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Abstract

A probability threshold determines whether the demand for safety is normal or inferior

for a fixed loss severity (Sweeney and Beard, 1992). The size of this threshold is unknown.

We show that it is 0.5 for quadratic utility, less than 0.5 for standard utility, and compute

it explicitly for iso-elastic and linex utility. Unless the loss exposure puts a large share

of final wealth at risk and risk aversion is high, the demand for safety is inferior, which

is puzzling. We then characterize when an increase in loss severity raises the demand for

safety. Combining both results, we show that safety is always a normal good for losses

that are sufficiently income-sensitive. From a practical standpoint, the levels of income

sensitivity needed to ensure the normality of safety are low.
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The demand for safety: Normal or inferior?

“Prepare and prevent, don’t repair and repent.”

Ezra Taft Benson

1 Introduction

Safety oftentimes refers to the control of recognized hazards with the goal of achieving an

acceptable level of risk. Questions of safety percolate many areas of everyday life. In the US,

the Food and Drug Administration is responsible for food safety and the safety of drugs and

medical devices, the National Highway Traffic Safety Administration is concerned with road

safety, and the Occupational Safety and Health Administration regulates workplace safety.

Each time we eat something, we go somewhere, or we work, the safety of the activity has

been considered at some point in time. Engineers care about the safety of the systems they

design, members of an industry form committees to propose safety standards, and homeland

security engages in terrorism prevention for the safety of all. To the extent that more and

more activities of our lives involve digital spaces, issues of data and cybersecurity are gaining

importance as well. In fact, it turns out to be difficult to come up with activities, products

or services that do not involve at least some consideration of safety.

Unsurprisingly, issues of safety have also received attention from economists. Peltzman

(1975) studies automobile safety regulation and documents the importance of offsetting be-

havior, Viscusi and Aldy (2003) provide a global survey of value of statistical life estimates, a

measure that is used in road safety, Antle (2001) review the economic analysis of food safety,

and Lakdawalla and Zanjani (2005) provide an economic analysis of terrorism prevention and

the role of government intervention in the terrorism insurance market. The simplest model

of safety is Ehrlich and Becker’s (1972) framework of self-protection or prevention, a costly

investment to reduce the probability of an unfavorable outcome, for example, an accident.

Despite its simplicity, it has been notoriously difficult to derive clear predictions about

the demand for safety from Ehrlich and Becker’s model. In fact, some of the most basic

economic properties of the demand for safety remain poorly understood to date. We tackle

one such question in this paper. We analyze under what conditions safety is a normal good.

Neoclassical consumer theory distinguishes between normal and inferior goods, depending on

whether the demand for them is upward- or downward-sloping in income. It is hard to believe

that there is no satisfactory answer to the question whether safety is a normal good more

than 50 years after Ehrlich and Becker’s pioneering work. Intuitively, one might expect that

the demand for safety increases in the decision-maker’s income. While a rise in income does

indeed lower the marginal cost of safety, it also introduces a conflicting negative effect on its

marginal benefit. An increase in income lowers the utility gain from avoiding the loss state

because the additional income provides an extra buffer against the loss. This creates the

possibility for safety to be inferior and calls for further analysis.
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The demand for safety: Normal or inferior?

In the insurance literature, a simple criterion determines whether the demand for insurance

is normal or inferior. In the presence of a positive premium loading and when loss severity

is fixed, insurance is a normal good under increasing absolute risk aversion (IARA) and an

inferior good under decreasing absolute risk aversion (DARA). Mossin (1968) shows this result

for proportional coinsurance and Schlesinger (1981) for straight deductible contracts.1 Lee

(2005, 2010b) obtains similar results for self-insurance activities. Self-protection behaves quite

differently, which is typical in the literature. For example, while increased risk aversion in the

sense of Pratt (1964) raises the demand for market insurance and self-insurance, it may lower

the demand for investments in self-protection, see Dionne and Eeckhoudt (1985).2

Income effects are no exception. DARA and IARA are neither necessary nor sufficient

to ensure that safety is a normal good. We are aware of only one paper that has looked at

income effects on self-protection before: Sweeney and Beard (1992). They state a probability-

threshold result and find that safety is a normal good under DARA if the loss probability is

below a threshold value. They provide no results about the size of this threshold, which makes

it impossible to make testable predictions. In fact, they even say explicitly that the threshold

could be anywhere in the unit interval. A snarky economist might remark that probability-

threshold results are just a complicated way of saying “it depends,” without specifying what

it depends on unless one is able to provide a sense of magnitude of the threshold.

In this paper, we take a fresh look at the question whether safety is a normal good. We

find that Sweeney and Beard’s probability threshold is 0.5 for quadratic utility, less than

0.5 for standard utility (Kimball, 1993), and calculate it explicitly for iso-elastic and linex

utility. Unless preventable losses put a large share of final wealth at risk and risk aversion is

high, safety is an inferior good, which seems counterintuitive. In the real world, one would

expect that, everything else equal, high-income households invest more in safety than low-

income households in order to protect their property and shield themselves against liability.

To resolve this puzzle, we also consider how an increase in loss severity affects the demand

for safety. The effect depends on a (different) probability threshold. Unless preventable losses

put a large share of final wealth at risk and decision-makers are very sensitive to risk, the

demand for safety is increasing in loss severity. Our results for iso-elastic and linex utility

give practical benchmark values for empirical studies on the issue.

In a third step, we combine the two sets of results and consider safety investments against

loss exposures whose severity is increasing in income. For example, high-income households

may purchase more valuable assets and may be subject to larger liability awards than low-

1 The demand for insurance with an upper limit can be normal under DARA, see Cummins and Mahul (2004).

2 The reason is that actuarially fair self-protection does not reduce risk in the sense of Rothschild and Stiglitz
(1970) as shown by Briys and Schlesinger (1990). A probability threshold determines whether an increase in
risk aversion raises or lowers effort (see Jullien et al., 1999; Peter, 2021b). This indeterminacy has generated
research on the effects of downside risk aversion and prudence on prevention, see Chiu (2000, 2005, 2012),
Eeckhoudt and Gollier (2005) and Denuit et al. (2016).
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income households. The income sensitivity of the loss severity makes it more likely for safety

to be a normal good. We find a critical level of income sensitivity above which the demand

for safety is always normal. This result holds for any risk-averse utility function as long as

risk aversion is monotonic in final wealth. Sweeney and Beard’s probability threshold then

becomes dispensable. For example, for iso-elastic utility with relative risk aversion less than

two and when the loss puts less than 50% of final wealth at risk, an income sensitivity of 25%

or higher ensures that safety is a normal good regardless of the loss probability. For higher

levels of risk aversion and a lower share of final wealth at risk, the level of income sensitivity

needed to ensure the normality of safety decreases.

Our findings have normative and positive implications. Expected utility is still widely

accepted as the predominant normative theory of rational choice under risk. Our results then

prescribe how rational decision-makers should adjust their safety investments in response to

changes in income. From a descriptive standpoint, our analysis is rich in testable hypotheses.

With some liberty in interpretation, one can read our model cross-sectionally, in terms of

differences across individuals, households, or firms, or at the unit of the decision-maker whose

income may be different at different points in time. To substantiate the descriptive merit

of our results, we also consider two modeling extensions, severity risk and rank-dependent

utility. These extensions make very similar predictions as our benchmark model. We hope

that our results will spur empirical research on the economics of safety investments, foster our

understanding of how such decisions are made in practice and how they can be improved.

2 The standard model

2.1 Notation

We use the standard model of self-protection or loss prevention introduced into the literature

by Ehrlich and Becker (1972). A decision-maker with income y0 faces the risk of a potential

loss in the amount of L < y0. She can invest in safety to lower the likelihood of loss. Let

s ≥ 0 be the investment in safety and let p(s) be the associated loss probability function

with p′ ≤ 0. The prime denotes derivatives of univariate functions. Final wealth levels are

yℓ = y0 − s − L if the loss occurs and yn = y0 − s if the loss does not occur. The subscripts

ℓ and n abbreviate the loss state and the no-loss state. To ensure nonnegative final wealth,

we assume that safety investments are bounded by y0 − L. Furthermore, the decision-maker

would never invest an amount larger than L in safety because she would then be better off

remaining inactive. We thus fix an upper bound s ≤ min{y0−L,L} on the safety investment

and restrict our attention to s ∈ [0, s].

A three times differentiable von Neumann-Morgenstern utility function u represents the

decision-maker’s preferences over final wealth. We assume that u is increasing and concave,

u′ > 0 and u′′ < 0, so that the decision-maker prefers more over less and is risk-averse. Her
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expected-utility objective is then given by

max
s∈[0,s]

U(s; y0, L) = p(s)u(y0 − s− L) + (1− p(s))u(y0 − s). (1)

We assume that an interior solution s∗ ∈ (0, s) exists, which is then characterized by the

following first-order condition:3

Us(s
∗; y0, L) = −p′(s∗) · [u(y∗n)− u(y∗ℓ )]−

[
p∗u′(y∗ℓ ) + (1− p∗)u′(y∗n)

]
= 0. (2)

The subscript s on the objective function denotes the partial derivative with respect to the

safety investment and the asterisk indicates optimality. We use p∗ = p(s∗) as shorthand

for the loss probability at the optimal level of safety s∗. Investing an additional dollar in

safety has two effects on the decision-maker. It increases expected utility due to a lower loss

probability but also reduces final wealth in either state of the world, which lowers expected

utility. Correspondingly, the first term in Equation (2) measures the marginal benefit of safety

and the second term its marginal cost. The safety investment is at an optimal level when the

marginal benefit equals the marginal cost. In this case, expected utility cannot be increased

any further and the decision-maker has no incentive to deviate from s∗.

2.2 An increase in income

At an interior solution to Problem (1), the second-order condition holds for maximality,

Uss(s
∗; y0, L) < 0.4 We can then derive the directional effect of an increase in income on the

optimal safety investment from the implicit function rule. This effect is characterized by the

sign of the cross-derivative Usy0(s
∗; y0, L). We obtain

Usy0(s
∗; y0, L) = −p′(s∗) · [u′(y∗n)− u′(y∗ℓ )]−

[
p∗u′′(y∗ℓ ) + (1− p∗)u′′(y∗n)

]
=

p∗u′(y∗ℓ ) + (1− p∗)u′(y∗n)

u(y∗n)− u(y∗ℓ )
· [u′(y∗n)− u′(y∗ℓ )]−

[
p∗u′′(y∗ℓ ) + (1− p∗)u′′(y∗n)

]
=

[
p∗u′(y∗ℓ ) + (1− p∗)u′(y∗n)

]
·
{
−
p∗u′′(y∗ℓ ) + (1− p∗)u′′(y∗n)

p∗u′(y∗ℓ ) + (1− p∗)u′(y∗n)
−
(
−
u′(y∗n)− u′(y∗ℓ )

u(y∗n)− u(y∗ℓ )

)}
.

3 Rearranging Us(0; y0, L) > 0 and Us(s; y0, L) < 0 yields sufficient conditions for an interior solution. Loosely
speaking, if the safety technology is sufficiently productive (i.e., if −p′(0) is large enough) but its productivity
declines sufficiently quickly (i.e., if −p′(s) is small enough), an interior solution exists.

4 Risk aversion and convexity of the safety technology are not strong enough to ensure the concavity of the
objective function in s, see Jullien et al. (1999). As shown by Fagart and Fluet (2013), jointly sufficient
conditions are non-increasing absolute risk aversion and log-convexity of the safety technology.
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The second equation holds by substituting for −p′(s∗) from first-order condition (2). For

compactness, we define the following two random variables. Let ε̃ be a random variable with

a binary distribution of either a loss of L with probability p∗, or no loss with probability

(1 − p∗). Let ω̃ be a random variable that is uniformly distributed from −L to zero. Define

by vε̃(y) = Eu(y + ε̃) and vω̃(y) = Eu(y + ω̃) the corresponding derived utility functions (see

Kihlstrom et al., 1981; Nachman, 1982). This allows us to rewrite the two fractions in the

curly bracket, and we obtain the following characterization:

sgn

(
ds∗

dy0

)
= sgn (Usy0(s

∗; y0, L)) = sgn

(
−
v′′ε̃ (y

∗
n)

v′ε̃(y
∗
n)

−
(
−
v′′ω̃(y

∗
n)

v′ω̃(y
∗
n)

))
.

Let A(u; y) = −u′′(y)/u′(y) be the Arrow-Pratt measure of absolute risk aversion for utility

function u at final wealth level y. Safety is a normal good if and only if A(vε̃; y
∗
n) > A(vω̃; y

∗
n),

so if vε̃ is more risk-averse than vω̃ at y∗n. Comparative risk aversion between vε̃(y
∗
n) and

vω̃(y
∗
n) depends on the size of the loss probability p∗. To formulate this effect, we distinguish

between decreasing, constant and increasing absolute risk aversion, in short, DARA, CARA

and IARA (see Arrow, 1965; Pratt, 1964). We obtain the following result.

Proposition 1 (Sweeney and Beard, 1992). Consider the optimal safety investment defined

implicitly in Equation (2).

(i) Under DARA there is a pc ∈ (0, 1) so that safety is a normal good for p∗ > pc and an

inferior good for p∗ < pc.

(ii) Under CARA the optimal safety investment does not depend on income.

(iii) Under IARA there is a pc ∈ (0, 1) so that safety is a normal good for p∗ < pc and an

inferior good for p∗ > pc.

