in this area. We also acknowledge earlier empirical works considering stock prices, but not loss
information, especially |(Campbell, Gordon, Loeb & Zhou| (2003). See also |Anderson & Moore, (2006) for an earlier
review on the economics of information security.

2We summarize the works on cyber risk in the Appendix



the comprehensive review of the work on cyber risk, we refer to Eling, McShane & Nguyen| (2021)
and |Woods & Bohme| (2021). Considering the existing empirical work, there is little consensus
about the dynamics of cyber risk. With data period from 2000 to 2008, |[Maillart & Sornette| (2010)
show there is a strong non-stationary growth culminating in July 2006 followed by a stable period
afterwards. |Edwards, Hofmeyr & Forrest| (2016) find no evidence of increasing trend for size and
frequency of data breaches for data from 2005 to 2015. However, Romanosky| (2016) indicates an
increasing trend for the number of cyber events in the same period. [Wheatley, Hofmann & Sornette
(2021)) also observe an increasing trend for both frequency and severity in the similar time period,
but only specific to hack type events. More recently, Jung| (2021) shows a break point in 2014 for
loss severity data with stable trend before 2014 and rapid growth afterwards. Overall, the results
appear to be rather inconsistent and the difference might be largely driven by different datasets
and different methodologies. This motivates us to reconsider the empirical properties over a long
time period with the combination of three main cyber databases which have never been jointly
analyzed. We also note that none of the above studies tries to incorporate the bias problems, which
are inherent to all these datasets.

The reminder of this paper proceeds as follows. Section [[] describes the data and methods used
for the main analysis of cyber risk. Section [[I]] presents the empirical results for the time dynamics
of risk frequency and severity. Section [[V] discusses the implications of our results for cyber risk

management. Section [V] concludes.

II. Data and methods

A. Data

Cyber risk is defined as “operational risks to information and technology assets that have
consequences affecting the confidentiality, availability or integrity of information or information
systems” (Cebula & Young 2010). Based on this definition, We look at three sources of data for
the analysis on cyber risk. In this paper, we focus on the events occur to legal entities rather than
individuals, such as firms, public and non-profit institutions, etc. Among all databases, there are
mainly two types of losses. The first type is the direct electronic loss related to the number of
records or accounts affected, while the second type is the monetary loss arising from the incident,
such as first party loss including the value of the lost records or the cost of business interruption,
and third party loss including the payment to affected customers and fines in case of violation of
regulation.

The first and major data source is from Advisen| Their database collects information from mul-
tiple publicly available sources such as government websites (Securities & Exchange Commission,
Federal Trade Commission, Federal Communications Commission, State data breach notification
websites, etc.) and other sources including keyword-based alerts, official court and litigation sources

and other internet information. The magnitude of the records in the database is over 150,000, while

3https://www.advisenltd.com/data/cyber-loss—-data/.
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more than 80% of the cases are from U.S. and the rest are from 177 different countries. Since the
database creates different records for different kinds of losses arising from one incident such as
direct damage and legal costs, we aggregate the original data and result in 111,253 incidents for
further analysis. Although the magnitude of cyber events in this database is large, the information
on financial loss and accounts affected is more scare. After cleaning the data and using the sample
after 2001E| we have 5,714 records for financial loss and 88,386 records for accounts affected.

The second source we use is SAS OpRisk Global dataf’| which is the world’s largest database on
publicly reported operational losses. This database contains more than 35,000 operational events
in excess of US$ 100,000 for different countries and industries. There is no classification for cyber
risk and thus we cannot extract cyber events directly from the database. Therefore, we use an
approximate method following Eling & Wirfs| (2019)) which exploits text mining to extract cyber-
related events. This results in 2,659 observations for our analysis.

The last source of data is from the non-profit organization Privacy Rights Clearinghousﬂ (PRC),
which is the one frequently used in the current literature. It collects information about breach events
from government agencies and verifiable news sources starting from 2005. The data set contains
6,822 records up to the end of 2019. The major difference from the previous two data sources is
that this database focuses only on data breach events and does not provide financial loss amount
for each case. Therefore, we will use this database for the analysis of risk frequency and number of
records breached.

Although there are three different databases, they are connected with each other as they all
focus on the same area, cyber risk. For example, the Advisen database use the website of PRC as
one of the sources, therefore all records in PRC should also be covered in Advisen. In addition,
most large cyber events are included in both SAS and Advisen. In theory, these databases should
provide the same information about cyber risk. However, depending on the target and resource
of the data, they show different perspectives of cyber risk. For example, PRC data focus on data
breach events in U.S., directly drawing information from state Attorneys General and the U.S.
Department of Health and Human Services. SAS data collect only the large cyber events globally,
with losses more than US$ 100,000. The Advisen database is the most comprehensive one, aiming
at collecting all kinds of cyber risk events. But this also comes with the cost that the many events
do not have detailed information such as exact date of incident, financial and non-financial loss.
We will study these databases separately without merging them. The reasons are threefold. First,
the cyber events do not have a unique identifier across databases and thus matching will be difficult
and inaccurate. Second, we aim to find the general pattern of cyber risk that is persistent across
different sources and categories, and merging these data will undermine the argument since we
cannot separate the results. Third, these databases provide different level /kind of information and

combining them would require compromise and drop certain information in the analysis.

4We restrict the sample to time period from 2001 since cyber risk only becomes a serious issue in the 21st century

and the data in the last century are very sparse. This also applies to other data sources.
Shttps://www.sas.com/content/dam/SAS/en_us/doc/productbrief/sas-oprisk-global-data-101187.pdf.
Shttps://privacyrights.org/data-breaches,
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Table [I| summarizes the basic statistics of our data sets over time. Although we present the
results in the same period for each database, it is important to note that PRC data range only from
2005 to 2019, which explains the lower number of events in the first and last period. In addition,
the number of events in the last period for all data sets is not significantly higher than the previous
periods, which is very likely related to report delay bias that we will study in more detail in Section
[IT.Al

We see an increasing trend of loss severity (and the standard deviation of it) for all databases,
except for certain anomaliesm again documenting the increasing relevance of cyber risk events.
Also, the difference between mean and median value is substantial, indicating the highly skewed

distribution of cyber risk.

B.  Methodology
B.1. Bias correction

Reliable data are crucial for the analysis of cyber risk, but the current databases are not
comprehensive (such as PRC data that only focus on data breach) and/or potentially biased (such
as the database of Advisen and other commercial databases). Hence, empirical studies without
bias correction may only lead to partial or even incorrect conclusions about cyber risk.

We aim to apply recent methods from the field of statistics to identify and correct the potential
bias in the data before conducting further statistical analysis. One main problem is report delay,
which is the case where the total observable count will only be available after a period of time.
Therefore, before the total count becomes available, we can only observe incomplete data. This
can be detrimental for the analysis of time dynamics and lead to misinterpretation of the actual
number of events. For the case of cyber risk, this problem is common since many events are noticed
and made public after a long time. Also, the delay may occur when the database cannot update
the records in time due to limited resources invested in the maintenance.

