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We develop a holistic model framework of insurance markets for extreme event risk. Com-
panies can cede their extreme event risk to insurers, who, in turn, can purchase reinsurance
and/or place risk in the capital market. In addition, we introduce a governmental agency
that may provide backstops for the highest loss layers. We parametrize the model to reflect
the particularities of natural disasters, pandemics, and cyber catastrophes. Our results show
that, particularly for the most extreme events, government backstops in the highest loss lay-
ers are necessary for a private insurance market to share heavy tail risk in the first place.
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1 Introduction

The optimal risk transfer for individuals and societies has been a formative topic of insurance
economics since the first fundamental contributions of Arrow (1963), Mossin (1968), Smith
(1968) and others. Over the last 20 years, especially in light of increasing natural catas-
trophes and terror risks, the discussion around risk pooling and public-private partnerships
has emerged (see, e.g., Kunreuther (2002) and Kunreuther (2015)). Recently, governments
undertake huge efforts to curb the coronavirus spread and to avoid the collapse of the whole
economy, again leading to the question whether an ex-ante pooling of risk could be better
than an ex-post financing via taxpayers (see, e.g., Gründl et al. (2021)). Forward-looking, a
large part of the future risks will be generated in the digital economy, with great concerns
on potential extreme cyber scenarios with accumulation risk (see, e.g., Biener et al. (2015)),
again leading to questions of insurability and optimal risk sharing.

So far, there is no standard design for the various risk transfer mechanisms across differ-
ent risk categories and a consistent analysis within a model or conceptual framework. We
aim to provide this. We look at various forms of risk transfer (insurance and reinsurance,
alternative risk transfers (especially cat bonds), public-private partnership) and different risk
categories (”normal” cat risks such as Nat Cat and ”extreme” cat risks such as pandemic or
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cyber). The key difference between these categories is mainly the loss distribution and the
correlation with the capital market (and thus with the economy’s evolution in general).

We consider a microeconomic model of the decision-making problem faced by companies,
(re)insurers, investors in the capital market and a sovereign government. Building on various
individual pieces from the literature (e.g., Zanjani (2002), Froot and O’Connell (2008)), we
develop a consistent conceptual setup to study how different hedging strategies of insurers
affect the hedging of companies. We extend the existing literature by analyzing a more real-
istic model framework; e.g., Froot and O’Connell (2008) look at a risk transfer in the form of
a stop loss for simplicity, where we focus on the more realistic case of an excess of loss (XL)
contract. Empirically motivated we simulate different risk categories to provide a realistic
view of real-world decision making and vary all input parameters to study the sensitivity of
our results and to identify the critical parameters. We analyze how (and where) the govern-
ment can influence an existing market equilibrium. In this context we argue that the finding
by Arrow and Lind (1970), where governments should evaluate projects from a risk-neutral
perspective, does not necessarily apply to financially constrained countries.

The results show the value of insurance, without and with risk pooling and diversification
opportunities. The capital available for risk coverage increases when we incorporate rein-
surance and the capital market; however, the extra money is only available if risk adequate
cost of capital can be earned. The use of diversification strongly depends on the type of risk
(e.g., natural events tend to be regional and can be diversified globally; a pandemic cannot).
A key is the correct modelling of the cost of capital - in a consistent way for the market
participants we consider.

The structure of the paper is as follows. In section 2, we provide the model framework. We
start with a simple excess of loss contract between a company and an insurer. Afterwards we
look at the pricing, the cost of capital and diversification opportunities, followed by adapting
the model by reinsurance, the capital market, and the government. In section 3, we calibrate
the model with economic data and present the results. Section 4 concludes.

2 Model

We first consider the situation that a company can hedge its extreme event risk with an
insurer and that no other risk transfer options are available. In the second step, we look at
how the availability of further risk transfers (e.g., through reinsurance or insurance-linked
securities (ILS)) influences the contract between the company and the insurer. In the third
step, we analyze how the strategy of the company and insurer changes when the government
enters. To keep the results tractable we consider a single-period model, which can be ex-
tended though to a multi-period setup.

Mayers and Smith (1982) and Kunreuther et al. (1993) find that companies and (re)insurers
exhibit risk-averse behavior when faced with uncertain and ambiguous risks. Mayers and
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Smith (1990) argue for property/liability insurers that the transaction costs associated with
bankruptcy make risk-averse behavior rational and explain the demand for reinsurance.
Therefore, we model the hedging decision of the company and insurer through a utility
function to reflect risk aversion. Also the modern risk management literature argues that
decision making in companies can be considered as ”quasi”-risk averse because of market
frictions such as bankruptcy costs (see Froot et al. (1993)).