Appendix A.1 provides the proof. Our proof is simpler and more direct than the proof

by Sweeney and Beard (1992). The economic intuition behind Proposition 1 comes from the

presence of two conflicting effects. An increase in income lowers the marginal benefit of safety

because the gain in utility from avoiding the loss state is lower the higher the decision-maker’s

income. This discourages investing in safety. At the same time, higher income reduces the

marginal cost of safety because wealthy decision-makers can dispense an additional dollar

more easily than less wealthy decision-makers. This effect encourages safety. The net effect

is thus indeterminate. Proposition 1 shows that either of the two partial effects can prevail

at the optimum. For DARA and a high loss probability, an increase in income lowers the

marginal cost of safety by more than its marginal benefit. The decision-maker then finds it

optimal to increase the safety investment. In other words, safety is a normal good. However,

when the loss probability is low, matters are reversed. The increase in income now lowers the

marginal benefit of safety by more than its marginal cost, which results in a decrease in the

optimal safety investment. In this case, safety is an inferior good.
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The demand for safety: Normal or inferior?

The possibility that safety can be inferior is perhaps not surprising. Similarly, insurance

can be an inferior good (Mossin, 1968; Schlesinger, 2013), and both insurance and safety

can even be Giffen goods (Hoy and Robson, 1981; Peter, 2021a). However, unlike insurance

whether safety is a normal or an inferior good not only depends on how absolute risk aversion

changes in wealth but also on a probability threshold. Threshold results like Proposition 1

are common in the economic analysis of self-protection. They arise for risk aversion (Jullien

et al., 1999), downside risk aversion (Eeckhoudt and Gollier, 2005; Peter, 2021b), probability

weighting (Baillon et al., 2020), and loss aversion Macé and Peter (2021). Threshold results

have little practical value unless we know how large the threshold is. Take the case of DARA;

if pc is close to one, we would conclude that safety is an inferior good for the majority of

losses unless they are almost certain to happen. If pc is close to zero instead, we would rather

argue that safety is a normal good for most losses unless they are really rare. Without some

idea about the size of the probability threshold, a result like Proposition 1 remains largely

uninformative. Sweeney and Beard (1992) offer little help in this regard. To the contrary, they

provide conceptual examples of the threshold being close to one and other examples of the

threshold being close to zero. Their standpoint is that anything goes because “[c]onclusions

can not be reached from knowledge of general characteristics of a (nonconstant) risk-aversion

function; an almost complete specification of the risk-aversion function is required.” This

leaves the question when safety is a normal good effectively unanswered.

To provide empirically meaningful results, we quantify the probability threshold pc in

Proposition 1. We derive a general result and results for different functional forms of the

utility function. While at the expense of generality, this approach allows us to calculate the

probability threshold explicitly, analyze its magnitude, and identify its determinants. In a

second step, we revisit the comparative static effects of loss severity on safety investments,

and then combine both sets of results in a final step. Whether loss severity is sensitive to

changes in income will turn out to play a crucial role for the normality of safety.

3 Quantifying the probability threshold

3.1 Quadratic utility

We start with Result (iii) in Proposition 1. A commonly used example of IARA utility is the

quadratic form, which is popular for its tractability. The following result holds.

Proposition 2. The probability threshold for quadratic utility is 0.5.

Appendix A.2 provides the proof. Already Dionne and Eeckhoudt (1985) note that, when

comparing two agents with quadratic utility in terms of optimal self-protection, the more

risk-averse agent selects a larger (smaller) level of self-protection if the loss probability is

smaller (larger) than 0.5. This simple result holds because quadratic utility mutes downside

risk aversion. For quadratic utility, an increase in income raises absolute risk aversion due to
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The demand for safety: Normal or inferior?

IARA. A probability threshold of 0.5 is consistent with Dionne and Eeckhoudt’s result. For

decision-makers who are downside risk-neutral, safety is a normal good when losses occur less

than 50% of the time and an inferior good when losses occur more than 50% of the time.

Eisenhauer (1997) and Eisenhauer and Halek (1999) find that life insurance purchases

increase with wealth. They interpret this finding as evidence of IARA. In Baillon and Placido’s

(2019) experiment 20% of the subjects exhibited risk behavior that is best classified as IARA.

Already Arrow (1971) hypothesized that DARA appears more reasonable than IARA upon

introspection. Levy (1994), Holt and Laury (2002) and Huber et al. (2022) find experimental

evidence in favor of DARA.5 We discuss a particular class of DARA utility functions next to

strengthen Result (i) in Proposition 1.

3.2 Standard utility

The notion of standardness in risk theory is due to Kimball (1993). A risk is called undesirable

if it reduces the decision-maker’s expected utility. A risk is called loss-aggravating if it in-

creases the decision-maker’s utility loss from a nonrandom reduction in final wealth. Kimball

(1993) defines a utility function to be standard if every loss-aggravating risk aggravates every

undesirable risk. Standardness is stronger than the concept of proper risk aversion proposed

by Pratt and Zeckhauser (1987). DARA and decreasing absolute prudence (DAP) are nec-

essary and sufficient for standardness. Another characterization is that any loss-aggravating

risk reduces the demand for an independent risky asset. Many common utility functions are

standard including log-utility, power utility, and linex utility.6

For standard utility, we obtain the following refinement of Result (i) in Proposition 1.

Proposition 3. The probability threshold for standard utility is less than 0.5.

Appendix A.3 states the proof. No direct evidence of standardness exists in the literature

to date. Eisenhauer and Ventura (2003) find DARA and DAP for Italian households based

on survey results. Guiso and Paiella (2008) use household survey data to construct a direct

measure of absolute risk aversion. They report evidence of DARA and show that income

uncertainty raises risk aversion. Both studies use cross-sectional data whereas the claim of

standardness is that a given decision-maker’s degree of absolute risk aversion and absolute

prudence are negatively associated with her income. It is not a comparison across households.7

5 In Baillon and Placido (2019), only 8.6% of subjects are classified as DARA. 71.4% of their subjects exhibit
risk behavior that is best classified as CARA. Given the wide prevalence of monotonicity assumptions on
absolute risk aversion in economics, the issue is surprisingly unsettled from an empirical standpoint.

6 Gollier (2001) provides an overview of standardness and related concepts in his chapter 9.

7 The same caveat applies to Eisenhauer’s and Eisenhauer and Halek’s evidence of IARA, which is based on
cross-sectional data. Cohen and Einav (2007) estimate risk aversion from deductible choice in the cross
section and make this point clear. Variables that are likely to be correlated with income are positively
associated with absolute risk aversion in their study. They caution the reader on page 762 by saying that
“[o]ur results (...) should not be thought of as a test of the DARA property.”
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At the individual level, Beaud and Willinger (2015) find evidence of risk vulnerability in an

incentivized laboratory experiment. 81% of their subjects choose a less risky portfolio when

exposed to a zero-mean background risk. Risk vulnerability is a necessary condition for

standardness (see Gollier and Pratt, 1996).

Proposition 3 shows that standardness places an upper bound on the probability threshold.

When pc < 0.5, safety is a normal good for losses that occur at least 50% of the time. Many

loss distributions in risk management exhibit positive skewness. In the binary-outcome setting

considered here, this requires a loss probability below 0.5 (see Chiu, 2010; Ebert, 2015). But

if both p∗ and pc are below 0.5, we cannot draw any definitive conclusion about which one is

larger. Standardness allows us to strengthen Result (i) in Proposition 1 but an upper bound

of 0.5 on the probability threshold is still not good enough from a practical standpoint. For

this reason, we will now impose additional assumptions on the utility function to calculate pc

explicitly. We consider iso-elastic and linex utility.

3.3 Iso-elastic utility

Iso-elastic utility is popular in applications for its tractability. The functional form is

u(y) =

{
y1−ρ/(1− ρ), for ρ ̸= 1,

log(y), for ρ = 1,

with parameter ρ > 0 measuring relative risk aversion. Iso-elastic utility satisfies DARA and

DAP and is therefore standard. We thus already know from Proposition 3 that the probability

threshold is less than 0.5. This upper bound can be tightened. Iso-elastic utility also satisfies

constant relative risk aversion (CRRA). In Baillon and Placido (2019), 42.9% of subjects

exhibit behavior that is best classified as CRRA.

For our next result, we define by η ∈ (0, 1) the loss size as a percentage of final wealth in

the no-loss state, η = L/y∗n. For example, if y∗n = $100 and L = $20, then η = 0.2 and we

can say that the loss puts 20% of final wealth at risk. Parameter η is based on y∗n and thus

already takes the optimal safety investment s∗ into account. We obtain the following result.

Proposition 4. The probability threshold for iso-elastic utility is given by

pc =
(1− η)

(
(1− η)ρ + ρη − 1

)
(1− η)1−ρ − 2(1− η)− ρη2 + (1− η)1+ρ

for ρ ̸= 1

and by

pc =
(1− η)

(
(1− η) log(1− η) + η

)
η
(
(η − 2) log(1− η)− η

) for ρ = 1.

It is decreasing in ρ and η with

lim
ρ→0

pc = −1− η

η2
(
η + log(1− η)

)
, lim

η→0
pc = 0.5 and lim

ρ→∞
pc = lim

η→1
pc = 0.
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(a) Threshold pc as a function of η (b) Threshold pc as a function of ρ

Figure 1: Probability threshold pc for iso-elastic utility, u(y) = y1−ρ/(1 − ρ) for ρ ̸= 1 and
u(y) = log(y) for ρ = 1. Panel (a) shows the threshold pc as a function of the share of final
wealth at risk η, Panel (b) shows pc as a function of relative risk aversion ρ.

Appendix A.4 shows these results. We obtain the threshold for log-utility by taking the

limit of pc for ρ → 1 and applying l’Hôpital’s rule. In Figure 1 we plot how the probability

threshold depends on relative risk aversion ρ and on the share of final wealth at risk η. Panel

(a) shows that pc decreases in η from 0.5 for η = 0 to 0 for η = 1. Its curvature is concave for

low levels of risk aversion and convex for high levels of risk aversion. It is closest to linear for

ρ ≈ 1.28. In this case we obtain the rule of thumb that pc ≈ 0.5 · (1 − η). We can interpret

(1− η) as the share of riskless final wealth. In the above example, if y∗n = $100 and L = $20,

the decision-maker’s final wealth in the loss state is y∗ℓ = $100 − $20 = $80 or 80% of $100.

So her final wealth is at least 80% of final wealth in the no-loss state if the loss happens

despite the safety investment. The rule of thumb then says that safety is a normal good if

the loss probability is larger than 40%, which is half of 80%, and inferior otherwise. Panel

(b) shows that pc decreases in relative risk aversion at a decreasing rate. For low values of η,

the convexity is only apparent when extending the graph to levels of risk aversion beyond 10.

To summarize, safety is more likely to be a normal good the higher the share of final wealth

at risk and the higher the decision-maker’s relative risk aversion.

3.4 Linex utility

One criticism of iso-elastic utility is that relative risk aversion may not be constant in wealth.

Indeed, Holt and Laury (2002) find evidence of increasing relative risk aversion whereas Ogaki

and Zhang (2001) and Huber et al. (2022) find decreasing relative risk aversion. Baillon and

Placido (2019) classify 35.7% of subjects as increasing and 21.4% of subjects as decreasing

relative risk aversion. A utility function that is more flexible in this regard is the so-called
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class of linear plus exponential, or linex utility functions defined by

u(y) = ly − k · exp(−γy) for constants l, k, γ > 0.

We set l = 1 without loss of generality by applying a suitable positive affine transformation.

Bell (1988) introduces linex utility and shows that it is one of four classes of utility functions

satisfying the one-switch rule and the only such class when adding some other reasonable

restrictions.8 Bell (1995, p. 1148) gives praise to this class of utility functions by saying

that it “deserves consideration as the appropriate utility function for generic analyses of

financial risk taking.” Denuit et al. (2013) prove that any risk-averse utility function satisfying

DARA and DAP in the sense of Ross (1981) necessarily belongs to the linex class. Linex

utility thus satisfies a stronger version of Kimball’s standardness property, and we know from

Proposition 3 that the probability threshold is less than 0.5.

The coefficients of absolute risk aversion and absolute prudence for linex utility are

−u′′(y)

u′(y)
=

kγ2 · exp(−γy)

1 + kγ · exp(−γy)
and − u′′′(y)

u′′(y)
= γ.

Linex utility satisfies DARA and, as noted by Denuit et al. (2013), its absolute prudence is con-

stant in wealth. Unlike iso-elastic utility, it can accommodate non-constant shapes of relative

risk aversion.9 Relative prudence of linex utility is given by P (u; y) = −yu′′′(y)/u′′(y) = γy,

and we write Pℓ as shorthand for relative prudence in the loss state, Pℓ = P (u; y∗ℓ ). We then

obtain the following result.

Proposition 5. The probability threshold for linex utility is

pc =
1

ηPℓ/(1− η)
− 1

exp(ηPℓ/(1− η))− 1
.

It is decreasing in Pℓ and η with

lim
Pℓ→0

pc = lim
η→0

pc = 0.5 and lim
Pℓ→∞

pc = lim
η→1

pc = 0.

Appendix A.5 provides the proof and Figure 2 illustrates. Panel (a) shows that pc decreases

in η from 0.5 for η = 0 to 0 for η = 1. The curves are concave for low and convex for high

8 The one-switch rule requires that there is no more than one critical level of income where the decision-maker’s
preference over two alternatives switches. Linex utility is the only class of utility functions satisfying the
one-switch rule when stipulating risk aversion at all income levels and DARA.

9 Direct computation shows that

d

dy

(
−yu′′(y)

u′(y)

)
=

kγ2 exp(−γy)

(1 + kγ · exp(−γy))2
· [1− γy + kγ exp(−γy)] .