To model report delay, we follow the work of Stoner & Economou| (2020) and extend their
framework to include two stages that are unique in the Advisen datasetﬁ The Advisen dataset is

the main focus in this part since it has the detailed timeline of each incident, from the event date

"The frequency in 2001-2005 is significantly lower while the severity is higher than other periods. This is likely
driven by data bias issues such as less cyber events are made public in the early years and thus mostly extreme events
are collected. In addition, the particularly high total loss amount in this period for SAS data is related to several
extreme events including the case of money laundering for Bank of China in 2005 which resulted in more than $10
Billion loss.

8The problem of report delay is closely related to the claims reserves problem in actuarial science. Two of the most
common methods in the area are distribution-free chain-ladder model (Mack|[1993), and the overdispersed Poisson
model (Renshaw & Verrall [1998). A more detailed summary of the literature in actuarial science can be found in
(Taylor|[2019). There are many works generalizing these two models, and it is easy to reach the GLM model we
mention later from Mack’s work. Therefore, the two areas are connected, but there are also differences. One of them
is that the focus from actuarial science is about the aggregate claim amount which is the multiplication of the number
of claims and severity of claims, while the report delay problem mostly focuses on the number or frequency of the
events/cases. In our case, the information on the financial loss of the events is scarce compared to the number of
events, thus we only focus on the report delay issue for the frequency data in this section.



Table I Summary statistics of three databases

Loss amount-SAS  Loss amount-  Accounts Records
Advisen affected-Advisen breached-PRC
Whole sample
Number 2659 5714 88386 6822
Total loss 101216.22 90758.94 80141.28 10387.40
Mean loss 38.07 15.88 0.91 1.52
Median loss 1.64 0.13 0.00 0.00
Standard deviation 368.13 224.36 42.09 41.96
2001-2005
Number 311 496 1185 117
Total loss 41415.24 7404.79 2809.94 55.10
Mean loss 133.17 14.93 2.37 0.47
Median loss 3.40 0.48 0.00 0.02
Standard deviation 1027.93 96.88 47.47 3.71
2006-2010
Number 837 1776 11330 1774
Total loss 18370.36 19028.43 3651.94 741.99
Mean loss 21.95 10.71 0.32 0.42
Median loss 1.30 0.04 0.00 0.00
Standard deviation 116.07 126.11 6.66 5.41
2011-2015
Number 643 2105 39290 2884
Total loss 18647.70 31028.54 21048.62 1543.45
Mean loss 29.00 14.74 0.54 0.54
Median loss 1.46 0.14 0.00 0.00
Standard deviation 108.45 181.03 26.67 7.39
2016-2021
Number 868 1337 36581 2047
Total loss 22782.92 33297.19 52630.78 8046.85
Mean loss 26.25 24.90 1.44 3.93
Median loss 1.83 0.22 0.00 0.00
Standard deviation 110.79 372.71 58.57 75.89

Notes:

This table presents the basic statistics of four kinds of cyber risk data that are used in this paper. The
monetary loss value is presented in $Million (adjusted to 2021 dollar value), and the accounts or records
breached are presented in Million.



to the date of first notice, until the date of entry into database. This unique feature allows us to
capture two delay mechanismsﬂ

The reason we choose the method from [Stoner & Economou (2020) is that it provides high
accuracy by jointly modeling the delay mechanism and the total count number. Traditionally, the
task of correcting the delayed reporting has been separated from the task of forecasting but this
ignores the joint uncertainty in the incidence of total count and the presence of delay. For example,
a low number of cyber cases in month ¢ may be resulted from a temporal decreasing trend or a
low reported number in this period, or both. Therefore, it is important to jointly model these two
mechanisms.

Three models are considered in this paper, a generalized linear model (GLM) (Salmon, Schu-
macher, Stark & Hohle|2015), a generalized Dirichlet-multinomial hazard model (GDM hazard) and
a generalized Dirichlet-multinomial survivor model (GDM survivor) (Stoner & Economou, 2020).
In the empirical part, we first compare the three models for their in-sample performance and then
apply the best model for bias correction.

Let y; be the total observable count at time ¢ and after some delay unit (months in our case) a
proportion of ¥, 2 4, has been reported in this period, where d is the number of months delayed.
This means that ZdDzl 2.4 gets close to y; as the total number of months D increases.

The model based on GLM framework starts with a negative-binomial (NB) distribution for y;:

Yyt ~ NB(X\,0);  log(pea) = g(t,d),

where ); is the expected rate of occurrences and 6 allows for overdispersion, the multinomial
probability p; 4, which is the expected proportion of y; that will be reported at delay d, is modeled
via a log-link, and g(t,d) represents a combination of covariate effects. Therefore, the marginal

distribution for z; is also NB:

zt.d ~ NB(pe.a = prart,0);  log(pea) = v+ ag +np +1ba + Bra,

where o4 is a penalized cubic spline to capture nonseasonal variation, 7; is a penalized cyclic cubic
spline to capture within-year temporal effect, 3; 4 is intended to allow for temporal changes of delay
mechanism, and ¢ and 14 are fixed effects.

Different from GLM framework, the models based on GDM are designed to account for hetero-
geneity in the delay mechanism and appropriately separate variability and uncertainty in the delay

mechanism from the model of count number. The GDM hazard model is defined by:

yr ~ NB(A,0);  log(A) = ¢ + a + ny;

Vtd
2|y~ GDM (v, )i log(7=5 =) = Va+ Bra,

where v 4 is the expected proportion of counts which will be reported at delay d out of those which

9SAS OpRisk database only has the date of occurrence and the date of entry, while PRC database contains only
the date of occurrence. Therefore, we choose Advisen data for the main analysis and SAS data for comparison.



are yet-to-be-reported and ¢ controls for dispersion. In this model, the delay mechanism is modeled
through the difference of temporal structure in the proportion of reported cases across delay levels.

The GDM survivor model applies a different way of modeling delay mechanism:

yr ~ NB(M,0);  log(At) =t + oy + ny;
zt | ye ~ GDM (ve, @, ye); probit(Sta = Ya + Br);
vy = St.a— St,dfl’
’ 1—Sia-1
where S; 4 is the expected value of the cumulative proportion of cases at time ¢ for delay level
d. Compared with the hazard model that considers a structure for each delay level, this method
models the delay structure for each time point, which allows for any number of delay levels.

The models above provide flexible ways of modeling delay structures for cyber risk, but how to
connect two delay stages in our cyber risk data remains a problem. Given that the data we have
are at the second stage as defined above, we could back trace the original trend with available data.

In the second stage, assume that for time of first notice ¢, the number of total cases is a; but
is not fully available. Suppose after D months all the cases will be included in the database, but
for now we only have data of D’ months. Therefore, after applying the methods defined above, we

can estimate the number of total cases as

D’ D
ay = Zat,d + Z agd,
1 D'+1
where a; 4 is the number of cases reported in delay time d, while a; 4 is the estimated number of
cases in delay time d.
Additionally, the correction ratio ¢; is defined as the estimate of actual total number divided

by available number at time ¢:

D/
qt = dt/ E Qg -
1

This correction ratio can be further applied to the first stage. When considering the delay structure
between accident date and first notice date, the number of cases reported b; 4 is biased due to the
delay in the second stage. Therefore, we can adjust this bias with the correction ratio: b; d =
bia * qi+q. After the adjustment, we apply the models above to the database we have to account

for first-stage bias, which provides us the corrected results of cyber risk.