2.1 Modeling of payments from company and insurer

A company seeks coverage against a loss L in exchange for a premium π. The company
accepts an amount of R as a retention. Any loss below remains by the company (or by other
coverage). Additional, there is a detachment point K, above is no more protection possible.
R and K are thus the lower and upper protection levels. The following random variable
defines the loss of the company:

X(R,K) =


L if L < R

R if R ≤ L ≤ K

R + (L−K) if K < L

(1)

or

X(R,K) = min(L,R) +max(L−K, 0),

and the following random variable defines the payoff of the insurer to the company (if the
insurer is not insolvent):

Y (R,K) =


0 if L ≤ R

L−R if R < L ≤ K

K −R if K < L

(2)

or

Y (R,K) = max(L−R, 0) +min(K − L, 0).

2.2 Company and insurer

2.2.1 Modeling the strategy of companies

We define Ecom
0 as the initial equity of a limited liability company and Ecom

1 as the terminal
equity. rcom is the company’s average yield on equity.1 The company expects a stochastic
loss L at time t = 1 and has at t = 0 the possibility to buy an insurance contract with payoff
Y by paying a premium π. The premium is charged directly. The company is free to choose
the retention R and the cap K. In the case of an insurer’s insolvency the difference between

1We will calculate rcom deterministically. If the insolvency risk of the firm should also be taken into
account, rcom can be defined stochastically.
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the contractual payoff Y (R,K) and the actual payoff is denoted as Dins(R,K). Section 2.2.3
specifies Dins in more detail. The company’s equity in t = 1 can be written as

Ecom
1 (R,K) = (1 + rcom)(Ecom

0 − π)− L+ Y −Dins (3)

= (1 + rcom)(Ecom
0 − π)−X −Dins.

In case (1 + rcom)(Ecom
0 − π)−X −Dins ≤ 0 the company is bankrupt.2

To find the optimal hedging policy, we define the company’s utility as U
(
max(Ecom

1 , 0)
)
,

where U(·) is a company-specific utility function depending on the remaining equity. So, the
company finds the optimal hedging decision by maximizing its expected utility E[U ] through
the hedging variables R and K by

max
R,K

E[U
(
max(Ecom

1 (R,K), 0)
)
].

2.2.2 Modeling the strategy of insurer

We define Eins
0 as the initial equity of the insurer. The insurer receives in t = 0 the premium

π and pays in t = 1 the loss Y . The equity and premium can be invested at a risk-free
rate rf , since insurance companies hold a large proportion of fixed-income securities in their
portfolios, see, e.g., Trottier (2017). Additionally, the insurer has costs c(Eins

0 , Y ). We define
the terminal equity as

Eins
1 = max

(
(1 + rf )(E

ins
0 + π(R,K)− c(Eins

0 , Y ))− Y (R,K), 0
)
. (4)

In case (1 + rf )(E
ins
0 + π(R,K)− c(Eins

0 , Y ))− Y (R,K) ≤ 0, the insurer is bankrupt.

We define the insurer’s utility as U ins
(
Eins

1 (R,K)
)
, where U ins(·) is an insurer-specific

utility function depending on the remaining equity. The insurer maximize its utility through

max
R,K

E[U ins
(
Eins

1 (R,K)
)
].

2.2.3 Modeling the pricing of insurance policies

Zanjani (2002) considers three key assumptions for pricing in catastrophe insurance. First,
because of the uncertainty in average loss, insurers may default. Second, it is costly for
the insurer to hold capital and third, the risk of insolvency matters for the costumer.
The first point is based on the heavy tail distribution of extreme events. The second
point refers to the amount of the insurer’s initial capital Eins

0 . Therefore, the premium
includes a share of the capital cost. The last point is the probability that the insurer gets
bankrupt. In this case, the company does not receive the total amount of the insured loss.
Furthermore, the premium includes operational costs k. We define the cost function as

2For conceptual reasons we omit the maximum operator max(Ecom
1 (R,K), 0) here.
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c(Eins
0 , Y ) = capital cost(Eins

0 , Y ) + k.

The expected payoff of the insurer to the company can be written as

E[Y ] =
(
P(L > R)− P(L > K)

)
E[L−R|R < L ≤ K] + P(L > K)(K −R).