The term outside the square bracket is positive. The square bracket is inverse U-shaped in y. There is a
critical level ŷ so that linex utility has increasing (decreasing) relative risk aversion for y < (>) ŷ.
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(a) Threshold pc as a function of η (b) Threshold pc as a function of Pℓ

Figure 2: Probability threshold pc for linex utility, u(y) = ly − k · exp(−γy) for positive
constants l, k, γ. Panel (a) shows the threshold pc as a function of the share of final wealth at
risk η, Panel (b) shows pc as a function of relative prudence in the loss state Pℓ.

levels of relative prudence. The probability threshold is closest to linear for Pℓ ≈ 3.55. In this

case, we obtain the same rule of thumb as for iso-elastic utility, that safety is a normal good if

the loss probability is larger than half the share of riskless final wealth, and inferior otherwise.

Panel (b) shows that pc decreases in relative prudence at a decreasing rate. The convexity

is only visible when extending the graph to a larger range of values for Pℓ. To summarize,

safety is more likely to be a normal good the higher the share of final wealth at risk and the

higher the decision-maker’s relative prudence.

3.5 Comparison

We observe two common patters as we compare the results for iso-elastic and linex utility. The

demand for safety is more likely to be normal for losses that put a higher share of final wealth

at risk and the more sensitive the decision-maker is towards risk. Despite these commonalities

the functional form of the utility function matters for the size of the threshold. The curves

for linex utility are uniformly higher than those for iso-elastic utility. Relative prudence for

iso-elastic utility is given by (1+ρ), which is why we report the values 0.5, 2 and 8 in Panel (a)

of Figure 1 and the values 1.5, 3 and 9 in Panel (a) of Figure 2 for comparability.

To see this more directly, we now look at the iso-threshold curves in the (η, ρ)-plane for

iso-elastic utility and in the (η, Pℓ)-plane for linex utility. These curves collect parameter

combinations that produce a specific value of the probability threshold. Say we are looking

at a loss with a 25% chance of occurring at the optimal level of safety. We may then wonder

for which parameter combinations safety investments against this loss exposure are a normal

or an inferior good. The iso-threshold curve for pc = 25% partitions the parameter space

precisely into those two regions.
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(a) Iso-pc curves for iso-elastic utility (b) Iso-pc curves for linex utility

Figure 3: Iso-threshold curves in the (η, ρ)-plane for iso-elastic utility and in the (η, Pℓ)-plance
for linex utility. The threshold pc takes the values 0.25, 0.10, 0.05 and 0.01. The horizontal
line of stars corresponds to ρ = 5 in Panel (a) and to Pℓ = 10 in Panel (b).

Panel (a) in Figure 3 is for iso-elastic utility. Take the solid curve for pc = 0.25 for a

loss that occurs 25% of the time. Safety investments against such risks are normal goods for

(η, ρ)-combinations to the right of the curve and inferior goods for (η, ρ)-combinations to the

left of the curve. Safety investments against losses that are more frequent than that are more

likely to be a normal good because a lower loss severity and a lower level of risk aversion

suffice to satisfy the threshold condition. Gollier (2001) argues that a reasonable range for

relative risk aversion is from 1 to 4. Gourinchas and Parker (2002) estimate a structural

model of lifecycle consumption based on the Consumer Expenditure Survey data, and find

relative risk aversion ranging from 0.5 to 1.4. Chetty (2006) uses estimates of the labor supply

elasticity to bound relative risk aversion below 2. Meyer and Meyer (2005) consolidate some

of the empirical literature on relative risk aversion and adjust reported values by the way

the outcome variable is measured (e.g., welath, income, consumption). Most of the adjusted

values in their study are between 1 and 5.10 The horizontal blue line of stars in Panel (a)

of Figure 3 represents an upper bound of 5 on relative risk aversion. We can then identify a

critical level on η for safety to be an inferior good by intersecting the line for ρ = 5 with the

iso-pc curves. Numerically we find η = 0.24 for pc = 0.25, η = 0.42 for pc = 0.10, η = 0.51 for

pc = 0.05 and η = 0.67 for pc = 0.01. For example, safety is an inferior good for losses that

occur no more than 10% of the time and put less than 42% of final wealth at risk.

10 Relative risk aversion in laboratory experiments is often lower. In Holt and Laury (2002), for example, it
is centered around the 0.3 to 0.5 range. Studies using deductible choice find implausibly high levels of risk
aversion in the triple or quadruple digits (Sydnor, 2010). A potential explanation is that ordinary consumers
may find it difficult to assess the costs and benefits of cost-sharing provisions in insurance contracts, which
raises doubts about the usefulness of insurance choice data to estimate risk aversion (Bhargava et al., 2017).
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Panel (b) in Figure 3 shows the iso-pc curves for linex utility. Empirical measures of relative

prudence vary in the literature. Dynan (1993) uses the Consumer Expenditure Survey data

and concludes that “[w]e cannot reject the hypothesis that the coefficient of relative prudence

is zero.” Her largest point estimate is 0.312.11 Merrigan and Normandin (1996) obtain

estimates for relative prudence ranging from 1.78 to 2.33 based on longitudinal expenditure

data from the UK. Using survey data on life insurance holdings, Eisenhauer (2000) finds a

range between 1.51 and 5.15. Eisenhauer and Ventura (2003) find higher values ranging from

7.32 to 8.65, on average, based on a hypothetical survey question about the willingness to

take risk. Noussair et al. (2014) measure relative prudence directly for a demographically

representative sample of the Dutch population. Their estimates range between 1.68 and 2.24.

The horizontal blue line of stars in Panel (b) of Figure 3 corresponds to relative prudence of

10. The critical level on η for safety to be an inferior good is then η = 0.26 for pc = 0.25,

η = 0.5 for pc = 0.1, η = 0.67 for pc = 0.05 and η = 0.91 for pc = 0.01. Using the same

example as before, safety is an inferior good for losses that occur no more than 10% of the

time and put less than 50% of final wealth at risk.

Both classes of utility functions suggest that safety investments are inferior goods for

the vast majority of practical applications unless preventable losses put a large share of final

wealth at risk or the decision-maker is very sensitive to risk. Our focus on iso-elastic and linex

utility, while less general than an arbitrary risk-averse utility function, allows us to confront

the model with empirical estimates of preference parameters, which then yields a definitive

answer to the question whether safety is a normal good. The main caveat is that we assumed

the loss severity L to be unaffected by income shocks. To relax this assumption, we will first

develop results on the comparative static effects of loss severity on the demand for safety.

This sets the stage for extending the model to income-sensitive losses.

4 Loss severity

4.1 General results

We first return to the setting with a general risk-averse utility function. Intuition suggests

that more severe losses should lead to higher investments in safety because there is more to

gain from avoiding the loss state. But if the loss occurs, having made a high investment

in safety seems unfortunate in hindsight because the money could have been rather used to

better cope with the loss. Therefore, it is not clear a priori how loss severity affects the

optimal safety investment. According to the implicit function rule, the sign of UsL(s
∗; y0, L)

11 Skinner (1988), Kuehlwein (1991), Guiso et al. (1992) and Parker (1999) also find little to no evidence of
precautionary saving. By implication, this suggests little to no evidence of prudence. Due to substitution
effects, this reasoning relies on saving being the only channel for households to express precautionary motives,
see Heinzel and Peter (2021).
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informs us about the direction of this effect. We obtain

UsL(s
∗; y0, L) = −p′(s∗)u′(y∗ℓ ) + p∗u′′(y∗ℓ ) (3)

= [p∗u′(y∗ℓ ) + (1− p∗)u′(y∗n)] ·
{

u′(y∗ℓ )

u(y∗n)− u(y∗ℓ )
+

p∗u′′(y∗ℓ )

p∗u′(y∗ℓ ) + (1− p∗)u′(y∗n)

}
.

The first line reflects the trade-off between a higher marginal benefit and a higher marginal

cost of safety from the increase in loss severity. The equality holds by substituting for −p′(s∗)

from first-order condition (2) and factoring out expected marginal utility. Let R(u; y) =

−yu′′(y)/u′(y) denote the Arrow-Pratt measure of relative risk aversion for utility function

u at final wealth level y, and let Rℓ be shorthand for relative risk aversion in the loss state,

Rℓ = R(u; y∗ℓ ). We then obtain the following results.

Proposition 6. Consider the optimal safety investment defined implicitly in Equation (2).

An increase in loss severity raises the optimal safety investment:

(i) If and only if the decay rate of the loss probability exceeds absolute risk aversion in the

loss state.

(ii) If the utility function exhibits non-decreasing absolute risk aversion.

(iii) If the utility function exhibits DARA and p∗ < p# for a threshold p# > 0.

The probability threshold p# for DARA:

(iv) Exceeds unity when η ≤ 1/(1 +Rℓ).

(v) Exceeds 0.5 when η ≤ 1/(1 + 0.5 ·Rℓ).

Appendix A.6 provides the proof. Result (i) also plays a role in the comparative statics

of multivariate prevention decisions, see Hofmann and Peter (2015). The decay rate of the

loss probability, defined as −p′(s)/p(s), measures how quickly the safety investment reduces

the loss probability. When the decay rate is non-increasing in s and the utility function has

non-increasing absolute risk aversion, Problem (1) is globally concave in s and the first-order

approach is valid (see Fagart and Fluet, 2013). Courbage et al. (2017) use this measure

to analyze optimal prevention for correlated risks. Result (ii) is Sweeney and Beard’s Re-

sult B. When the utility function has non-decreasing absolute risk aversion, the increase in the

marginal benefit due to a more severe loss always outweighs the accompanying increase in the

marginal cost. Result (iii) states that the net effect for DARA utility may be indeterminate

when the probability threshold p# is less than one. Results (iv) and (v) provide simple condi-

tions that allow us to bound the probability threshold from below. These conditions involve

relative risk aversion in the loss state and the share of final wealth at risk. For example, when

relative risk aversion is less than 2, the loss puts less than 50% of final wealth at risk and

occurs less than 50% of the time, we expect increased safety investments as loss severity rises.
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Sweeney and Beard (1992) provide two additional results for DARA utility. Their Result C

compares the expected loss to a function that depends on absolute risk aversion in the loss state

and absolute risk aversion in the no-loss state. It is unclear how to evaluate their condition

from a practical standpoint. Their Result D holds for increasing relative risk aversion. In

our notation, they find a probability threshold of pSB# = (1− η)1+Rn/η, where superscript SB

abbreviates Sweeney and Beard and Rn is shorthand for relative risk aversion in the no-loss

state, Rn = R(u; y∗n).
12 Their threshold can also be bounded from below because pSB# ≥ 1

for (1 − η)1+Rn ≥ η and pSB# ≥ 0.5 for (1 − η)1+Rn ≥ 0.5η. The difficulty in comparing

pSB# to p# lies in the fact that we use Rℓ while they use Rn. One way to compare the

two thresholds is by assuming Rn ≈ Rℓ. Alternatively, we can adjust Sweeney and Beard’s

threshold for the difference in relative risk aversion across states. Holt and Laury (2002)

find increasing relative risk aversion so that Rn > Rℓ. They estimate Saha’s (1993) expo-

power utility function, defined as u(y) = (1 − exp(−θy1−ξ))/θ, with relative risk aversion of

R(u; y) = ξ + θ(1 − ξ)y1−ξ. This provides the following relationship between relative risk

aversion in the loss state and relative risk aversion in the no-loss state:

Rn = ξ + (Rℓ − ξ)(1− η)ξ−1.

We can then use Holt and Laury’s estimate for ξ, given by 0.269, to rewrite Sweeney and

Beard’s threshold in terms of Rℓ.

Figure 4 illustrates Results (iv) and (v) in Proposition 6, and contrasts them with the

corresponding conditions based on Sweeney and Beard’s threshold. Adjusting for differences

in relative risk aversion across states slightly lowers the curves for pSB# for most values of Rℓ.
13

Each curve in Panel (a) partitions the (Rℓ, η)-plane into two regions. The region below the

curve corresponds to p# > 1 so that an increase in loss severity always raises the investment

in safety regardless of the loss probability. The region above the curve represents p# < 1 so

that the magnitude of the loss probability relative to the threshold matters. When Rℓ ≤ 2.29

for the unadjusted curve or Rℓ ≤ 2.85 for the adjusted curve, our criterion is less restrictive

than Sweeney and Beard’s. As long as Rℓ ≤ 5 and η ≤ 16.7%, the optimal safety investment

is always increasing in loss severity regardless of which criterion is used.

Panel (b) looks at a lower bound of 0.5 on the probability thresholds p# and pSB# . Now

the curves partition the (Rℓ, η)-plane into regions below the curve where p# > 0.5 and regions

above the curve where p# < 0.5. Most losses in risk management exhibit positive skewness,

which implies p∗ < 0.5 when outcomes are binary (see Chiu, 2010; Ebert, 2015). In this case,

a probability threshold larger than 0.5 ensures that the optimal safety investment is increasing

12 Their Result D states that ds∗/dL > 0 when dR(u; y)/dy > 0 and (y∗
ℓ /y

∗
n)

Rn > p∗L/y∗
ℓ . Use the definition

of η and solve for p∗ to obtain pSB
# as stated in the text.