B.2. Time dynamics of loss frequency

We study loss frequency and in this context focus on the estimation of change points over the
period since it is of interest to understand whether cyber risk has undergone certain fundamental

changes in the past two decades. There is extensive literature on change points detection methods



(Truong, Oudre & Vayatis 2020)), which can be categorized based on their cost functions, search
methods and constraints. But the literature mostly focuses on the problem under the assumption of
piecewise-constant parameters. However, cyber loss frequency is not likely to follow this assumption
due to the increasing trend.

Therefore, we consider one newly proposed generic approach of detecting an unknown number
of features occurring at unknown locations, narrowest-over-threshold detection (Baranowski et al.
2019)). This method shows low computational complexity, ease of implementation and accuracy in
the detection of the feature locations, while allowing for non-constant time trends.

In this method, consider the model

Y't = ft + o€, = 17 T7

where f; is the signal, o; is the noise’s standard deviation at time ¢, and €, follows standard normal
distribution. We further assume that (f;,0¢) can be divided into ¢ + 1 segments with ¢ unknown
unique change points 0 = 79 < 71 < ... < 7y < Ty41 = T. The structure of (f¢,0¢) is modeled
parametrically by a local real-valued d-dimensional parameter vector ©;, where d is known and
typically small.

In the first step, we randomly draw subsamples such as (Ysi1,...,Ye)", where (s,e) is drawn
uniformly from the set of pairs of indices in {0,...,7 — 1} x {1,..T'}. The generalized likelihood

ratio (GLR) statistic for all potential single change points within the subsample is

SUPQLQQ{Z(Yerla ey YEH el)l(n-‘rla ey }/65 @2)}
supel(Ysi1,..-Ye; O)

Rl = 2[09[ ]’
where [(Ysy1,...Ye; ©) is the likelihood of © given (Y41, ...,Ye). Based on this statistic, we pick
the maximum R, ¢ (Y) = maacbe{ﬁd,me_d}Rl(’s o

In the next step, all R (Y) for m =1,...M is tested against a given threshold and among

Smyem]
the significant results, the one corresponding to the interval (sp,+,en+] with smallest length will
be chosen. This step can be repeated recursively to find all the possible change points. For more

technical details, we refer to Baranowski et al.| (2019)).

B.3. Time dynamics of loss severity

Traditionally, the analysis of loss amount in the time dimension is reduced to the analysis of
univariate time series such as average loss severity. Although this is a simple and efficient way
of understanding the dynamics of loss, we are leaving out too much information in this process.
Therefore, in this paper we adopt the recently developed method in statistics to analyze the change
point in a sequence of distributions.

Dubey & Miiller| (2020) considers a sequence of independent random objects Y; taking values
in a metric space (€2,d) rather than in R as in traditional methods (Niu, Hao & Zhang [2016]).

As in most practical situations, the differences of distributions are mostly in location or in scale.

10



Therefore, this method aims to detect differences in means and variances which are in Fréchet type
and provides a generalization of the notion of location and scale to metric spaces.
The test statistic for the change point can be written as:
b(1—0b) - - -~ C - ~ C o~
2 {WVony = Vo) + Viowg = Viow + Vo — Vo))’ )

T,(b) = 52
where b is the possible value of the change point, & is the asymptotic variance of the empirical
Fréchet variance, V[;j] is the estimated Fréchet variance and lastly V[;ﬂc is the “contaminated”
version of Fréchet variance obtained by plugging in the Fréchet mean from the complementary data
segment.

Based on this test statistic, Dubey & Miiller| (2020)) further provides inference method for the
identification of change point in a sequence of distributions. We refer to their paper for more

technical details.

B.4. Time dynamics of tail risk

Tail risk is an important part of the analysis for cyber risk, especially in the sense that extreme
tail risk, or heavy-tailedness has many unfavorable properties such as inducing nondiversification
trap(Ibragimov, Jaffee & Walden 2009)H The analysis of loss distribution in the previous part
does not pay special attention to the dynamics of tail risk, thus it is worthwhile to study the nature
of cyber tail risk separately.

In models considering a heavy-tailed risk, the variable of interest r, cyber loss in our case, is
usually assumed to have a distribution with power tails, such that P(r > z) ~ x%, C >0, as
x — 400. The parameter ( is the tail index. This index characterizes the heaviness of the tail of
the distribution and the smaller the index, the greater the probability mass in the tail. In addition,
the tail index is linked to the existence of the moments. For example, the variance of r is finite if
and only if { > 2, and the mean is only finite if and only if { > 1.

Estimation of tail risk: we consider two basic non-parametric methods which are widely used
in the literature. The first one is the Hill’s estimator as follows (Hill [1975):

k

() = {3 D In(a(n — j+ 1)) = In((n = 1)},

where x(i) is the ith-order statistic such that x(i) > x(i — 1) for i = 2,...n.
The second method is OLS log-log rank-size regression. We use the revised version proposed

by |Gabaix & Ibragimov (2011) which is consistent in small samples:

log(Rank — 1/2) = a — (log(Size).

10When risk distributions have heavy left tails and insurance providers have limited liability, insurance providers
may choose not to offer insurance for catastrophic risks and not to participate in reinsurance markets, even though
there is a large enough market capacity.

11



The two methods above are applied to the tail of the distribution for the estimation, but a key
issue remains: the selection of threshold for the tail. There are many methods to select the optimal
threshold, we consider the the R package “tea” from |Ossberger| (2020), which includes 12 different
approaches. We conduct the simulation to find the suitable approaches for our purpose (details
in Appendix , and 2 methods (AAMSE and hall) out of 12 perform well and are used for the
estimation of tail index later.

Change point detection: To further analyze the trend or potential change points in extreme
value index, we rely on the recent work of Ibragimov & Miiller| (2016]). The empirical strategy is to
partition the sample into two periods, the period before a possible break point, 7, and the period
after the point, j. Then we divide each period into g groups chronologically, and compute the

Behrens-Fisher statistic:

where & = ¢; ! ?1:1 gy (81)2=(q¢; — 1)1 gi:l(fl-J —&)?, and &,j is the tail estimator.

With the BF statistic, we can compare it with the critical value of the Student-t distribution
with min(q1,q2) — 1 degrees of freedom. This allows us to detect whether there is a change point
for the time series data.

New multiple change point detection method: The current method is applicable for the
detection of single change point, but it is likely that multiple change points exist over the past two
decades, we need to extend the method to a more general setting. The basic idea of multiple change
points detection is similar to|Candelon & Straetmans| (2006): first, we conduct the test to the whole
sample to identify the first change point (the time point with the highest BF statistic which is also
higher than the critical value); second, if there is indeed a change point, we perform the test to the
subsamples separated by the first change point to find other change points; third, if we find the
second change point, we need to recheck the first change point with the new subsample since the
presence of the new change point might distort the results. Lastly, we repeat the procedure until
there is no new change point detected.