In the case of insurer’s insolvency, the company might not receive the total contractual payoff
Y . Thus, the difference between the contractual payoff and the realized payoff is

Dins = max
(
0, Y − E[Y ]− E[Eins

1 ]
)

(5)

= max
(

0, Y −
(
(1 + r)(Eins

0 + π(R,K)− c(Eins
0 , Y )

))
.

Following Zanjani (2002), we search for a given R and K the premium π and initial equity
Eins

0 which solve

π = B0

(
E[Y ]− E[Dins]

)
+ c(Eins

0 , Y ), (6)

where B0 = 1
1+rf

is the price of a one-year zero-coupon bond with principal 1. In the fol-

lowing, we use B0 as a discount factor. The first term in the bracket describes the expected
payoff of the insurance contract; the second term in the bracket is the adjustment in case of
insurers’ insolvency; the last term outside the bracket is the costs. We show in Appendix A
that equation 6 has no closed-form solution since π also occurs in Dins.

We define with

Eins
1− = (1 + rf )

(
Eins

0 + π(R,K)− c(Eins
0 , Y )

)
the equity of the insurer directly before the loss occurs. Insurance companies are forced to
hold a minimum capital, so we consider Mq as a statistic of regulatory risk measurement
depending on Y . Following, RCR(Y ) denotes the regulatory capital requirement for risk Y .3

In the analysis, we consider both the case of a mono-line insurer as well as the case that the
insurer holds a portfolio P of other insurance contracts (multi-line insurer). The insurer’s
portfolio may affect the regulatory capital requirement needed for the new risk.4 In general
Eins

1− ≥ RCR(Y ) must hold.

Finally we find the premium π and the initial equity Eins
0 through5

(π,Eins
0 ) = argminπ,Eins

0
|π −B0

(
E[Y ]− E[Dins]

)
− c(Eins

0 , Y )|
subject to Eins

1− ≥ RCR(Y ) (7)

π,Eins
0 ≥ 0.

3In the context of European Union insurance companies, it could be the value at risk at the 99.5% level
of Y ; in Swiss insurance companies, it could be the expected shortfall at the 99% level of Y .

4In case of a mono-line insurer RCRmono(Y ) = Mq(Y ). In case of a multi-line insurer RCRmulti(Y ) =
Mq(Y + P) −Mq(P) as the regulatory capital requirement already exists for the existing portfolio. When
P = 0, RCRmulti = RCRmono holds. Should an existing portfolio and the new loss (partially) diversify, the
regulatory capital requirement should decrease.

5The objective function can also be written down as
(
π −B0E[Y ]

)
+ E[Dins]− c(Eins

0 , Y ). The premium
and the equity have to be chosen so that the tradeoff between risk premium, default and cost of capital
balance out. Thus, the premium resp. the equity cannot reach unrealistic values.
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2.2.4 Capital costs

Following Zanjani (2002), the total cost of capital is a decomposition of a frictional compo-
nent and a risk component. The frictional component combines taxes and other frictions like
additional monitoring, agency, or liquidity costs associated with the insurer’s investment.
These costs are independent of the risk and, according to Zanjani (2002), linear increasing
with the amount of initial equity Eins

0 .6 The frictional cost per unit of capital we denote fol-
lowing with αins. Frictional costs have a large impact on the risk management of (re)insurers
and should therefore be adequately quantified, see, e.g. Yow and Sherris (2008). The risk
component results from the relationship between insurance liabilities and the capital market.
It represents the compensation demanded by capital holders for the coverage, according to
the relationship between the covered risk and the capital market. Therefore, this component
does not depend directly on the amount of initial equity, but on the risk and thus affects the
capital required. We define µrisk(R) as risk cost per unit of capital, depending on the reten-
tion R. Braun et al. (2021) show that only the probability of the first loss is of importance
for risk costs. Therefore µrisk does not depend on K. However, the cap is included in the
calculation of the capital Eins

0 . We define the cost of capital through

capital cost =frictional costs+ risk costs

:=rf · Eins
0 + αins · Eins

0 + δ · µrisk(R) · Eins
0 .

where delta is a weighting factor for diversification and is calculated by δ = RCRmulti(Y )
RCRmono(Y )

=
Mq(Y+P)−Mq(P)