13 The exact location of the adjusted curves is relatively insensitive to the estimate of ξ. Changes within three
standard errors based on Holt and Laury’s estimates do not lead to perceptible differences.
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(a) Comparison of p# = 1 versus pSB
# = 1 (b) Comparison of p# = 0.5 versus pSB

# = 0.5

Figure 4: Locus of (Rℓ, η)-combinations so that p# = 1 and p# = 0.5. The solid lines illustrate
Results (iv) and (v) in Proposition 3, the dotted and dashed lines illustrate the corresponding
conditions for Sweeney and Beard’s threshold without adjustment (i.e., Rn ≈ Rℓ) and with
adjustment (i.e., Rn > Rℓ).

in loss severity. As evident from Panel (b), our criterion is less restrictive than Sweeney and

Beard’s when Rℓ ≤ 5.51 for the unajdusted curve and when Rℓ ≤ 8.09 for the adjusted curve.

In other words, for the plausible range of relative risk aversion between 1 and 5, our criterion

yields a larger region of (Rℓ, η)-combinations for which the intuitive result prevails. As long

as Rℓ ≤ 5 and η ≤ 28.6%, skewed loss exposures will induce larger safety investments as their

severity increases.

Overall, the results in Proposition 6 suggest that, for the relevant case of DARA utility,

safety investments are increasing in loss severity unless preventable losses put a large share of

final wealth at risk or decision-makers are very sensitive to risk. We emphasize that we can

quantify what we mean by a large share of final wealth or high levels of risk aversion without

specifying the utility function. Results (iv) and (v) in Proposition 6 provide easy-to-verify

rules of thumb for practical applications. As we will show in the next section, these results

can be strengthened by focusing on particular classes of utility functions.

4.2 Results for iso-elastic and linex utility

We revisit Proposition 6 for iso-elastic and linex utility. In both cases, we can calculate the

threshold p# in Result (iii) explicitly. We start with iso-elastic utility.

Proposition 7. The probability threshold p# for iso-elastic utility is given by

p# =
(1− ρ)(1− η)ρ

ρ(1− η)ρ−1 + (1− ρ)(1− η)ρ − 1
for ρ ̸= 1
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and by

p# = − 1− η

η + log(1− η)
for ρ = 1.

It is decreasing in ρ and η with

lim
ρ→0

p# = lim
η→0

p# = ∞ and lim
ρ→∞

p# = lim
η→1

p# = 0.

Appendix A.7 gives the proof. The threshold for log-utility can either be obtained by

direct computation or via l’Hôpital’s rule by taking the limit of p# for ρ → 1. We state the

conditions for p# ≥ 1 and for p# ≥ 0.5 in Appendix A.7, thus specifying Results (iv) and (v)

in Proposition 6 to iso-elastic utility. Figure 4 illustrates the threshold p# in Proposition 7 as

the line marked with crosses. The locus of (ρ, η)-combinations for which p# = 1 in Panel (a)

lies above the corresponding locus for a general DARA utility function in Result (iv) of

Proposition 6. It also lies above the locus based on Sweeney and Beard’s criterion, regardless

of whether we adjust for differences in relative risk aversion across states or not. Moving

to iso-elastic utility expands the set of parameter combinations for which an increase in loss

severity always leads to a larger safety investment. When looking at Panel (b) of Figure 4,

we see that the locus of (ρ, η)-combinations for which p# = 0.5 for iso-elastic utility also lies

above all the other curves. Moving to iso-elastic utility also expands the set of parameter

combinations for which an increase in loss severity always leads to a larger safety investment

against skewed loss exposures with p∗ < 0.5.

To give a sense of magnitude, we use the expression in Proposition 7 to provide bounds

on the share of final wealth at risk η. Let us bound relative risk aversion and assume ρ ≤ 5.

We can then wonder about the share of final wealth at risk so that p# exceeds a certain

cutoff. The first row of Table 1 provides these thresholds. Safety investments are increasing

in loss severity for losses that put less than 33.1% of final wealth at risk regardless of their

loss probability because we have p# ≥ 1. Safety investments against losses that occur less

than 10% of the time are increasing in loss severity as long as they do not put more than

53.6% of final wealth at risk, etc. Table 1 reveals a trade-off. The lower the likelihood of loss,

the higher the share of final wealth that it may put at risk to still obtain the intuitive result

that an increase in loss severity raises the optimal safety investment.

Linex utility also allows us to determine the threshold p# in Proposition 6(iii) explicitly.

The following proposition provides this result, and Appendix A.8 gives the proof.

Proposition 8. The probability threshold p# for linex utility is given by

p# =
Pℓ

[
Pℓ −Rℓ

(
1− exp

(
− ηPℓ

1−η

))]
Rℓ(Pℓ −Rℓ)

[
ηPℓ
1−η −

(
1− exp

(
− ηPℓ

1−η

))] .
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p# ≥ 1 p# ≥ 0.5 p# ≥ 0.25 p# ≥ 0.1 p# ≥ 0.05 p# ≥ 0.01

Iso-elastic utility
33.1% 39.4% 45.7% 53.6% 59.1% 70.0%

ρ ≤ 5

Linex utility
20.3% 26.8% 35.8% 52.5% 67.7% 91.0%

Pℓ ≤ 10

Linex utility
23.3% 33.4% 47.3% 67.7% 80.4% 95.2%

Pℓ ≤ 10, Rℓ ≤ 5

Table 1: Thresholds on the share of final wealth at risk so that safety investments are increas-
ing in loss severity. The first row is for iso-elastic utility with ρ ≤ 5, the second row for linex
utility with Pℓ ≤ 10, and the third row for linex utility with Pℓ ≤ 10 and Rℓ ≤ 5.

It is decreasing in Pℓ and η with

lim
Pℓ→0

p# = lim
η→0

p# = ∞, lim
Pℓ→∞

p# =
1− η

2ηRℓ
and lim

η→1
p# = 0.

It is U-shaped in Rℓ with

lim
Rℓ→0

p# = lim
Rℓ→Pℓ

p# = ∞.

Rows two and three of Table 1 provide bounds on the share of final wealth at risk for linex

utility. We first assume relative prudence less than 10 and do not fix relative risk aversion (row

two). Safety investments are increasing in loss severity for preventable losses not exceeding

20% of income at risk, irrespective of their loss probability. For losses that occur less than

50% of the time, we obtain a positive effect of loss severity on safety if losses put no more

than 27% of income at risk. For losses that occur less than 10% of the time, the threshold

is even higher at 53% of income at risk, etc. Taking the U-shape of p# into account, the

reported thresholds are those obtained for the value of Rℓ that minimizes p# over (0, Pℓ). If

we assume relative prudence less than 10 and relative risk aversion less than 5 (row three),

safety investments are increasing in loss severity when losses do not exceed 23% of income

at risk regardless of their probability, for losses not exceeding 33% of income at risk for a

probability below 50%, and for losses not exceeding 68% of income at risk for a probability

below 10%, etc. We observe the same trade-off as for iso-elastic utility that, the lower the

loss probability, the higher the share of final wealth at risk that is possible while still finding

the intuitive effect that loss severity increases the demand for safety.

From a practical standpoint, we conclude that safety investments are increasing in loss

severity unless preventable losses put a large share of final wealth at risk or decision-makers

are very sensitive to risk. This prediction holds for a general risk-averse utility function and

is strengthened for the classes of iso-elastic and linex utility.
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5 Safety investments for income-sensitive losses

5.1 General results

In a final step, we combine the two sets of results to analyze income effects on safety invest-

ments for income-sensitive losses. As income increases, decision-makers are likely to acquire

more valuable assets that are subject to preventable losses, which may stimulate an addi-

tional demand for safety. From an empirical standpoint, income is often not observed at the

individual level. However, Cohen and Einav (2007) use the value of the car as a proxy for

income in the context of auto insurance, and Barseghyan et al. (2013) assume that wealth

is proportional to home value in the context of homeowners insurance. While no specific

estimates exist on the size of the income-sensitivity of preventable losses, and while there is

certainly heterogeneity in this parameter across households, it is fair to say that allowing for

loss severity to depend on income will only make the model more realistic.

Specifically, we let L = L(y0) and assume that loss severity is differentiable in income with

χ = L′(y0). We refer to χ as the income sensitivity of the loss severity and let χ ∈ (0, 1).

The limiting case of χ → 0 corresponds to the analysis in Section 3 because then loss severity

is unaffected by income shocks. For χ → 1, decision-makers spend each additional dollar in

income on assets that are subject to preventable losses. Given the lack of empirical evidence

on the size and distribution of χ in a representative cross-section of households, we consider

the entire unit interval in our analysis.

We adjust objective function (1) by replacing L by L(y0). First-order condition (2) also

requires us to adjust final wealth in the loss state accordingly. For income-sensitive losses,

the chain rule then yields the following:

ds∗

dy0
=

∂s∗

∂y0
+ L′(y0) ·

∂s∗

∂L
=

∂s∗

∂y0
+ χ · ∂s

∗

∂L
.

The sign of ds∗/dy0 coincides with the sign of Usy0(s
∗; y0, L(y0)) + χUsL(s

∗; y0, L(y0)) due to

the implicit function rule. We can use the previous analysis to rewrite this term as follows:

[
p∗u′(y∗ℓ ) + (1− p∗)u′(y∗n)

]
·
{
−
p∗u′′(y∗ℓ ) + (1− p∗)u′′(y∗n)

p∗u′(y∗ℓ ) + (1− p∗)u′(y∗n)
−
(
−
u′(y∗n)− u′(y∗ℓ )

u(y∗n)− u(y∗ℓ )

)}

+
[
p∗u′(y∗ℓ ) + (1− p∗)u′(y∗n)

]
· χ ·

{
u′(y∗ℓ )

u(y∗n)− u(y∗ℓ )
+

p∗u′′(y∗ℓ )

p∗u′(y∗ℓ ) + (1− p∗)u′(y∗n)

}
. (4)

We factor out expected marginal utility and set the remainder equal to zero. We thus obtain

the probability threshold that determines income effects on safety investments for income-

sensitive losses. The following proposition summarizes our findings.

Proposition 9. Consider the optimal safety investment defined implicitly in Equation (2)

for an income-sensitive loss exposure with L′(y0) = χ.
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(i) Under DARA there is a p$ < 1 so that safety is a normal good for p∗ > p$ and an

inferior good for p∗ < p$. The probability threshold p$ is decreasing in χ. Furthermore,

there is a critical level of income sensitivity, given by

χ̂ =
u(y∗n)− u(y∗ℓ )

u′(y∗ℓ )
· [A(vω̃; y

∗
n)−A(u; y∗n)] ∈ (0, 1). (5)

For χ ≥ χ̂, we have p$ ≤ 0 and safety is always a normal good.

(ii) Under CARA safety is always a normal good.

(iii) Under IARA there is a p$ > 0 so that safety is a normal good for p∗ < p$ and an

inferior good for p∗ > p$. The probability threshold p$ is increasing in χ. Furthermore,

there is a critical level of income sensitivity, given by

χ̂ = [A(vω̃; y
∗
n)−A(u; y∗ℓ )] ·

[
u(y∗n)− u(y∗ℓ )

u′(y∗ℓ )
−A(u; y∗ℓ )

]−1

∈ (0, 1). (6)

For χ ≥ χ̂, we have p$ ≥ 1 and safety is always normal.

Appendix A.9 provides the proof. Proposition 9 shows that the income sensitivity of the

loss severity plays a key role in determining the income effects on the demand for safety. Take

the case of DARA. For a fixed loss severity, our main conclusion at the end of Section 3 was

that safety investments are inferior for the majority of applications unless preventable losses

put a large share of final wealth at risk or decision-makers are very sensitive to risk. Allowing

for income-sensitive losses has the potential to turn this conclusion upside down. While we

still find a probability threshold, the degree of income sensitivity reduces the magnitude of

this threshold, which makes it more likely for the loss probability to exceed it. What’s more,

if the loss severity is sufficiently income-sensitive in a precise technical sense, the probability

threshold turns negative and safety investments are always a normal good, consistent with

intuition. As explained in Section 4, an increase in loss severity tends to raise the demand

for safety, which then contributes to the normality of safety investments for income-sensitive

losses. In the knife-edge case of CARA utility, the critical level of income sensitivity is zero,

χ̂ = 0, so that safety is always normal for any level of income sensitivity χ > 0.

For IARA utility, the results are flipped in the sense that the loss probability now needs to

fall below the probability threshold for safety to be a normal good and because the probability

threshold is now increasing in the degree of income sensitivity. However, the same general

conclusion arises as in the DARA case. Income sensitivity increases the range of loss probabil-

ities for which safety is a normal good, and as soon as the income sensitivity is large enough

in a precise technical sense, safety investments will always be normal. As such, Proposition 9

contains a strong general message. Regardless of whether absolute risk aversion is decreasing,

constant or increasing, the degree of income sensitivity of the loss exposure always makes it

more likely for safety to be a normal good.
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5.2 Results for quadratic, iso-elastic and linex utility

Proposition 9 begs the question how large the critical level of income sensitivity χ̂ is. We

started our analysis by noting that threshold results are of little practical use without some

idea about the size of the threshold. This qualification applies to χ̂ as well. Take the case of

DARA; if p$ declines very slowly in χ and χ̂ is close to one, our previous results stand and

we have little reason to deviate from our conclusion that, from an applied standpoint, the

demand for safety is an inferior good in most situations. If, however, p$ declines rapidly in χ

and χ̂ is close to zero, we have all reason to conclude that safety investments will generally be

normal goods precisely because most losses are income-sensitive in practice. As earlier, the

magnitude of the threshold makes all the difference.