After this, we combine the multiple change points detection method with the methods on
optimal threshold selection when estimating tail risk. To illustrate the accuracy of our new method,

we conduct some simulations in Appendix [B.2]

III. Empirical results

A.  Report delay

To understand the problem of report delay, we first briefly compare our three datasets. To

ensure the comparability of different datasets, we restrict the time period to start from 2005. E

"There are some problems affecting the reliability of comparison. First, there is no exact accident date in SAS
data, so certain biases may exist when comparing with other datasets. For the PRC data, because of the compulsory
disclosure of data breach, the difference between the time when the event was made public and accident date should
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Figure 1. Different datasets of cyber risk
Notes: This figure reports the monthly frequency of cyber events in three main databases. The abnormal and periodic

peaks in Advisen data are related to the inaccuracy of accident date. For an event with only known accident year,
the database assigns the first day of the year as its estimate date.

Various sources and reports (Allianz 2021, |Accenture 2021) suggest that cyber risk is increasing

quickly over the years, but as shown in Figure [I] the increasing trend is not as obvious as we
would expect. For example, the data from SAS show a steady trend, while the other two indicate
an increasing trend during the early stage and then a steady trend in recent years. However, the
sudden drop of cases in 2019 for PRC and slightly decreasing trend after 2018 for Advisen indicate
that the problem of report delay may be one of the reasons behind this.

To look into the problem of report delay more deeply, we make use of the date of creation in
Advisen to show how the trend evolves over the years in Figure 2] We plot the evolution of cyber
risk based on four creation dates (every four years from 2009 to 2021) so that only cyber events
before the creation date are included in each graph. This provides a clear comparison of different
points in time and shows that at each point there is a clear decreasing trend which undoubtedly

relates to delayed report.

not be large. Second, another point which may affect the comparison is that cyber events in PRC are mostly about
data breaches while the other two include all kinds of cyber risk.
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Figure 2. Different dates in Advisen

Notes: This figure reports the monthly frequency of cyber events in Advisen, depending on the time when the events
are created in this database.
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In general, the process of collecting data related to cyber risk can be divided into two stages.
The first stage is from the accident date to the date of first notice. This period can be short for
some types of events, such as cyber extortion or malfunction of devices, where the victims would
notice almost immediately. But for other types including data breaches, the firms may take as long
as months or years to find out that their data have been compromised. In general, the mean days
of delay is 182 and the median is 33 days in the Advisen data.

The second stage starts with the date of first notice and ends with the creation date in the
database of concern. The time delay in this stage is mainly related to the efficiency of the database
of concern, in some cases the staff can update the data immediately but more likely there will be
a moderate amount of delay in this stage, constrained by the investment of this database. In the
Advisen data, the delay in this stage is much more severe than the first stage, with mean and
median delayed days of 836 and 538. The major reason for this delay is that although the Advisen
database begins to collect data in 2007, the majority of their events are created in recent years,
especially during 2016-2018.

A.1. Out-of-sample bias correction

We first conduct in-sample analysis (see details in Appendix to compare the performance of
three methods mentioned in the methodology part, and it is shown that the GDM hazard method
has the best performance. Therefore, we apply the two-stage method with GDM hazard to the
whole sample period. As mentioned above, the present date is the 163rd month, which is April
2021. The result is shown in Figure [3] Consistent with our expectation, for both datasets the
trend of cyber risk is increasing steadily over the years rather than decreasing in the recent period.
Also, since the results in Figure [3] are based on the median estimates of GDM hazard model in
the first stage, it is important to see whether choosing different sets of estimates will significantly
change the results. Figure [D.I] provides the forecast comparison when using the lowest and highest
threshold of the confidence interval in the first stage. This shows that an increasing trend of cyber
risk is robust even when considering the model bias. We will use the corrected sequence for the
frequency analysis in the next part.

Since cyber risk is heterogeneous and different risk types and industries have quite diverse
properties, we further explore the data series for these categories with our bias correction method.
Figure and Figure plot the results for six different types and ten different industries of
cyber riskE and we can find that the corrected time trends are significantly different from the
original ones. Although in different magnitude, the increasing trend for most categories of cyber
risk is evident. Further analysis of time pattern and structural changes of cyber risk is discussed

in section [ILB11

12We do not include all types and industries due to the limited data for small categories.
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Figure 3. Out-of-sample bias correction

Notes: This figure shows the forecast results with 95% confidence interval after adjusting the report delay problem.
The adjusted data are the original data after smoothing the abnormal peaks due to unknown dates.

A.2. Bias correction for SAS data

The main analysis on report delay problem is based on Advisen data since it has detailed
information on the time dimension. To validate the results from this database, we further apply
the method above to another dataset-SAS. However, since SAS data only have information on the
yearly level about the date of occurrence, we use this data for robustness check but not further
analysis. As shown in Figure {4 the whole sample on operational risk (left graph) exhibits a
decreasing trend in recent years, even after controlling the problem of report delay. In comparison,
there is a slightly increasing trend for cyber events in the data after the bias correction process
(right graph). Therefore, this suggests the increasing trend we observe in Advisen data is not
unique and data specific, especially that the SAS data only include large events with loss amount
higher than $100,000.

B.  Time dynamics of loss frequency
B.1. Change point detection

To better understand the dynamics of loss frequency, we apply the narrowest-over-threshold
method to the bias-adjusted time series data of cyber risk.

We first focus on the aggregate data of cyber risk. The top-left graph of Figure [5| shows the
result with the bias-corrected data from the previous section. We identify 6 change points at the
following dates: November 2011, October 2015, February 2017, September 2018, April 2020 and
November 2020. The first two change points lead to faster rate of growth while the third change
point at February 2017 marks a change into the declining trend in the number of cyber events in
the following period. With the fourth change point, the increasing trend is back and the rate of
increase becomes higher and higher.

Given the fact that we are working with time series data, serial dependence can be a problem
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Figure 4. Bias correction for SAS data

Notes: This figure reports the results of time dynamics of cyber risk frequency after correcting the report delay
problem for SAS data.

of concern. Therefore, following the advice of Baranowski et al. (2019), we add additional IID
Gaussian noise to the original data with mean 0. The standard deviation is chosen to be the
standard deviation of the residuals after fitting the original data. The top-right graph of Figure
plots the result after adjusting serial dependence and we can find the overall pattern is consistent
although fewer changes points are identified.

In addition, we present the results after transforming the original data into log scale. The
results with and without dependence adjustment show similar pattern, which is the linear trend
of cyber risk is increasing except for a small period of drop between 2017 and 2020. Overall, we
find evidence of changing regimes for cyber risk frequency over the years with a general increasing
pattern that is consistent with different methods.