Mq(Y )
. This means that only the portion of the risk not already present in the portfo-

lio is considered. We follow the idea of Hann et al. (2013), which defines the cost of capital as
the weighted sum of all company segments. Diversification is, in general, an important point
of discussion. The literature shows that insurers operating in more volatile business areas do
not necessary diversify more, see, e.g., Berry-Stölzle et al. (2012), and non-diversified insurer
consistently outperform diversified insurers, see e.g., Lamont and Polk (2001). The corporate
finance literature shows that there is a loss of value for companies through diversification,
see, e.g., Lang and Stulz (1994), Berger and Ofek (1995), Graham et al. (2002), Mansi and
Reeb (2002),Liebenberg and Sommer (2008). On the other side, Yan (2006) shows higher
valuations for diversified companies when external capital is more costly and Hann et al.
(2013) examine that diversified firms have a lower cost of capital and additional, diversified
firms with less correlated segment cash flows have a lower cost of capital.

For catastrophe losses, Froot et al. (1995) and others argued that this kind of loss is
uncorrelated with the capital market. Moreover, empirical studies like Cummins and Har-
rington (1985) found estimates close to zero for more general insurance-related betas. We
conclude that for these types of risks the cost of capital is not driven by covariation with
capital market returns, so µrisk ≈ 0, and taxation and other constraints are the main cost
drivers, so capital cost = frictional costs := (rf + αins)Eins.

6Fixed costs are not considered here as they are included in the operational costs k.
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However, with extreme events, we can no longer assume uncorrelatedness to the capital
market, and thus higher capital costs must be expected. Also, the diversification effect
within the insurance portfolio is significantly limited, which directly impacts the insurer and
reinsurer.7

2.2.5 Interaction Company and Insurer

Based on the models in the previous sections, an optimal tradeoff between the company and
the insurer would maximize the company value of both. We show in appendix A that this is
the case when we find a R which solve

E[UEcom
1

] =
−E[UEcom

1
1(L≥R)]− E[UEcom

1

dDins

dR
]

(1 + rcom) dπ
dR

, (8)

E[U ins
Eins

1
] =
−E[U ins

Eins
1
1(L≥R)]

(1 + rf )(
dπ
dR
− dc

dR
)
,

and a K which solve

E[UEcom
1

] =
E[UEcom

1
1(L>K)]− E[UEcom

1

dDins

dK
]

(1 + rcom) dπ
dK

, (9)

E[U ins
Eins

1
] =

E[U ins
Eins

1
1(L>K)]

(1 + rf )(
dπ
dK
− dc

dK
)
.

Lemma 1. The system of equations 8 and 9 has no common solution. There is no R∗ and
K∗ that optimizes the utility of the company and the insurer.

Proof. From an economic point of view, aR∗ andK∗ that optimizes the utility of the company
and the insurer would imply that the highest possible utility for the company is also the profit-
maximizing policy for the insurer. This is controversial since the insurer finds its optimum
where the ratio of premium to payout (i.e., the risk premium) is highest, while the company
has the highest utility when the ratio is low. From a mathematical point of view, we have
two unknowns for four equations. R and K are linear in our model and a linear system of
equations has an unique solution only if the number of unknowns and equations is identical,
it follows that the system is not solvable per se. A detailed mathematical proof is in the
appendix A.

Given lemma 1, we reconsider the insurer’s strategy following Froot and O’Connell (2008)
and we assume that the insurer acts in a competitive market. Thus, the insurer creates an
area of supply where the company chooses the utility-maximizing product. Two things are
essential for the insurer:

7Note that cat losses are probably uncorrelated to the capital market, but general non-cat insurance losses
could be assumed to be correlated to the capital market since there is a link between economic activity and
activity in the insurance market.
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1. The insurer only offers products with a positive expected return,

E[Eins
1 ] ≥ (1 + rf )E

ins
0 := Eins

bound.

2. The insurer prices its products subject to regulatory measures and its portfolio,

Eins
1− ≥ RCR(Y ).

We define the area of supply as

Gins :=
{
Eins

0 , π : (Eins
0 , π) ∈

(
Eins

1− (R,K)−RCR(Y (R,K)) ≥ 0∧

E[Eins
1 (R,K)] ≥ Eins

bound

)}
.

Even if the insurer prices its products actuarial fair under the points above, e.g., π =
B0E[Y −Dins], according to Doherty and Schlesinger (1990) the company would not choose
full coverage. However, a look at equation 6 shows that the pricing is not actuarial fair, e.g.,
π > E[Y − Dins]. The company searches in the supply space for the retention R∗ and the
cap K∗, which has the best tradeoff between price and coverage by maximizing the utility.
The optimization problem

(R∗, K∗) := argmaxR,K U(R,K)

subject to (Eins
0 , π) ∈ Gins (10)

R ≥ 0

K > R

expresses this situation, where (Eins
0 , π) solves problem 7.