The following proposition provides explicit formulas for χ̂ in case of quadratic, iso-elastic

and linex utility. Of course, we could also calculate p$ from Proposition 9 explicitly for

those functional forms, or determine other levels of income sensitivity, for example, such that

p$ ≤ 0.01 in case of DARA. For clarity and compactness, we focus on χ̂ because in this case

safety is a normal good regardless of the size of the loss probability.

Proposition 10. Consider the critical level of income sensitivity χ̂ defined in Proposition 9.

(i) For quadratic utility, we obtain

χ̂ =
η2R2

n

1 + (1 + ηRn)2
.

(ii) For iso-elastic utility, we obtain

χ̂ =
(1− η)ρ + ρη − 1

ρ− 1
for ρ ̸= 1, and χ̂ = (1− η) log(1− η) + η for ρ = 1.

(iii) For linex utility, we obtain

χ̂ = Rℓ

(
1− Rℓ

Pℓ

)
·
1− exp

(
− ηPℓ

1−η

)(
1 + ηPℓ

1−η

)
Pℓ −Rℓ

(
1− exp

(
− ηPℓ

1−η

)) .
Appendix A.10 provides the proof. Figure 5 illustrates Results (i) and (ii), and Figure 6

in Appendix B.1 illustrates Result (iii). The critical threshold χ̂ is increasing in η so the

higher the share of final wealth at risk, the higher the required level of income sensitivity of

the loss severity to ensure that safety is a normal good. Similarly, with a higher degree of risk

aversion, losses need to be more income-sensitive to guarantee that safety is always normal

regardless of the loss probability. Both of these observations are intuitive and in line with our

previous findings. The reason why safety might fail to be normal in the first place is that an

increase in income lowers its marginal benefit. This effect occurs because the decision-maker

is risk-averse. Furthermore, the marginal benefit of safety is larger the higher the share of
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(a) Threshold χ̂ for quadratic utility (b) Threshold χ̂ for iso-elastic utility

Figure 5: Threshold χ̂ for quadratic utility, see Proposition 10(i), and for iso-elastic utility,
see Proposition 10(ii). The blue line of stars indicates the identity line where χ̂ = η.

final wealth at risk. To ensure that the decrease in the marginal benefit does not dominate,

a higher level of income sensitivity is thus needed.

Figure 5 also provides a sense of magnitude. For example, when relative risk aversion is

2 and the loss puts 50% of final wealth at risk, we obtain χ̂ = 0.2 for quadratic utility and

χ̂ = 0.25 for iso-elastic utility. In other words, for relative risk aversion below 2 and when the

loss puts less than 50% of final wealth at risk, an income sensitivity of 0.2 (0.25) or higher

ensures that the demand for safety is always normal for quadratic (iso-elastic) utility. Taking

these numbers on their face, such levels of income sensitivity do not seem implausible.

More generally, the critical level of income sensitivity χ̂ is less than η for quadratic utility

unless risk aversion is high, and always less than η for iso-elastic utility.14 In Figure 5, the

case of χ̂ = η is marked with a blue line of stars, and it is evident that all black lines are

below it the only exception being Panel (a) for Rn = 8. In the special case in which loss

severity is simply a linear function of income, L(y0) = χy0 for a χ ∈ (0, 1), we obtain that

η = L/y∗n = χ · y0/(y0 − s∗). Then it follows that η > χ because y0 > y0 − s∗. So if χ̂ was

always larger than η, the income sensitivity of the loss severity would never ensure that safety

is always normal, and we would be back to a probability-threshold situation. As shown in

Figure 5, this is not the case because χ̂ < η is quite plausible. Furthermore, when loss severity

is linear in income and the decision-maker’s safety investment is small relative to income, then

η and χ will be relatively close in magnitude. As shown in Figure 5, the critical level χ̂ is

often substantially smaller than η so that χ > χ̂ should then be easily satisfied.

14 For quadratic utility, χ̂ < η is equivalent to R2
nη

2 − (R2
n − 2Rn)η+2 > 0, which is a quadratic function in η.

Its discriminant is R2
n(R

2
n − 4Rn − 4), which is negative for Rn between zero and 2 + 2

√
2 ≈ 4.828. So for

Rn < 2+2
√
2, we obtain that χ̂ < η always holds. For iso-elastic utility, χ̂ < η rearranges to (1−η)ρ > 1−η

when ρ < 1, to (1− η) log(1− η) < 0 when ρ = 1, and to (1− η)ρ < 1− η when ρ > 1. Due to η ∈ (0, 1), all
three inequalities are always satisfied.
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We conclude this section by noting that the income sensitivity of the loss severity plays

a crucial role for the normality of safety investments. As shown in Proposition 9, income

sensitivity expands the range of loss probabilities for which safety is a normal good. What’s

more, we find a critical level of income sensitivity above which the loss probability becomes

irrelevant because the demand for safety is always normal. These results hold for any risk-

averse utility function as long as the degree of risk aversion is monotonic in final wealth. If we

make parametric assumptions about the utility function, we can determine the critical level

of income sensitivity explicitly. It is often low, especially when the level of risk aversion is

not too high and the loss does not put too much final wealth at risk. In these cases, safety is

always a normal good even for losses that are only moderately income-sensitive.

6 Extensions

6.1 Severity risk

One limitation of Ehrlich and Becker’s self-protection model is the assumption of a binary

risk with only two states of the world, loss or no loss. Lee (2010a) shows in the context of self-

insurance that more risk-averse decision-makers may no longer invest more in self-insurance

as soon as multiple loss states are possible (see also Hiebert, 1989; Li and Peter, 2021). One

may thus wonder how our results hold up in a model that allows for multiple loss states. We

consider severity risk in this section to answer this question.

Let L̃ denote the random loss with values in (0, L]. We assume P(L̃ ≤ l) < 1 for all

l < L and P(L̃ ≤ L) = 1 so that we can interpret L as the maximum possible loss. The

decision-maker’s expected-utility objective is then given by

max
s∈[0,s]

U(s; y0, L̃) = p(s)Eu(y0 − s− L̃) + (1− p(s))u(y0 − s), (7)

and the first-order condition for an interior solution s∗ is

Us(s
∗; y0, L̃) = −p′(s∗) · [u(y∗n)− Eu(ỹ∗ℓ )]−

[
p∗Eu′(ỹ∗ℓ ) + (1− p∗)u′(y∗n)

]
= 0. (8)

In the extended model with severity risk, non-increasing absolute risk aversion and log-

convexity of the safety technology continue to ensure the concavity of the objective function in

s, see Footnote 4. We abbreviate random final wealth in the loss state by ỹℓ = y0−s− L̃. The

asterisk indicates the optimal safety level s∗. While we choose the same notation as before,

severity risk affects the choice of s compared to a situation with deterministic loss severity.15

15 Crainich et al. (2016) and Peter (2017) show that severity risk raises the optimal safety investment for im-
prudent decision-makers and has conflicting effects under prudence. We discuss this briefly in Appendix B.2.
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The effect of a change in income on the optimal safety investment follows from the implicit

function rule. We obtain

Usy0(s
∗; y0, L̃) = −p′(s∗) · [u′(y∗n)− Eu′(ỹ∗ℓ )]−

[
p∗Eu′′(ỹ∗ℓ ) + (1− p∗)u′′(y∗n)

]
.

The presence of severity risk does not alter the main economic trade-off. As income increases,

the marginal benefit of safety decreases because the decision-maker has an additional buffer

against losses. At the same time, the marginal cost of safety decreases as well because higher

income reduces the decision-maker’s pain from spending an additional dollar on safety. As in

the case without severity risk, the net effect is indeterminate a priori.

Appendix B.3 shows that Proposition 1 continues to hold under severity risk. A threshold

pc on the loss probability determines whether an increase in income raises or lowers the optimal

safety investment. For DARA utility, the loss probability p∗ needs to exceed the threshold

for safety to be normal, for IARA utility, it needs to fall below the threshold. Under CARA

income effects are absent. Qualitatively nothing has changed although, of course, the size of

the threshold pc depends on the level of severity risk.

For changes in loss severity, let L̃2 and L̃1 be two loss random variables such that L̃2

dominates L̃1 in the sense of first-order stochastic dominance (FSD). We can then interpret

L̃2 as the loss with stochastically higher severity because losses are, on average, higher under

L̃2 than under L̃1. We show in Appendix B.4 that a stochastic increase in loss severity always

raises the optimal safety investment for CARA utility. In general, a probability threshold

p# > 0 arises, and the positive effect prevails if p∗ < p#, just like in Proposition 6(iii). While

we lose the definitive result for IARA, the other results are qualitatively unchanged.

Now consider an income-sensitive random loss, L̃(y0). Assume that the income sensitivity

of the loss severity is a deterministic quantity χ. This is the case if income affects the size of

the average loss but not the randomness surrounding it. If we write L̃(y0) = L(y0) + ν̃ with

Eν̃ = 0, then ∂L̃(y0)/∂y0 = L
′
(y0) is not random. The standard arguments then show that

the sign of ds∗/dy0 coincides with the sign of expression (4) except that we need to replace

u(y∗ℓ ) by Eu(ỹ∗ℓ ), and likewise for u′(y∗ℓ ) and u′′(y∗ℓ ). It then follows with the same arguments

as in Appendix A.9 that income sensitivity makes it more likely for safety to be a normal

good except for the fact that we now need to assume

−
Eu′′(ỹ∗ℓ )
Eu′(ỹ∗ℓ )

> (<) −
u′(y∗n)− Eu′(ỹ∗ℓ )
u(y∗n)− Eu(ỹ∗ℓ )

in case of DARA (IARA). To see why this inequality may fail to hold in the presence of

severity risk, take the case of DARA and let v(y) = Eu(y+(L− L̃)) denote the derived utility

function for the noise associated with severity risk. DARA is preserved under background

risk, see Corollary 3 in Gollier (2001). We thus obtain

−
Eu′′(ỹ∗ℓ )
Eu′(ỹ∗ℓ )

= −v′′(y∗n − L)

v′(y∗n − L)
> −v′(y∗n)− v′(y∗n − L)

v(y∗n)− v(y∗n − L)
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following the arguments in Appendix A.1. Risk aversion implies v(y∗n) < u(y∗n), which lowers

the ratio further, but prudence implies v′(y∗n) > u′(y∗n), which increases the ratio. Therefore,

if the decision-maker’s degree of prudence and/or the level of severity risk are bounded in a

technical sense, our main result stands, and the income sensitivity of the random loss severity

makes it more likely for safety to be a normal good.

6.2 Rank-dependent utility

We now return to the binary risk assumption. Our main analysis is based on expected utility,

which is known to have some descriptive shortcomings (Starmer, 2000). Quiggin’s (1982)

rank-dependent utility allows for probability distortions and is thus more flexible. By now

there is abundant evidence that people’s preferences over risky prospects are not linear in

probabilities. Among many others, Bleichrodt and Pinto (2000) provide evidence from the

laboratory and compare estimates of parametric probability weighting functions. Barseghyan

et al. (2013) find probability distortions in the field for household insurance decisions.

Let w : [0, 1] → [0, 1] be a probability weighting function that is increasing with w(0) = 0

and w(1) = 1. We follow the approach in Baillon et al. (2020) and formulate the decision-

makers rank-dependent utility objective as

max
s∈[0,s]

V (s; y0, L) = w(p(s))u(y0 − s− L) + (1− w(p(s)))u(y0 − s).

Log-convexity of the safety technology p is not strong enough to ensure log-convexity of w ◦p.
If we assume in addition that the elasticity of the probability weighting function is non-

decreasing in the loss probability, w ◦ p is log-convex in s, see Appendix B.5. In this case,

objective function V is globally concave in s as long as absolute risk aversion is non-increasing

(Fagart and Fluet, 2013). A non-decreasing elasticity of the probability weighting function

is equivalent to subproportionality (Segal, 1987), which, in turn, represents a parsimonious

characterization of common-ratio violations (Allais, 1953; Prelec, 1998). Many probability

weighting functions are subproportional over the entire unit interval including Prelec’s (1998)

one- and two-parameter forms, the one proposed by Abdellaoui et al. (2010), the one implied

by Gul’s (1991) disappointment aversion for binary risks, the quadratic form proposed by

Safra and Segal (1998), and the neo-additive form (Chateauneuf et al., 2007).

For rank-dependent utility, all our results continue to hold except that we now need

to compare w(p∗) instead of p∗ against any threshold values. For example, Proposition 1

remains valid by comparing p∗ against w−1(pc), where pc denotes the threshold analyzed

in Sections 2 and 3 and w−1 the inverse of the probability weighting function. Descriptive

decision theory often finds an inverse S-shape of the probability weighting function (Abdellaoui

et al., 2011). This shape involves overweighting of small probabilities and underweighting of

large probabilities with a unique fixed point somewhere between 0.3 to 0.4. The inverse of

the probability weighting function is then S-shaped so that w−1(pc) < (>) pc if the threshold

pc is below (above) the fixed point. One may thus be inclined to conclude that smaller shares
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of final wealth at risk and lower levels of utility curvature suffice to ensure that safety is a

normal good even for fixed loss exposures.

This rationale is incomplete for two reasons. First, the optimal safety investment under

rank-dependent utility is different from the optimal safety investment under expected utility.

Baillon et al. (2020) show that likelihood insensitivity leads to underprevention in the sense

that decision-makers invest less in safety. Ceteris paribus, we thus expect the loss probability

under rank-dependent utility to be higher than under expected utility. This effect makes

it indeed more likely for safety to be a normal good even if losses are not income-sensitive.