To better understand the dynamics of loss frequency, we analyze the time patterns of different
types and industries. The results are presented with the method after adjusting serial dependence.
Figure [D.4] shows the change points detected for 6 risk types. The type “Malicious breach” and
“Unintentional disclosure” share similar patterns with a steady period before 2019 and a rapidly
increasing period after 2019. This is intuitive in the sense that these two types are newly emerging
risks in recent years. The type “Physically lost or stolen”, “Phishing, Spoofing, Social Engineering”
and “Network/website disruption” all have a relatively stable pattern with slightly upward trend.
The only type that exhibits a decreasing trend is “Unauthorized contact or disclosure”. More
specifically, this risk increases significantly and peaks around 2018, followed by a volatile decreasing
trend. This is not surprising since this risk is strongly associated with regulation and privacy-related
penalty. In more recent years, companies can better comply with the regulation and naturally the
number of events drops. Overall, we can find that the increasing trend of aggregate cyber risk is
largely attributed to the surge of malicious breaches and unintentional disclosure.

For the time pattern of different industries, the increasing trend is clear for most of the in-

dustries, as shown in Figure The only clear exception is the finance and insurance industry,

17



Monthly number of cyber events Monthly number of cyber events (serial dependence adjusted)

3000~ 3000~

& 2000- .". v & 2000-
€ €
2 .o N 2
oo
S L]
1000- A " &0 s 1000~
.
o
W'
0- o 0-
2010 2015 2020
Date
Monthly number of cyber events (log) Monthly number of cyber events (log and serial dependence adjusted)

2010 2015 2020 2010 2015 2020
Date Date

Figure 5. Change points for loss frequency

Notes: This figure reports the results of change point detection method for different kinds of data, based on the
forecast estimation when correcting report delay problem.

which exhibits a significant drop in cyber loss frequency after 2017. Even though the exact reason
is difficult to identify, a probable reason is that the companies in this industry have a strong moti-
vation to invest in cybersecurity as their data are highly valuable and sensitive, thus reducing the

probability of successful cyberattacks and other risks.

B.2. Cross comparison of multiple sources

There are also many other papers looking at the time dynamics of cyber risk, although in
different perspectives with different data sources. |Jamilov et al. (2021)) collect a complete set of
transcripts from quarterly earnings conference calls of public firms from 85 countries over 2002-2020
period, and construct a cyber risk exposure measure for each quarter, as shown in the upper right
graph in Figure [0l The time pattern of their results is very much similar to our bias-corrected
pattern in the upper left graph. |Jamilov et al.| (2021)) also highlights some notable events related
to cyber risk, which in general fit into the change points we detect (although not precisely). In
addition, Florakis, Louca, Michaely & Weber| (2022) builds a cyber risk exposure measure based on

the "Risk Factor” section of the SEC filings and presents the yearly average of this measure from
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Notes: This figure compares the time trend of cyber risk frequency from three different sources. The upper left
graph is from this paper; the upper right graph is from [Jamilov et al.| (2021)), based on the cyber risk measure from
quarterly earnings conference calls of public firms from 85 countries over 2002-2020 period; the bottom graph shows
the annual average cyber risk measure based on the ”Risk Factor” section of the SEC from 2011 to 2018 (Florakis
et al.[2022).

2011 to 2018 (lower left graph). Although they have less granular results, the increasing pattern is

basically the same as what we show.

C.  Time dynamics of loss severity

For the analysis of loss severity, we focus on four kinds of data. The first one is the non-zero
financial loss distribution of cyber events from Advisen, the second one is the non-zero distribution
of number of accounts affected from Advisen, the third one is the non-zero financial loss distribution
from SAS data, and the last one is the distribution of number of records breached in PRC data.
As mentioned above, the difference for the financial loss data in Advisen and SAS is that SAS data
only includes losses more than $100,000, therefore they are not directly comparable without further
adjustment. In addition, there are also key differences between Advisen and PRC data for records
and accounts affected such that Advisen data do not only focus on data breach cases and the term
“accounts affected” is more general, including also the cases when the client account (e.g. bank

account) is misused or has errors, etc. Therefore, there are more observations for accounts affected
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in Advisen than records breached in PRC.

We plot the log-transformed version of the distributions in Figure[7]since all the distributions are
heavily right-skewed. In Figure |7} we can find there are potential change-points in each sequence.
Also, the distribution of accounts affected in Advisen is different from others in the sense that there
are a large amount of cases that only one account is affected. Therefore, two peaks can be seen in
the graph.

Figure [§] provides further results on the dynamics of loss distributions using the change point
detection method from [Dubey & Miiller| (2020). The left panel shows the evolution of test functions
and the highest value indicates the most likely change point location. Using the bootstrap critical
values, we can find that the change points for the first three sequences are statistically significant
while the last one is not. The identified change points for the first three sequences all take place
in the early 21st century, ranging from 2003 to 2007. The right panel compares the distributions
before and after the change point. A common feature is that the distribution is shifting to the
left, which means lower loss severity in the recent period. There are two possible reasons for this
change. First, with the development of I'T and related technology, all firms, not only the large ones,
are exposed to cyber risk. Therefore, the losses come from both the large and small firms and thus
shift the overall loss profile to the left. Second, in the event of cyber loss, firms are reluctant to
make such information public and small losses are easier to hide. But in recent years the regulation
of data privacy becomes stricter and thus affected firms are less likely to hide the information.

Therefore, we can find the loss severity becomes lower recently.

D. Time dynamics of tail risk
D.1. Basics of cyber tail risk

We first provide a detailed comparison of tail index in Table [Tl We can find that the results
when using dAMSE and hall for optimal threshold selection or Hill’s and log-log rank-size estimator
are not significantly different. For the estimation of tail risk, we can find the results of four data
sequences are mostly below the threshold of 1, indicating extremely heavy-tailed nature of cyber
loss distribution without finite mean and variance. Also, the record/account data have much higher
severe tail risk compared with loss amount data. To have an idea, Maillart & Sornette (2010) and
Wheatley et al.| (2016) provide tail risk estimation of the amount of breached items for cyber risk,
which are 0.7 and 0.37. Therefore, the results we have are consistent with the literature.

For the dynamics of tail risk, we plot the trend with recursive and rolling window methods. To
avoid small sample bias, we use a 2-year fixed window for the rolling window method. Therefore,
the time period starts from 2003 (the estimation of PRC data starts from 2007). Figure |§| shows
the comparison of fours kinds of data with rolling window estimationﬁ The indices for all types of
cyber data are consistently below the threshold of 1, although the results for records and accounts

are more heavy-tailed than the results of monetary loss. We can also see that there is an increasing

13We present the results using JAMSE as the method of threshold selection, as both methods yield similar results
in this case.
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trend for monetary loss data while a decreasing trend for non-monetary loss data. In addition,
Figure to provide the detailed results for recursive and rolling windows with both Hill and
log-log rank-size estimation. We can find that the recursive measure provides stable results for tail

risk, while rolling window method exhibits more volatility.
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D.2. Structural breaks in tail risk

Figure [10] shows the results of change points using the multiple change point detection method
we propose in the previous sectionE To show the general trend clearly, we plot the change points
along with the fixed rolling window estimation of tail risk in the same graph. The results based
on two optimal threshold selection methods are similar, but for different data they differ in the
number of change points.

For Advisen loss data, one common change point is in 2017, while the method based on hall
reports two additional change points before and after this point (2014 and 2018). For SAS loss
data, the change points are reported in the range of 2010 to 2015. For Advisen account data,
one common change point is in 2004, while additional change points are reported by the method
based on hall, around 2017-2018. Lastly, for the PRC data, the common change points are around
2007-2008 and 2014, while the method based on dAMSE reports an additional one in 2012.