2.3 Reinsurer, capital market and government

2.3.1 Modeling the strategy of reinsurer and capital market

We define the stochastic loss of the insurer as Lins := Y (R,K) and include the opportu-
nity of sharing (a part) of the loss with a reinsurer or with the capital market. In general,
there are several possibilities for trading between these parties. To avoid overloading the
model, we concentrate on an excess of loss reinsurance contract and an indemnity Catastro-
phe Bond. However, this does not limit our model. Other products can be added or removed.

For sharing risk with a reinsurance company, we define an excess of loss reinsurance
contract with a retention Rre and a cap Kre. The payoff Y re(Rre, Kre) to the insurer is
analogous to equation 2. The premium is denoted by Πre(Rre, Kre).
We write the terminal equity of the reinsurer as

Ere
1 = max

(
(1 + rf )(E

re
0 + Πre(Rre, Kre)− c̃(Ere

0 , Y
re))− Y re(Rre, Kre), 0

)
8



with Ere
0 as the initial reinsurer’s equity and c̃(Ere

0 , Y
re) as a cost function similar to c(Eins

0 , Y ).

Following section 2.2.3, we define the premium for the reinsurance contract as a tradeoff
between insolvency risk and cost of capital. In the case of reinsurer‘s default, the insurer
receives the amount Y re −Dre, where Dre is the difference between the contractual and re-
alized payoff, defined as in equation 5.

Analogous to optimization problem 7, we define the premium Πre through

(Πre, Ere
0 ) = argminΠ,Ere

0
|Π−B0

(
E[Y re]− E[Dre]

)
− c̃(Ere

0 , Y
re)|

subject to Ere
1−(Rre, Kre) ≥ RCR(Y re)

Π, Ere
0 ≥ 0,

where Mq(Y
re(Rre, Kre)) is a risk measurement connected with regulatory restrictions.

Following Froot and O’Connell (2008), the reinsurer is in a competitive market. The
reinsurer creates an area of supply where the insurer chooses the utility-maximizing product.
This space is defined by

Gre :=
{
Ere

0 ,Π
re : (Ere

0 ,Π
re) ∈

(
Ere

1−(Rre, Kre)−RCR(Y re) ≥ 0∧

E[Ere
1 (Rre, Kre)] ≥ Ere

bound

)}
with

Ere
bound = (1 + rf )E

re
0 ,

Ere
1− = (1 + rf )(E

re
0 + Πre − c̃).

We expand the model by including the capital market since it can be considered more
risk-bearing than a (re)insurer due to its volume and the risk affinity of investors. We look at
an indemnity Catastrophe Bond (Cat Bond) following the standard one-period model. The
insurer can enter a contract with the investors in the capital market at t = 0 by paying a
premium Πcm and receiving Y cm in t = 1. Y cm has an excess of loss design, see equation 2,
depending on a retention Rcm and a cap Kcm. Additionally, Y cm is fully covered, so there
is no positive default probability, and the capital market is competitive. The insurer finds
a supplier for all possible Rcm and Kcm combinations and can choose the best match for itself.

In time t = 0, the investors pay a Cat Bond notional N to a trust account which generates
interest at the risk-free rate. Since the payout of the capital market is fully covered, the
notional is N = Kcm −Rcm. In time t = 1, the insurer receives Y cm from the trust account,
and the investors get the

1. the rest of the trust account N − Y cm,

2. the annual earned interest of the trust account rfN and
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3. a risk premium sN , where s is the Cat Bond spread.

Point 1 is thereby the Cat Bond principal and points 2 and 3 are the Cat Bond coupon, so
P = (N − Y cm) and C =

(
rf + s

)
N . The investor receives the payments from points 1 and

2 from the trust account, and only point 3 is a payment from the insurer. Therefore, point
3 (risk-adjusted discounted) is the premium paid by the insurer. The Cat Bond price CB is
defined as the present value of the future cash-flows, so

CB =
1

1 + γ

(
E[P ] + C

)
=

1

1 + γ

(
E[N − Y cm] + C

)
=

1

1 + γ

(
C +N − E[Y cm]

)
=

1

1 + γ

(
(rf + s)N +N − E[Y cm]

)
=

1

1 + γ

(
(1 + rf + s)N − E[Y cm]

)
,

where γ is a risk-adjusted discount rate and γ ≥ rf holds. γ is an exogenous variable and
can be derived from observable Cat Bond yields (e.g., secondary market) or an asset pricing
model. As mentioned, the premium Πcm the insurer pays is the risk-adjusted discounted
spread 1

1+γ
sN . So, we transform the equation to

Πcm :=
1

1 + γ
sN = CB − 1 + rf

1 + γ
N +

1

1 + γ
E[Y cm], (11)

where CB − 1+rf
1+γ

N defines the risk premium and 1
1+γ

E[Y cm] is the risk adjusted expected
payoff.