However, empirical research finds that utility functions are less concave when allowing for

probability distortions because, loosely speaking, the probability weighting function absorbs

some risk aversion (Selten et al., 1999; Fox et al., 1996; Diecidue and Wakker, 2002). As we

showed in Figures 1(a) and 2(a), the expected-utility threshold pc increases as utility curvature

declines, which then also increases w−1(pc). This makes it less likely for safety to be a normal

good when the loss severity is fixed. So while we find the same qualitative threshold result

under rank-dependent utility compared to expected utility, it is unclear whether the condition

for safety to be normal is more or less likely satisfied when probabilities are distorted.

Nevertheless the fact that the income sensitivity of losses contributes to the normality of

safety investments is unaffected by the presence of probability weighting even if we reduce

utility curvature accordingly. What’s more, the critical levels of income sensitivity in Eq. (5)

and (6) are derived by setting p$ = 0 for DARA and p$ = 1 for IARA. Given that w(0) = 0 and

w(1) = 1, the resulting expressions for χ̂ are the same under rank-dependent utility as under

expected utility. Figure 5 informs that χ̂ is decreasing in utility curvature. Furthermore, to

the extent that likelihood insensitivity reduces safety investments, y∗n increases, which lowers

η. Both effects lower the critical level of income sensitivity that is needed for safety to always

be a normal good. Rank-dependent utility reinforces our main conclusion.

7 Conclusion

In this paper, we studied income effects on the demand for safety to answer the question

whether safety is a normal or an inferior good. When loss severity is fixed, we found that

safety is an inferior good unless preventable losses put a large share of final wealth at risk

and risk aversion is high. This is puzzling because we expected to find the opposite. To

resolve this puzzle, we derived comparative statics of safety with respect to loss severity and

then integrated those results with the income effects on safety. When losses are sufficiently

income sensitive, safety is always a normal good. In practice, little income sensitivity suffices

to achieve this. The more realistic model thus delivers a more intuitive result. Our main

conclusion is robust to the presence of severity risk and is strengthened when allowing for

probability distortions in the rank-dependent utility model. We hope that our results will

prove useful for much-needed empirical work on the demand for safety.
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A Mathematical proofs

A.1 Proof of Proposition 1

Let A(u; y) = −u′′(y)/u′(y) denote the Arrow-Pratt measure of absolute risk aversion for

utility function u at final wealth level y. We find that

dA(vε̃; y
∗
n)

dp∗
=

u′(y∗ℓ )u
′(y∗n)

(p∗u′(y∗ℓ ) + (1− p∗)u′(y∗n))
2
· [A(u; y∗ℓ )−A(u; y∗n)] .

When u has DARA, A(vε̃; y
∗
n) increases in p∗ from A(u; y∗n) to A(u; y∗ℓ ). When u has IARA,

A(vε̃; y
∗
n) decreases in p∗ from A(u; y∗n) to A(u; y∗ℓ ). Furthermore, when A(u; y) is decreasing

or increasing in y, A(vω̃; y
∗
n) lies strictly between A(u; y∗n) and A(u; y∗ℓ ). To see this, take the

case of DARA; we obtain

u′′(y∗n)u
′(y∗n + t)− u′(y∗n)u

′′(y∗n + t) ≥ 0

for all t ∈ [−L, 0] with a strict inequality for t ̸= 0. Integration over [−L, 0] yields

u′′(y∗n)

∫ 0

−L
u′(y∗n + t) dt− u′(y∗n)

∫ 0

−L
u′′(y∗n + t) dt > 0

or equivalently A(vω̃; y
∗
n) > A(u; y∗n). The proof is analogous for A(vω̃; y

∗
n) < A(u; y∗ℓ ), and a

similar argument establishes A(u; y∗ℓ ) < A(vω̃; y
∗
n) < A(u; y∗n) when u has IARA. If A(vω̃; y

∗
n)

lies strictly between A(u; y∗n) and A(u; y∗ℓ ), and if A(vε̃; y
∗
n) is strictly monotonic in p∗ with

endpoints A(u; y∗n) and A(u; y∗ℓ ), then there is a unique p∗ ∈ (0, 1) for which A(vω̃; y
∗
n) =

A(vε̃; y
∗
n). We denote this threshold by pc.

Our arguments so far also show that, when u has DARA, we have A(vε̃; y
∗
n) > A(vω̃; y

∗
n)

when p∗ > pc and A(vε̃; y
∗
n) < A(vω̃; y

∗
n) when p∗ < pc. This proves ds∗/dy0 > 0 in the first

case and ds∗/dy0 < 0 in the second case, which is Result (i). When going to IARA, the

monotonicity of A(vε̃; y
∗
n) in p∗ flips, which shows Result (iii). When u has CARA, then

A(vε̃; y
∗
n) = −Eu′′(y∗n + ε̃)

Eu′(y∗n + ε̃)
= −u′′(y∗n) · Eu′(ε̃)

u′(y∗n) · Eu′(ε̃)
= −u′′(y∗n)

u′(y∗n)
,

and likewise for A(vω̃; y
∗
n). Then Usy0(s

∗; y0, L) is uniformly zero, which is Result (ii).

A.2 Proof of Proposition 2

Let u(y) = y−αy2 with α > 0 small enough to ensure positive marginal utility. We then find

A(vε̃; y
∗
n) =

2α

1− 2α · (y∗n + Eε̃)
and A(vω̃; y

∗
n) =

2α

1− 2α · (y∗n + Eω̃)
.

Therefore, ds∗/dy0 is positive if and only if Eε̃ > Eω̃, which is equivalent to p∗ < 0.5.
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A.3 Proof of Proposition 3

By verifying the integral condition, it is easy to see that ε̃ is an increase in risk over ω̃ in the

sense of Rothschild and Stiglitz (1970) when p∗ = 0.5. Their Theorem 2 then implies that ε̃

is equal in distribution to ω̃ plus noise,

ε̃
d
= ω̃ + κ̃ with E(κ̃|t) = 0 for all t ∈ [−L, 0].

Utility function u is standard if and only if it satisfies DARA and DAP. Both properties are

preserved by the introduction of an independent background risk (see Kihlstrom et al., 1981;

Gollier, 2001, Proposition 23). As a result, the derived utility function vω̃(y) satisfies DARA

and DAP and is therefore risk vulnerable (see Gollier and Pratt, 1996). Consequently,

A(vε̃; y
∗
n) = −Eu′′(y∗n + ε̃)

Eu′(y∗n + ε̃)
= −Eu′′(y∗n + ω̃ + κ̃)

Eu′(y∗n + ω̃ + κ̃)
= −

Ev′′ω̃(y
∗
n + κ̃)

Ev′ω̃(y∗n + κ̃)
> −

Ev′′ω̃(y
∗
n)

Ev′ω̃(y∗n)
= A(vω̃; y

∗
n).

This implies ds∗/dy0 > 0 when p∗ = 0.5. Result (i) in Proposition 1 then yields pc < 0.5

A.4 Proof of Proposition 4

We compute

A(vω̃; y
∗
n) = −1− ρ

y∗n
· (1− η)−ρ − 1

(1− η)1−ρ − 1
for ρ ̸= 1,

A(vω̃; y
∗
n) = − 1

y∗n
· 1

(1− η) log(1− η)
for ρ = 1,

and

A(vε̃; y
∗
n) =

ρ

y∗n
· p

∗(1− η)−ρ−1 + (1− p∗)

p∗(1− η)−ρ + (1− p∗)
.

We then obtain pc by setting A(vω̃; y
∗
n) = A(vε̃; y

∗
n) and solving for p∗. This renders the terms

stated in Proposition 4. If we take the expression for pc for ρ ̸= 1 and take the limit ρ → 1,

we can apply l’Hôpital’s rule to obtain

lim
ρ→1

pc = lim
ρ→1

(1− η)
(
(1− η)ρ · log(1− η) + η

)
(1− η)(1−ρ) · log(1− η)− η2 + (1− η)1+ρ · log(1− η)

=
(1− η)

(
(1− η) log(1− η) + η

)
η
(
(η − 2) log(1− η)− η

) .

This shows that the expression for pc in case of ρ = 1 is consistent with the expression for pc

in case of ρ ̸= 1. The limits for ρ → 0, η → 0, ρ → ∞ and η → 1 are obtained similarly.
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A.5 Proof of Proposition 5

For linex utility we obtain

A(vε̃; y
∗
n) =

kγ2 · E exp
(
− γ(y∗n + ε̃)

)
l + kγ · E exp

(
− γ(y∗n + ε̃)

) and A(vω̃; y
∗
n) =

kγ2 · E exp
(
− γ(y∗n + ω̃)

)
l + kγ · E exp

(
− γ(y∗n + ω̃)

) .
Therefore, A(vε̃; y

∗
n) = A(vω̃; y

∗
n) if and only if E exp(−γ(y∗n+ ε̃)) = E exp(−γ(y∗n+ ω̃)). Using

the definitions of ε̃ and ω̃, we obtain:

E exp(−γ(y∗n + ε̃)) = p∗ exp(−γ(y∗n − L)) + (1− p∗) exp(−γy∗n),

E exp(−γ(y∗n + ω̃)) =
1

γL
[exp(−γ(y∗n − L))− exp(−γy∗n)] .

Setting terms equal and solving for p∗ renders 1
γL − 1

exp(γL)−1 . We use L = ηy∗n and Pℓ =

γy∗ℓ = γ(1 − η)y∗n to show that γL = ηPℓ/(1 − η), which then yields the expression for pc

stated in Proposition 5. The limits for Pℓ → 0, η → 0, Pℓ → ∞ and η → 1 follow easily per

direct computation.

A.6 Proof of Proposition 6

Result (i) follows from Equation 3 because UsL(s
∗; y0, L) > 0 if and only if

−p′(s∗)

p(s∗)
> −

u′′(y∗ℓ )

u′(y∗ℓ )
= A(u; y∗ℓ ).

The left-hand side is the decay rate of the loss probability, the right-hand side is absolute risk

aversion in the loss state. To show Result (ii), rearrange first-order condition (2) as follows:

−p′(s∗) · [u(y∗n)− u(y∗ℓ )]− p(s∗) · [u′(y∗ℓ )− u′(y∗n)] = u′(y∗n).

Positive marginal utility then bounds the decay rate of the loss probability from below because

u′(y∗n) > 0 implies

−p′(s∗)

p(s∗)
> −u′(y∗n)− u′(y∗n − L)

u(y∗n)− u(y∗n − L)
= −

v′′ω̃(y
∗
n)

v′ω̃(y
∗
n)

= A(vω̃; y
∗
n).

Under non-decreasing absolute risk aversion, we have A(vω̃; y
∗
n) ≥ A(y∗ℓ ) following the argu-

ments in Appendix A.1. In other words, non-decreasing absolute risk aversion implies the

necessary and sufficient condition for an increase in the safety investment. This is Result (ii).

Result (iii) is obtained by rearranging the curly bracket in Equation (3). When solving for

p∗, we find that UsL(s
∗; y0, L) > 0 if and only if

p∗ <
u′(y∗ℓ )u

′(y∗n)

−u′′(y∗ℓ )(u(y
∗
n)− u(y∗ℓ ))− u′(y∗ℓ )(u

′(y∗ℓ )− u′(y∗n))
.
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The right-hand side is the threshold p#. Under DARA, its denominator is positive so that

p# > 0. We obtain p# ≥ 1 if and only if (u′(y∗ℓ ))
2 ≥ −u′′(y∗ℓ )(u(y

∗
n)− u(y∗ℓ )). Rearrange to

u′(y∗ℓ )

u(y∗n)− u(y∗ℓ )
≥ −

u′′(y∗ℓ )

u′(y∗ℓ )
⇔

y∗ℓ
L

·
u′(y∗ℓ )

(u(y∗n)− u(y∗ℓ ))/L
≥ −y∗ℓ ·

u′′(y∗ℓ )

u′(y∗ℓ )
,

where the right-hand side is relative risk aversion in the loss state, Rℓ. The first factor on the

left-hand side can be rewritten as (1−η)/η from the definition of η. The second factor on the

left-hand side exceeds unity due to risk aversion, u′(y∗ℓ ) > (u(y∗n) − u(y∗ℓ ))/L. So a sufficient

condition for p# ≥ 1 is that (1− η)/η ≥ Rℓ, which rearranges to η ≤ 1/(1 +Rℓ). This proves

Result (iv). For Result (v), rearrange p# ≥ 0.5 as follows:

y∗ℓ
L

·
u′(y∗ℓ ) + u′(y∗n)

(u(y∗n)− u(y∗ℓ ))/L
≥ −y∗ℓ ·

u′′(y∗ℓ )

u′(y∗ℓ )
.

DARA implies prudence, and under prudence we have 0.5(u′(y∗ℓ )+u′(y∗n)) ≥ (u(y∗n)−u(y∗ℓ ))/L

from Eeckhoudt and Gollier’s Lemma 1. Therefore, 2(1− η)/η ≥ Rℓ is a sufficient condition

for p# ≥ 1/2. We rearrange this inequality to η ≤ 1/(1 + 0.5 ·Rℓ) as stated in the text.

A.7 Proof of Proposition 7

For iso-elastic utility, the curly bracket in Equation (3) is given by

(y∗n)
−ρ(1− η)−ρ(1− ρ)

(y∗n)
1−ρ − (y∗n)

1−ρ(1− η)1−ρ
+

−p∗ρ(y∗n)
−ρ−1(1− η)ρ−1

(1− p∗)(y∗n)
−ρ + p∗(y∗n)

−ρ(1− η)−ρ
for ρ ̸= 1

and by

1

y∗n(1− η)(log(y∗n)− log(y∗n(1− η)))
− p∗

(y∗n)
2(1− η)2

(
1−p∗

y∗n
+ p∗

y∗n(1−η)

) for ρ = 1.