Overall, the common pattern observed from the data about financial loss is that there is a
change point after the year of 2015, and the trend is going upward which indicates less heavy-
tailedness in the recent period. The pattern for data about non-financial loss is that there are two
change points, one at the beginning of this century, from 2004 to 2008, and the other also around
the period of 2015. The decreasing trend suggests higher tail risk for this kind of loss.

The general pattern we find is that the tail risk for financial loss is becoming less severe while
the case for accounts and records affected is getting more heavy-tailed. The reason for the latter is
very likely related to the rapidly increasing Internet technology with greater capacity to store data
and higher risk of data breach. But the reason for the financial loss might not be clear, either this
shows that indeed financial loss of cyber risk is less heavy-tailed recently, which is a good sign, or

may relate to certain data issues such as selection bias.

IV. Implications for cyber risk management

One distinct feature of cyber risk is its dynamic nature, and this imposes a serious challenge for
the management of cyber risk. In particular, this feature is especially troublesome for insurers as, in
the extreme, the accumulation of data might be useless and the pricing of cyber insurance contracts
unreliable. This paper focuses on the time dimension of cyber risk in a 20-year horizon, and seeks to
find the general pattern underlying this risk. After dealing with the report delay problem, we show
that the frequency of cyber incidents is increasing rapidly, undergoing several structural changes in
the past two decades. However, the cyber loss distribution is not that dynamic as the frequency, as
the major change happened at the beginning of this century. The results indicate that the threat of
cyber risk comes more from the fact that it becomes more frequent rather than it causes more losses
per incident. Therefore, it is important to identify the drivers of high risk frequency and bend the

rapidly increasing curve to better manage cyber risk in general. As for insurers, one implication is

YFor the detection of change point, we select all the months two years after the start date of the sample and two
years before the end date so that we can have enough sample size for each subsample over time.
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Figure 9. Rolling window estimation for different data

Notes: This figure presents the rolling window with 2-year fixed period estimation of tail risk for four kinds of cyber
data.
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to develop more advanced models in predicting the frequency of cyber risk so that they have more
reliable pricing strategies.

In addition, we find evidence for the extreme heavy-tailedness of cyber risk. As mentioned
earlier, Ibragimov et al.|(2009)) has shown this feature might induce nondiversification trap, resulting
in no market for cyber risk in the special situation. In practice, the insurance market exists and has
been increasing rapidly, but insurers mostly offer contracts with coverages lower than $1 million
and avoid providing high coverage which might severely undermine the financial stability of the
company in extreme scenarios. Although this strategy can be useful for protecting the insurers
from extreme tail risk arising from cyber insurance line, this level of coverage is not enough to
protect businesses with increasingly high exposure to cyber incidents, and thus limits the value of
insurance in the management of cyber risk in the whole society. Therefore, one possibility is the
government intervention by providing reinsurance for the insurers and thus expanding the scope of
the market. In this way, the insurers have more incentive to participate in this market and provide
more comprehensive coverage to the businesses.

Lastly, reliable data are the key to understanding cyber risk, while we try to manage the
problem of report delay that are present in all data sources, there are still other kinds of data bias.
For instance, the presence of structural bias might severely affect the reliability of the empirical
analysis. A typical example of structural bias is that there are more information about cyber events
from large companies than small ones. This might lead to overestimation as large companies are
more likely to experience cyber incidents and suffer more losses. Hence, it is crucial to increase
the data quality of cyber events, and stricter regulation of firms is necessary. Currently, there
are certain regulations in the U.S. and EU. In the U.S., the breach notification requirements have
been implemented in some states in the first decade of this century, but there are large variations
across states with regard to the implementation time and contentﬁ This regulation is specific
to entities possessing personally identifiable information. As for publicly traded firms, the SEC
(Securities and Exchange Commission) published the cyber risk disclosure guidance in 2011 m and
further extended the guidance in 201@ by specifying the format of disclosure. In the EU, the
General Data Protection Regulation (GDPR)|E| became effective in 2018, which targets at all firms
that provide services to residents in the EU and requires breach notifications within 72 hours after
discovery. In general, more and more regulations are in place, but there is still space for expanding
the scope and strictness of the regulation. In the future, a public platform (ideally organized by the
government) that collects all information related to cyber risk might be valuable as it can provide

a more comprehensive overview as well as more granular level information for detailed analysis.

Shttps://www.ncsl.org/research /telecommunications-and-information-technology /security-breach-notification-
laws.aspx

Y https://www.sec.gov/divisions/corpfin/guidance/cfguidance-topic2.htm

"https://www.sec.gov/rules/interp/2018/33-10459.pdf

Bhttps://gdpr.eu/
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V. Conclusion

With the rise of cyber risk in recent years, it becomes more and more important to understand
and manage cyber risk for the whole society, especially during the COVID-19 period. To better
understand the dynamic nature of cyber risk, this papers exploits three main databases to study
different dimensions of cyber risk. We first deal with the problem of report delay that is inherent
to the database. Then we move on to analyze the frequency and severity of cyber risk using state-
of-art statistical methods for the detection of structural changes. We show the increasing trend
of cyber risk over the years is apparent and the dynamics of cyber risk is evident with several
structural changes in the last decade. Moreover, we focus on the dynamics of tail risk and find that
the heavy-tailedness of cyber risk is persistent over time. Based on these results, we discuss the

possible implications to cyber risk management.
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Appendices

Appendixz A.  Literature review

We summarize the works studying the empirical properties of cyber risk in the following table.
Although there have been works with empirical data before 2010, the data are not actual cyber
events but cyberattack attempts without information on the realization of such attempts (e.g.,
Bohme & Kataria|[2006). Therefore, Maillart & Sornette| (2010) is the earliest empirical work on

cyber risk analysis with actual cyber events data. In addition, we do not include the empirical work

on estimating the financial impact of cyber events based on event study approaches (e.g.,
since they do not focus on the statistical properties of cyber risk per se.

The early stage of the empirical work focuses on the general statistical properties of cyber risk,
including correlation structure (Bohme & Kataria 2006, Wang & Kim!2009¢; and Wang & Kim|
and time trends (Maillart & Sornette|2010; Wheatley et al.|2016; [Edwards et al.|2016}; and
Romanosky|2016). Starting from [Eling & Loperfido| (2017)), more and more studies begin to study

cyber risk frequency and severity by fitting existing statistical models (Eling & Wirfs 2019; and
Woods, Moore & Simpson|[2021) or proposing new frameworks to model cyber risk (Bessy-Roland

et al|[2021}; [Farkas et al|[2021} [Sun, Xu & Zhao|[2021; [Fang, Xu, Xu & Hu/[2021} and [Zhang Wu,
Luo, Fang, Xu & Zhao 2021)). These works have exploited the available database to show the good

performance of their models, and the basic consensus is that the modeling of severity should be
based on heavy-tailed (at least highly right—skeweﬂ distributions, although the specific choice of

the model is very diverse.

Still, the study on time dynamics of cyber risk has been scare (such as|[Jung|2021; and Wheatley|
2021)) and results are inconsistent, therefore there is still large uncertainty in this area, which

motivates us to consider this topic using different datasets and methodologies.

YFor example, the results of Woods et al.| (2021) show the gamma distribution has better performance, which is
not heavy-tailed distribution but exhibits high skewness.
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Appendiz B.  Multiple change point detection for tail risk
Appendix B.1. Comparison of optimal threshold selection methods

As the first step of detecting change points for tail risk, the reliable estimation of tail risk is
crucial. One key issue about tail risk estimation is the choice of threshold. Therefore, we consider
the R package “tea” from |Ossberger| (2020)), which contains 12 different ways of selecting optimal
threshold for the estimation of tail risk.

To find out which ones to use in our case, we have done the simulation to compare these methods
and two of them have better performance than others. The basic idea of the simulation is to first
generate a heavy-tailed distribution similar to the real data of cyber risk. We use two common
distributions, generalized Pareto distribution (GDP) and Fréchet distribution. As the data show
extreme heavy-tailedness, we use 0.5, 1, and 1.5 as tail index, and run 1000 simulations for each
case. In addition, we face the problem of small samples when using the student-t test for the start
and end period, the sample size (N) of each simulation is set to be 100 and 500. We report the
mean bias between estimated and actual index and its variance.

Table reports the results when the sample size equals 100, and Table reports the results
when N = 500. After comparison, two methods perform better than others. The first one is from
Hall (1990) (denoted as hall), which uses bootstrap procedure to simulate the AMSE (average
mean squared error) criterion of the Hill estimator. The unknown theoretical parameter of the
inverse tail index gamma is replaced by a consistent estimation using a tuning parameter for the
Hill estimator. Minimizing this statistic gives a consistent estimator of the sample fraction k/n
with k£ the optimal number of upper order statistics. The other method is from |Caeiro & Gomes
(2015)). It is based on the concept of minimizing the AMSE criterion with respect to k (denoted as
dAMSE). It is noteworthy that the method “PS” has the lowest variance in most of the cases, but
the mean bias is much higher than the two methods we select, which is why we do not consider
this method.

39



"PAsSn oI SIOTPUI [IB) 99IY) pPuR
10709L ¢ SUOTINQLIISIP OM ], "UOT}R[NUIIS YOBD IO st oz1s ofduues 9 01109198 proysaay) rewrndo I0J spoyjour o uostredwoo o1 sjpr0dor 9[qe) o
9L ddD [NALISIp oM T, renuis g } 00T St 97Is 9] UL 139998 PIOYSaI} [ewl } spoy ¢l ! q 9B} oYL

J990N
LgEY6T L0600  ©900°0  LS0L0  GF8E'T  SET00  ¥RI60  8L0C0 GELEO  T1950°0 r&s]eiate 86000  @ouUBLIBA
74860 ¥E61°0  1€80°0- G98C'0  ©6ST'0  LE00'0-  ¥EFI'0  GEIT'0  GLLT0 95700 GI8%'0 £eC0’0-  SeIq uedy g0
£29¢°8 8¥¢I'0  TVIO0  ¥egl'0  SI68¢ 01900  09S€F 0850 6IEF0  VE6L'T VEVTET gIe0’0  eoueLIRA
1766°0 VL1C0  GS61°0- 8800  66¥¢0  €S¥0°0  00€¥0  WGIT'0 L9920  TLIV'O 8L6T'T LL€0°0-  seiq ueay 1
VrL9°G G6TV'0  T680°0  TLL00  ASP9'E  LZ60°0  088%'€  T1C60'T CICI'T ¥8¢6'00€  CIS9'61¢  ¥QLO'0  @OUBLIRA
0%2T'T G¥0C’'0  €TEC0-  68YT°0-  996C°0  ©6S0°0-  9PTE0  T6ST0  LLLED  6IVCE LGT6'C 0T60°0-  serq uedy g1
19Y291q
18618 VLS00 L8000  1698'C  GPIO0  0GI00  6ST0°0  TL98°0  GLVE0 L2900 €69T'T g600°0  PoueLIEA
€L09°0 6L€1°0  6.G0°0- 8F0€0 68000  €S00°0  GOTO0  8L.0°0 92gI'0  S950°0 0L38°0 GF00°0-  SeIq uedy g0
€151°99¢ 67960 96800 ¥9L0°0 €988°0¥¢  08G0°0  I¥8LOPG S609C FITL0  OVGl'T TVeeare  8FP0'0  PouRLIRA
€LET'E L6830 T16€C°0- 96V0°0-  0€F0'C  T16L0°0-  LGLT'C  TLEF'O0 0TTE0  IFFPO 08¥6°C 290T°0-  selq uesy I
10L6'71Cc  T0TF'0  €690°0  L0€T'0  8G¥S99  TI¥80°0  €506'99 ©860°6 LLFPR'0  9S¥E'8¢  80F8'GY0G  0LL0°0  @dueLrep
LVL9G GGP0°0  699¢°0-  L6LE'0-  6ILL0  G88C0-  &FPR0  LPEE0 CTOT'0 10080 L912°S eyee0-  Seiq uedy Q1
dao
I JsIput Sd MH dury ey souIog HD oo A uossperuep  JSINVP snfeA Xopurref,

(00T=N) spoyzewr uo1oaes proysalyy rewrdo jo uostreduwo)) 1°g S[qeL,

40



(9912917 ‘q L)) SUOTINGLIISIP OM ], "UOTJRINTIIS YOS I0J ()OG ST

‘pasn aIe seOIpUI [B] 991} pu®
oz1s o[duues oy ], 'UOI309[as ploysaly) [euwydo 10§ spoygeut g jo uostreduwos o) sjrodar a[qe) oy J,