The threshold p# is then obtained by setting the expressions equal to zero and solving for p∗,

which yields the expressions stated in the text. We obtain p# ≥ 1 if and only if η ≤ 1−ρ1/(1−ρ),

and p# ≥ 0.5 if and only if (1− ρ)(1− η)ρ + 1 ≥ ρ(1− η)ρ−1.

A.8 Proof of Proposition 8

For linex utility, direct computation shows that

p# =
(1 + kγ · exp(−γy∗ℓ ))) · (1 + kγ · exp(−γy∗n))

kγ · (γL · exp(−γy∗ℓ )− exp(−γy∗ℓ ) + exp(−γy∗n))
.

We know from Section 3 that γy∗ℓ = Pℓ because absolute prudence is constant for linex utility

and given by γ. Likewise, we obtain γy∗n = γy∗ℓ /(1− η) = Pℓ/(1− η). We can then determine
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relative risk aversion in the loss state as follows:

Rℓ =
kγ2 · y∗ℓ · exp(−γy∗ℓ )

1 + kγ · exp(−γy∗ℓ )
=

kγ · Pℓ exp(−Pℓ)

1 + kγ · exp(−Pℓ)
.

This allows us to express kγ as a function of Pℓ and Rℓ,

kγ =
Rℓ

(Pℓ −Rℓ) exp(−Pℓ)
for Rℓ < Pℓ.

Furthermore, we obtain γL = γy∗n · L
y∗n

=
γy∗ℓ
1−η · η = ηPℓ

1−η . Substitute terms accordingly and

rearrange to obtain the threshold p# stated in the text.

A.9 Proof of Proposition 9

Recall from Appendix A.1 that DARA implies

A(u; y∗ℓ ) > A(vω̃; y
∗
n) > A(u; y∗n). (9)

As explained in the main text, we obtain ds∗/dy0 > 0 if and only if{
−
p∗u′′(y∗ℓ ) + (1− p∗)u′′(y∗n)

p∗u′(y∗ℓ ) + (1− p∗)u′(y∗n)
−
(
−
u′(y∗n)− u′(y∗ℓ )

u(y∗n)− u(y∗ℓ )

)}
+ χ ·

{
u′(y∗ℓ )

u(y∗n)− u(y∗ℓ )
+

p∗u′′(y∗ℓ )

p∗u′(y∗ℓ ) + (1− p∗)u′(y∗n)

}
> 0.

We rearrange this inequality as follows:

p∗
{ =f(χ)︷ ︸︸ ︷
(u(y∗n)− u(y∗ℓ ))(u

′′(y∗n)− (1− χ)u′′(y∗ℓ ))− (u′(y∗ℓ )− u′(y∗n))((1− χ)u′(y∗ℓ )− u′(y∗n))
}

> u′′(y∗n)(u(y
∗
n)− u(y∗ℓ )) + u′(y∗n)((1− χ)u′(y∗ℓ )− u′(y∗n)). (10)

Define the multiplier on p∗ as auxiliary function f(χ) for χ ∈ (0, 1). We then obtain

f ′(χ) = (u(y∗n)− u(y∗ℓ ))u
′′(y∗ℓ ) + (u′(y∗ℓ )− u′(y∗n))u

′(y∗ℓ ),

which is negative under DARA due to (9). Furthermore,

lim
χ→1

f(χ) = (u(y∗n)− u(y∗ℓ ))u
′′(y∗n) + (u′(y∗ℓ )− u′(y∗n))u

′(y∗n),

which is positive under DARA also due to (9). Therefore, f(χ) > 0 for all χ ∈ (0, 1). Define

p$ =
u′′(y∗n)(u(y

∗
n)− u(y∗ℓ )) + u′(y∗n)((1− χ)u′(y∗ℓ )− u′(y∗n))

(u(y∗n)− u(y∗ℓ ))(u
′′(y∗n)− (1− χ)u′′(y∗ℓ ))− (u′(y∗ℓ )− u′(y∗n))((1− χ)u′(y∗ℓ )− u′(y∗n))

;
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we then obtain that ds∗/dy0 > 0 if p∗ > p$ and ds∗/dy0 < 0 if p∗ < p$, as claimed in the

text. To assess the effect of an increase in χ on p$, we calculate the derivative dp$/dχ. The

numerator of dp$/dχ can be simplified to

u′(y∗ℓ )u
′(y∗n) ·

{
u′(y∗ℓ )A(u; y∗n)− (u(y∗n)− u(y∗ℓ ))A(u; y∗ℓ )A(u; y

∗
n)− u′(y∗n)A(u; y

∗
ℓ )
}
.

Under DARA, we can use (9) to bound the curly bracket from above by

A(u; y∗n)(u(y
∗
n)− u(y∗ℓ )) · [A(vω̃; y

∗
n)−A(u; y∗ℓ )] , (11)

which is negative due to (9). Hence, dp$/dχ < 0. Finally, we obtain the critical level χ̂ by

setting p$ equal to zero and solving for χ. Inequality (9) implies χ̂ > 0, and χ̂ < 1 holds

because u′′(y∗n)(u(y
∗
n)− u(y∗ℓ )) < 0 < (u′(y∗n))

2. This proves Result (i).

Result (ii) follows directly from combining Proposition 1(ii) with Proposition 6(ii). For

Result (iii), recall from Appendix A.1 that IARA yields

A(u; y∗ℓ ) < A(vω̃; y
∗
n) < A(u; y∗n). (12)

This implies f ′(χ) > 0 and limχ→1 f(χ) < 0 under IARA for auxiliary function f(χ). Con-

sequently, f(χ) < 0 for all χ ∈ (0, 1), and dividing by the multiplier on p∗ now flips inequal-

ity (10). We thus have ds∗/dy0 > 0 if p∗ < p$ and ds∗/dy0 < 0 if p∗ > p$, as claimed in the

text. Under IARA, the curly bracket in the numerator of dp$/dχ is bounded from below by

(11), which is positive. Therefore, dp$/dχ > 0 under IARA. We obtain the critical level χ̂ by

setting p$ equal to one and solving for χ. Due to (12) and by direct calculation we have

0 < A(vω̃; y
∗
n)−A(u; y∗ℓ ) <

u′(y∗ℓ )

u(y∗n)− u(y∗ℓ )
−A(u; y∗ℓ )

so that χ̂ ∈ (0, 1). This completes the proof of Result (iii).

A.10 Proof of Proposition 10

To show (i), let u(y) = y − αy2 with α > 0 small enough to ensure positive marginal utility

on the relevant domain. We then have u′(y) = 1 − 2αy and u′′(y) = −2α. Threshold χ̂ in

Equation 6 can be rewritten as follows:

χ̂ =
u′′(y∗ℓ )(u(y

∗
n)− u(y∗ℓ )) + u′(y∗ℓ )(u

′(y∗ℓ )− u′(y∗n))

u′′(y∗ℓ )(u(y
∗
n)− u(y∗ℓ )) + (u′(y∗ℓ ))

2
.

For quadratic utility, we have u(y∗n)− u(y∗ℓ ) = L(y0) · u′((y∗n + y∗ℓ )/2) = L(y0) · u′(y∗ℓ/2), where
y∗ℓ/2 is defined as y0 − s∗ − L(y0)/2, and u′(y∗ℓ )− u′(y∗n) = 2αL(y0). Threshold χ̂ becomes

χ̂ =
−2αL(y0)(1− 2αy∗ℓ/2) + (1− 2αy∗ℓ )2αL(y0)

−2αL(y0)(1− 2αy∗ℓ/2) + (1− 2αy∗ℓ )
2

.
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The numerator simplifies to 2α2L(y0)
2, the denominator to 1− 4αy∗ℓ/2 + 2α2

[
(y∗n)

2 + (y∗ℓ )
2
]
.

Relative risk aversion for quadratic utility is given by R(y) = 2αy/(1 − 2αy), and hence we

have 2αy∗n = Rn/(1 +Rn). Recalling that L(y0) = ηy∗n, we then obtain

χ̂ =
1
2η

2R2
n/(1 +Rn)

2

1− 2(1− 1
2η)Rn/(1 +Rn) +

1
2(1 + (1− η)2)R2

n/(1 +Rn)2
,

which can be simplified to the expression in the text by expanding the fraction by 2(1+Rn)
2

and combining terms accordingly.

Result (ii) follows by noting that threshold χ̂ in Equation 5 can be rewritten as follows:

χ̂ =
u′′(y∗n)(u(y

∗
n)− u(y∗ℓ )) + u′(y∗n)(u

′(y∗ℓ )− u′(y∗n))

u′(y∗n)u
′(y∗ℓ )

.

For iso-elastic utility with u(y) = y1−ρ/(1− ρ) for ρ ̸= 1, we then find

χ̂ =
−ρ(y∗n)

−ρ−1((y∗n)
1−ρ − (y∗ℓ )

1−ρ)/(1− ρ) + (y∗n)
−ρ((y∗ℓ )

−ρ − (y∗n)
−ρ)

(y∗n)
−ρ(y∗ℓ )

−ρ
.

Using y∗ℓ = (1−η)y∗n, we reduce the fraction by (y∗n)
−2ρ and expand it by (1−ρ), which yields

χ̂ =
−ρ(1− (1− η)1−ρ) + (1− ρ)((1− η)−ρ − 1)

(1− ρ)(1− η)−ρ
.

Expanding the fraction by −(1−η)ρ then gives the expression in the text. When ρ = 1, utility

is logarithmic, that is, u(y) = log(y) with u′(y) = 1/y and u′′(y) = −1/y2. In this case,

χ̂ =
−(log(y∗n)− log(y∗ℓ ))/(y

∗
n)

2 + (1/y∗ℓ − 1/y∗n)/y
∗
n

1/(y∗ny
∗
ℓ )

.

Using y∗ℓ = (1− η)y∗n, we expand the fraction by (y∗n)
2 so that

χ̂ =
log(1− η) + (1/(1− η)− 1)

1/(1− η)
= (1− η) log(1− η) + η.

As a consistency check, threshold χ̂ in case of logarithmic utility can also be obtained via

l’Hôpital’s rule from the expression for ρ ̸= 1 because

d

dρ
[(1− η)ρ + ρη − 1] = (1− η)ρ log(1− η) + η.

To show Result (iii), let the utility function take the linex form, u(y) = ly − k exp(−γy)

for positive constants k and γ, and l = 1. Per direct computation, we then find

u′′(y∗n)(u(y
∗
n)− u(y∗ℓ )) + u′(y∗n)(u

′(y∗ℓ )− u′(y∗n)) = kγ exp(−γy∗n) · [exp(γy∗nη)− 1− γy∗nη] .
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Using the fact that

kγ =
Rℓ

(Pℓ −Rℓ) exp(−Pℓ)
and γy∗n =

Pℓ

1− η
,

see also Appendix A.8, we obtain the following for the numerator of χ̂:

u′′(y∗n)(u(y
∗
n)− u(y∗ℓ )) + u′(y∗n)(u

′(y∗ℓ )− u′(y∗n))

=
Rℓ

(Pℓ −Rℓ) exp(−Pℓ)
exp

(
− Pℓ

1− η

)[
exp

(
ηPℓ

1− η

)
− 1− ηPℓ

1− η

]

=
Rℓ

(Pℓ −Rℓ)

(
1− exp

(
− ηPℓ

1− η

)(
1 +

ηPℓ

1− η

))
.

The denominator of χ̂ is given by

u′(y∗n)u
′(y∗ℓ ) = (1 + kγ exp(−γy∗n)) (1 + kγ exp(−γy∗n(1− η)))

=

(
1 +

Rℓ

(Pℓ −Rℓ)
exp

(
− ηPℓ

1− η

))(
1 +

Rℓ

(Pℓ −Rℓ)

)
when the utility function is linex. We then obtain the expression for χ̂ in the text by expanding

the fraction by (Pℓ −Rℓ) and rearranging terms.

B Supplementary material

B.1 Illustration of Result (iii) in Proposition 10

Figure 6 illustrates the critical threshold χ̂ for linex utility. If the income sensitivity of the loss

severity exceeds χ̂, the demand for safety is always normal regardless of the loss probability.

Linex utility has two degrees of freedom, relative prudence (in the loss state) and relative risk

aversion (in the loss state). Consistent with Results (i) and (ii) in Proposition 10, we observe

that χ̂ is increasing in η and increasing in risk aversion. By comparing the lines across panels,

we find in addition that χ̂ is decreasing in relative prudence. The black solid line is lower in

Panel (c) than in Panel (b), and lower in Panel (b) than in Panel (a). The black dotted line

is lower in Panel (c) than in Panel (b).

We observe that χ̂ can be larger than η in those cases in which the black line lies above the

blue line of stars. This can also happen for quadratic utility when risk aversion is larger than

a threshold while it cannot happen for iso-elastic utility (see Footnote 14). To shed more light

on this, Panel (d) illustrates the combinations of relative prudence and relative risk aversion

that lead to χ̂ ≥ η for linex utility. The lower the share of final wealth at risk, the smaller

the size of the relevant region in the (Pℓ, Rℓ)-plane. For example, when the loss puts 10% of

final wealth at risk, relative prudence needs to exceed 8.9 and relative risk aversion needs to
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(a) Threshold χ̂ for linex utility
with Pℓ = 1.5 and Rℓ = 0.5

(b) Threshold χ̂ for linex utility
with Pℓ = 3 and Rℓ ∈ {0.5, 2}

(c) Threshold χ̂ for linex utility
with Pℓ = 9 and Rℓ ∈ {0.5, 2, 8}

(d) Combinations of Pℓ and Rℓ

where χ̂ ≥ η for linex utility.