190N
¥.69°9 9.90°0  §S00°0 T¥PS6'T  G899°€  €ETO0  9699°€ 61¢¢°0  €84T°0 8G8L'T 6504°L 001T0°0 QoueLIR A
€€94°0 9Lc1°'0  6880°0- 7¥0L0  88YI'0  €800°0- 86VI'0 1€80°0 60600 c0€T°0 8IL7°0 €49¢0°0-  selq ues|y g0
69¢€’L G88T'0  ¥SI0°0 L2910  CvLT'9  LTIE00  880T°0 €290°0  €992°0 8669°C 698L°9 0G€0°0 ooueLIR
L6VC'T €8L8°0  LEST'0- 8¥0T'0  €I67'0  68¢0°0- G2c0'0 L1200~ €¢Tl0 L709°0 8¥16°0 8G¢c0'0-  selq Ues|y !
1268°L¥T  0LTE€0  ¥990°0  TI8TT'8 086004 6¥C¢T'0  T68G°0L  9TL8°0  CI9I8'0 8GEECCOT  0990°6LL 8960°0 ooueLIe
(444! 6¥8T°0  €LEC0- L6000  #OPE0  TLV0'O-  P¥ILED ITIT'0 6010 L00T°¢ ¥09¢°¢C €4680°0-  selq Ues|y g1
yoyoa. g
€89L°Ly  €610°0  TTI000  8¢L0°0 91000  9200°0 61000  ¥ELG'LVYT 04200 0010°0 €8240 L100°0 oouRLIRA
SV¥ee GLL0°0  ¢gS0'0- 0€90°0  T9TO°0- GLCO'O- 99T0°0- 9¢¢6'c  09T0°0 9020°0 €98T°0 ¢€C0'0-  selq umaly g0
GELT'L ¥6€0°0  9010°0  €Lc0°0  I8TO'0  Ggc0'0  ST1C00 €6€L°0  9¥eT’'0 98691499 6L1¢€°L Ge10°0 QoueLIR A
96290 99¥0°'0  T00Z'0- €0€0°0- 0990°0- ¥0O¥V0'0- 01S0°0- €60T°0  60%0°0 0691 0¥€€0 ¢950°0-  selq ueay T
6GL€°91 ¥870°0  89¢0°'0  80€0'0  TTIgS'T  0S70°0  600S'T 90IT'¢c  §6L2°0 76€8°0 69cL°€ET 0g€0°0 ooueLIe A
9.0¢'1 8940°0-  LgE¥'0-  8¥¢c’0- 99000  9€91°0-  €120°0 L8G¢°0  0800°0 8LLT°0 a¥89°0 €I6T°0-  selq ues|y g1
ddO
Id jstputta Sd MH duryg ey souo3 HD okd Ma uosspruep  HSINVP onTeA Xopurler,

(00G=N) spoyzeuwr uo1oaes proysalyy rewrdo jo uostreduwo)) g g S[qeL

41



Appendix B.2. Development of new method and simulation results

To show the power of our new method on multiple change point detection, we first conduct a
simple simulation, where we generate a time series data (2005-2019) where the tail index changes
in different time periods. We consider four simulation scenarios. First, tail index increases from
0.5 to 1 at 2010-06-23, and increases from 1 to 1.5 at 2013-03-19. Second, tail index increases from
1 to 1.5 at 2007-09-27, and then decreases to 0.5 at 2015-12-14. Third, tail index decreases from
1.5 to 1 at 2009-02-08, and decreases to 0.5 at 2011-11-05. Lastly, we consider three change points,
the tail index first drops from 1.5 to 0.5 at 2006-05-15, and then increases to 1 at 2009-02-08, and
it increases further to 1.5 at 2015-12-14.

We run the simulation for 100 times for each scenario, with “dAMSE” and “hall” as the optimal
threshold selection method, respectively. We count the frequency of dates that are detected as
change points (5% significance level), and plot them by time. The results are shown in Figure
The red lines inside are the actual change points. In general, the new method performs well as the

actual change point dates are much more frequent compared to other dates.
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Figure B.1. Simulation results
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This figure presents the frequency of detected change point dates, while the red 1
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Appendiz C. Report delay: In-sample analysis

As shown in Figure [2 the data of Advisen contain multiple abnormal peaks due to inaccurate
information. Therefore, to understand the true trend of cyber risk, it is necessary to deal with such
abnormal data points. Traditionally, the literature tackle this issue by estimating the overall trend
and replacing the abnormal points with estimated results (Wang, Gu, Li, Yu, Kim, Wang, Gao
& Wang 2021). However, for our data, the problem is more related to the misallocation of cyber
cases, which means that we cannot just replace the high number with a lower and smoother one.
To repair this anomaly, we assume the date of cyber events without accurate time follows normal
distribution and then replace the original date with a more accurate one. Based on this method,
we can smooth the time trend of cyber risk in our dataset. In the following analysis, we will present
results with both the original and adjusted data.

For the modeling of delay structure, we have three models available: GLM, GDM hazard and
GDM survivor. Therefore, it is useful to first test whether these models perform well for in-sample
forecast. Since Advisen began to collect data on cyber risk from 2007, we need to exclude all cases
occurred before 2007 to avoid inherent bias in the database. Therefore, we have 163 months from
October 2007 to April 2021, and naturally the longest possible delay period for training is 163
months. But in this case, we would have no data for in-sample forecast, hence it is necessary to
select a period when we assume all cyber cases are counted.

As an example, we compare the cumulative proportion of cases reported for different maximum
delay periods in Figure (the delay between accident date and first notice date). Although there
is an increasing trend in each graph due to more missing values in recent time, we can still find
the differences across different maximum delay periods. There is a trade-off between sample size
and accuracy for the selection of maximum delay period. For our case, we choose the period of
60 months since it includes at least 90% of all observable cases and also provides a sample of 104
months for in-sample analysis.

Given the maximum delay period of 60 months and available sample of 104 months, we choose
the 92nd month (so that we can forecast the following one year) as the hypothetical present time,
which means we only have observations up to this date. Then we censor the data accordingly, apply
the models to this incomplete sample and compare their results with actual number. Figure
shows the results of median estimated number for original and adjusted data, with 95% posterior
predictive interval. Among three models, GDM hazard has the most accurate confidence interval
while GLM performs worst. Figure provides the sample estimates of Cov|z 4, z; 4] by density
plots of the logarithm of the mean squared error between replicated and observed covariances. This
further confirms that GDM hazard is the least biased and GDM survivor comes second for both

datasets. Therefore, for the out-of-sample analysis, we will focus on the GDM hazard framework.
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Figure C.1. Cumulative proportion reported

Notes: This figure plots the cumulative report percentage with different delay periods of 12 to 72 months. For each
graph, every dot represents the percentage of cases reported in the delayed period out of the whole cases in the data
for a specific month of accident. Therefore, the increasing trend within each graph indicates the issue of report delay
for recent periods. But the pattern across graphs shows how a longer period increases the percentage of reported

cases.
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Figure C.2. In-sample cyber forecast comparison

Notes: This figure presents the forecast results of three methods: GDM Hazard, GDM Survivor, and GLM. The
adjusted data are the original data after smoothing the abnormal peaks due to unknown dates.
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Figure C.3. Covariance of Z

Notes: This figure compares the sample estimates of Cov[z.4,2; 4] from three methods by density plots of the
logarithm of the mean squared error between replicated and observed covariances.
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Figure D.1. Confidence interval for bias correction

Appendiz D. Additional Figures

This appendix reports additional results and analyses.

o Figure presents the results of bias correction when we use different estimation from the
first stage. As our method is built on two stages, it is clear that the results from the first stage
may affect the final results substantially. Therefore, this figure shows the results when we
use the lower and higher bound of the first stage estimation, and we can find the increasing
trend is robust, except for the difference of speed.

e Figure and report the time pattern of different types of cyber risk and different
industries. Figure [D.4] and present the results when using the change point detection
method from Baranowski et al.| (2019).

e Figure to show the estimation of tail risk by time using recursive and rolling window
(fixed two-year window) with both Hill and log-log rank-size methods.
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Figure D.2. Bias correction by risk type
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Figure D.3. Bias correction by industry
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Figure D.4. Change points for loss frequency by risk type
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Figure D.6. Recursive window and rolling window-Advisen (loss amount)
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Figure D.7. Recursive window and rolling window-Advisen (accounts affected)
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Figure D.8. Recursive window and rolling window-SAS (loss amount)
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