Figure 6: Panels (a), (b) and (c) display the threshold χ̂ for linex utility, see Proposi-
tion 10(iii). The blue line of stars indicates the identity line where χ̂ = η. Panel (d) shows
the combinations of Pℓ and Rℓ where χ̂ ≥ η for linex utility. We consider three values for the
share of final wealth at risk, η ∈ {0.1, 0.2, 0.5}.

be roughly around 6. So while possible, the more realistic case is χ̂ < η. For example, when

we focus on Pℓ ≤ 5, then χ̂ is always below η regardless of the value of relative risk aversion

as long as η ≤ 0.25.

B.2 The effect of severity risk on the optimal level of safety

Let L = EL̃ denote the expected severity level and s0 the safety investment in the absence of

severity risk. Superscript 0 indicates that severity risk is set to zero. The safety level s0 is

characterized by first-order condition

Us(s
0; y0, L) = −p′(s0) ·

[
u(y0n)− u(y0ℓ )

]
−

[
p0u′(y0ℓ ) + (1− p0)u′(y0n)

]
= 0,
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with y0n = y0− s0, y0ℓ = y0− s0−L and p0 = p(s0). Inserting s0 into the first-order expression

in the presence of severity risk yields

Us(s
0; y0, L̃) = −p′(s0) ·

[
u(y0n)− Eu(ỹ0ℓ )

]
−
[
p0Eu′(ỹ0ℓ ) + (1− p0)u′(y0n)

]
,

with ỹ0ℓ = y0 − s0 − L̃. Risk aversion implies Eu(ỹ0ℓ ) < u(E(ỹ0ℓ )) = u(y0ℓ ), and (weak)

imprudence yields Eu′(ỹ0ℓ ) ≤ u′(E(ỹ0ℓ )) = u′(y0ℓ ). In this case, Us(s
0; y0, L̃) > Us(s

0; y0, L) = 0,

and the optimal safety investment increases. Crainich et al. (2016) derive this result.

The more relevant case of prudence introduces conflicting effects. While severity risk raises

the marginal benefit of safety due to risk aversion, it also raises the marginal cost of safety

when the decision-maker is prudent. To resolve this indeterminacy, we solve Us(s
0; y0, L) = 0

for p′(s0), insert it into Us(s
0; y0, L̃), and rearrange to obtain the following:

Us(s
0; y0, L̃) =

[
p0u′(y0ℓ ) + (1− p0)u′(y0n)

]
·

{
u(y0n)− Eu(ỹ0ℓ )
u(y0n)− u(y0ℓ )

−
p0Eu′(ỹ0ℓ ) + (1− p0)u′(y0n)

p0u′(y0ℓ ) + (1− p0)u′(y0n)︸ ︷︷ ︸
=f(p0)

}
.

Auxiliary function f(p0) is the ratio of the marginal cost in the presence of severity risk to

the marginal cost when severity risk is absent. Under imprudence, this ratio is always below

one and the curly bracket is positive regardless of the size of p0. Under prudence, the ratio

exceeds one. We find f(0) = 1, so when the loss probability is small enough, severity risk

always raises the optimal level of safety even for prudent decision-makers. Furthermore,

f ′(p0) =
u′(y0n) ·

[
Eu′(ỹ0ℓ )− u′(y0ℓ )

][
p0u′(y0ℓ ) + (1− p0)u′(y0n)

]2 ,
which is positive under prudence. The higher the loss probability p0, the more likely it is for

the negative effect to prevail. For p0 = 1 we obtain f(1) = Eu′(ỹ0ℓ )/u′(y0ℓ ), which may be

smaller or larger than the ratio of the marginal benefits. If it is smaller, the curly bracket is

always positive regardless of the size of p0 and severity risk increases the optimal safety level.

If f(1) is larger than the ratio of the marginal benefits, there is a probability threshold p⋄ so

that severity risk increases safety for p0 < p⋄ and reduces safety for p0 > p⋄.

Assume a small severity risk. Using second-order Taylor approximations for Eu(ỹ0ℓ ) and

Eu′(ỹ0ℓ ), we find that

f(1) >
u(y0n)− Eu(ỹ0ℓ )
u(y0n)− u(y0ℓ )

if −
y0ℓu

′′′(y0ℓ )

u′′(y0ℓ )
>

y0ℓ
L

·
u′(y0ℓ )

(u(y0n)− u(y0ℓ ))/L
.

The left-hand side is relative prudence. The right-hand side is an inverse measure of the share

of final wealth at risk and a ratio related to the decision-maker’s degree of risk aversion. The

higher the degree of prudence, the higher the share of final wealth at risk, and the lower the
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degree of risk aversion, the more likely it is for there to be a probability threshold at which

the effect of severity risk switches from positive to negative.

We can also turn to CARA utility and consider a severity risk of arbitrary size. Let the

utiltiy function be u(y) = − exp(−ay) for a > 0. We then have Eu(ỹ0ℓ ) = u(y0n) · E exp(aL̃),

u(y0ℓ ) = u(y0n) · exp(aL), Eu′(ỹ0ℓ ) = u′(y0n) · E exp(aL̃), and u′(y0ℓ ) = u′(y0n) · exp(aL). These

relations allow us to simplify the curly bracket in Us(s
0; y0, L̃) as follows:

E exp(aL̃)− exp(aL)(
exp(aL)− 1

) (
1 + p0

(
exp(aL)− 1

)) .
This term is always positive regardless of the size of p0 because the exponential is convex and

aL > 0. For CARA utility, severity risk always increases the optimal safety level.

B.3 Proposition 1 in the presence of severity risk

We solve for −p′(s∗) from first-order condition (8) and substitute. This yields:

Usy0(s
∗; y0, L̃) =

[
p∗Eu′(ỹ∗ℓ ) + (1− p∗)u′(y∗n)

]
·
{
−
p∗Eu′′(ỹ∗ℓ ) + (1− p∗)u′′(y∗n)

p∗Eu′(ỹ∗ℓ ) + (1− p∗)u′(y∗n)︸ ︷︷ ︸
=f(p∗)

−
(
−
u′(y∗n)− Eu′(ỹ∗ℓ )
u(y∗n)− Eu(ỹ∗ℓ )

)}
.

Auxiliary function f(p∗) is a normalized measure of the impact of an increase in income on

the marginal cost of safety. We find that

f ′(p∗) =
u′′(y∗n)Eu′(ỹ∗ℓ )− u′(y∗n)Eu′′(ỹ∗ℓ )[
p∗Eu′(ỹ∗ℓ ) + (1− p∗)u′(y∗n)

]2 .

The sign of f ′(p∗) coincides with the sign of the numerator. It is positive (zero, negative)

when the utility function has DARA (CARA, IARA) because of

E
[
u′(ỹ∗ℓ )u

′′(y∗n)− u′(y∗n)u
′′(ỹ∗ℓ )

]
= E

[
u′(ỹ∗ℓ )u

′(y∗n)︸ ︷︷ ︸
>0

·
(
−
u′′(ỹ∗ℓ )

u′(ỹ∗ℓ )
−
(
−u′′(y∗n)

u′(y∗n)

))]
.

The endpoints of f(p∗) are

f(0) = −u′′(y∗n)

u′(y∗n)
and f(1) = −

Eu′′(ỹ∗ℓ )
Eu′(ỹ∗ℓ )

.

Take the case of DARA utility. For any l ∈ (0, L], the arguments in Appendix A.1 show that

−u′′(y∗n)

u′(y∗n)
< −u′(y∗n)− u′(y∗n − l)

u(y∗n)− u(y∗n − l)
,
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which is equivalent to

−u′′(y∗n)(u(y
∗
n)− u(y∗n − l)) < −u′(y∗n)(u

′(y∗n)− u′(y∗n − l)).

The expectation respects monotonicity, and therefore

−u′′(y∗n)(u(y
∗
n)− Eu(ỹ∗ℓ )) < −u′(y∗n)(u

′(y∗n)− Eu′(ỹ∗ℓ )),

or equivalently

f(0) = −u′′(y∗n)

u′(y∗n)
< −

u′(y∗n)− Eu′(ỹ∗ℓ )
u(y∗n)− Eu(ỹ∗ℓ )

.

This shows that there is a probability threshold pc > 0, at which the sign of Usy0(s
∗; y0, L̃)

switches from negative to positive. However, the arguments in Appendix A.1 no longer allow

us to compare f(1) and −(u′(y∗n)−Eu′(ỹ∗ℓ ))/(u(y∗n)−Eu(ỹ∗ℓ )). As a result, when severity risk

is large, we cannot rule out the possibility that the probability threshold pc exceeds one. The

arguments for CARA and IARA utility are analogous.

B.4 A stochastic increase in loss severity

Let s∗ denote the optimal level of safety in the presence of severity risk L̃1 and let U(s; y0, L̃2)

be the decision-maker’s objective function in the presence of the stochastically higher random

loss L̃2. Let ỹ∗ℓi = y0 − s∗ − L̃i for i = 1, 2 be shorthand for random final wealth in the loss

state for random loss L̃i. Inserting s∗ into the first-order expression for L̃2 yields

Usy0(s
∗; y0, L̃2) = −p′(s∗) ·

[
u(y∗n)− Eu(ỹ∗ℓ2)

]
−
[
p∗Eu′(ỹℓ2) + (1− p∗)u′(y∗n)

]
=

[
p∗Eu′(ỹ∗ℓ ) + (1− p∗)u′(y∗n)

]
·
{
u(y∗n)− Eu(ỹ∗ℓ2)
u(y∗n)− Eu(ỹ∗ℓ1)

−
p∗Eu′(ỹ∗ℓ2) + (1− p∗)u′′(y∗n)

p∗Eu′(ỹ∗ℓ1) + (1− p∗)u′(y∗n)︸ ︷︷ ︸
=f(p∗)

}
.

Loss L̃2 has FSD over loss L̃1 so that ỹ∗ℓ1 has FSD over ỹ∗ℓ2 . Hence, Eu(ỹ
∗
ℓ1
) > Eu(ỹ∗ℓ2) and

u(y∗n)− Eu(ỹ∗ℓ2)
u(y∗n)− Eu(ỹ∗ℓ1)

> 1.

Furthermore, u′′ < 0 implies Eu′(ỹ∗ℓ2) > Eu′(ỹ∗ℓ1) so that f(p∗) > 1 for p∗ > 0 and f(0) = 1.

The numerator of f ′(p∗) simplifies to u′(y∗n) ·
[
Eu′(ỹ∗ℓ2)− Eu′(ỹ∗ℓ1)

]
, which is positive so that f

is increasing in p∗. This implies the existence of a threshold p# > 0 so that Usy0(s
∗; y0, L̃2) > 0

for p∗ < p# and Usy0(s
∗; y0, L̃2) < 0 for p∗ > p#.
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The threshold p# exceeds unity if and only if

f(1) =
Eu′(ỹ∗ℓ2)
Eu′(ỹ∗ℓ1)

<
u(y∗n)− Eu(ỹ∗ℓ2)
u(y∗n)− Eu(ỹ∗ℓ1)

.

This is always the case for CARA utility. If u(y) = − exp(−ay) for a > 0, the inequality

above is equivalent to

exp(−ay∗n) · E exp(aL̃2)

exp(−ay∗n) · E exp(aL̃1)
<

− exp(−ay∗n) + exp(−ay∗n) · E exp(aL̃2)

− exp(−ay∗n) + exp(−ay∗n) · E exp(aL̃1)
.

Cancel exp(−ay∗n) on each side, cross-multiply and simplify to obtain E exp(aL̃2) > E exp(aL̃1).

This inequality is satisfied because exp(aL) is increasing in L and L̃2 has FSD over L̃1. Hence,

p# > 1 under CARA so that Usy0(s
∗; y0, L̃2) > 0 always holds regardless of the size of p∗.

B.5 Log-convexity of w ◦ p

We obtain

(log(w(p(s))))′′ =

(
w′(p(s))p′(s)

w(p(s))

)′

=
w(p(s)) ·

[
w′′(p(s))p′(s)2 + w′(p(s))p′′(s)

]
− w′(p(s))2p′(s)2

w(p(s))2
,

which is nonnegative if and only if the numerator is nonnegative. We rewrite the numerator

as follows:

w(p(s))w′(p(s))︸ ︷︷ ︸
≥0

· (−p′(s))︸ ︷︷ ︸
>0

·
[
−p′′(s)

p′(s)
+ p(s)

w′(p(s))

w(p(s))
· p

′(s)

p(s)
− p(s)

w′′(p(s))

w′(p(s))
· p

′(s)

p(s)

]
. (13)

Log-convexity of p is equivalent to −p′′(s)/p′(s) ≥ −p′(s)/p(s), and the elasticity of the

probability weighting function is non-decreasing in p if and only if

∂

∂p

(
p
w′(p)

w(p)

)
=

w′(p)

w(p)
+ p

w(p)w′′(p)− w′(p)2

w(p)2
=

w′(p)

w(p)
·
[
1− p

w′(p)

w(p)
+ p

w′′(p)

w′(p)

]
≥ 0.

Given that w is increasing, this implies for the square bracket to be nonnegative. It follows

that the square bracket in (13) exceeds(
−p′(s)

p(s)

)
·
[
1− p(s)

w′(p(s))

w(p(s))
+ p(s)

w′′(p(s))

w′(p(s))

]
≥ 0,

so that (log(w(p(s))))′′ ≥ 0 as desired.
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