The platform Artemis (2022) shows an average multiple8 of around 2.5 for the year 2021.
This means that the premium equals Πcm = 2.5

1+γ
E[Y cm] (and thus CB− 1+rf

1+γ
N = 1.5

1+γ
E[Y cm]).

Unfortunately, the assumption that the risk premium is only a multiple of the expected loss
is too simple. In general, the risk premium has a frictional term and a risk term analogous
to the cost of capital in section 2.2.4. To our knowledge, there is yet no model that explains
these frictions in economic terms. We address this aspect in more detail in section 3.

2.3.2 Interaction Company, (Re) Insurer and capital market

We define

Ỹ (R,K,Rre, Kre, Rcm, Kcm) = Y (R,K)− Y re(Rre, Kre)− Y cm(Rcm, Kcm)

8The multiple is the ratio of how many times the expected loss the investors are receiving in t = 1.
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and

Π = Πre + Πcm.

Ỹ together with Dre(Rre, Kre) is the loss which remain by the insurer and Π = Πre + Πcm is
premium paid by the insurer for hedging. We rewrite the terminal equity of the insurer to

Ẽins
1 = max

(
(1 + rf )

(
Eins

0 + π̃ − Π− c(R,K,Eins
0 )
)
− Ỹ −Dre, 0

)
, (12)

where π̃ is the premium paid by the company to the insurer. In general, π and π̃ can differ.
Note, Y in equation 5 changes to Ỹ . For a given R and K, we find the insurer’s optimal
hedging strategy W (R,K) by solving

W (R,K) := argmaxRre,Kre,Rcm,Kcm U ins(Ẽins(Rre, Kre, Rcm, Kcm))

subject to (Ere
0 ,Π

re) ∈ Gre

Rre ≥ 0

Kre > Rre

Rcm ≥ Kre

Kcm > Rcm,

where (Ere
0 ,Π

re) solves the optimization problem for the premium.

Assuming a fully competitive primary insurance market, the insurer cannot pass costs
resulting from its hedging to the company.9 With knowing the optimal hedging strategy of
the insurer, we update the supply space to

G̃ins :=
{
Ẽins

0 , π̃ : (Ẽins
0 , π̃) ∈

(
Ẽins

1− (R,K,W )−Mq

(
Ỹ )
)
≥ 0∧

E[Ẽins
1 (R,K,W )] ≥ Ẽins

bound

)}
and adjust optimization problem 10 to

(R∗, K∗) := argmaxR,K U(R,K)

subject to (π̃, Ẽins
0 ) ∈ G̃ins (13)

R ≥ 0

K > R

π ≥ π̃,

where (π̃, Ẽins
0 ) solves the optimization problem for the premium.

9For the interaction between insurer and company, Π is replaced by the fair premium E[Ỹ −Dre].
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2.3.3 How to involve the government?

The literature offers various theories on government involvement in the market. Cummins
(2006) describes three public policy theories about government’s role in addressing market
failures in the insurance industry: laissez-faire, public interest, and market enhancement.

Laissez-faire means that any market-based equilibrium, irrespective of how imperfect,
provides a more efficient allocation of resources within the economy than an equilibrium
involving government intervention. Stigler (1971) argues in this context that a government
intervention in markets results primarily from the rent-seeking behaviour of special interest
groups. The public interest theory suggests that market failures can lead to suboptimal
allocation of resources and that government intervention targeted at addressing the market
failures can improve welfare. Although laissez-faire policy suggests that private sector coor-
dination is optimal, public interest theory suggests that, in specific instances, the government
can improve upon the market equilibrium by substituting for private sector coordination. The
market enhancement theory takes a middle position. A conclusion of Ibragimov et al. (2009)
is that government support in helping to reach a coordinated diversification equilibrium may
play an important role in maintaining functioning markets for catastrophe insurance. Market
failures can create suboptimal allocations of wealth and private sector coordination is not
always effective. According to their reasoning, public policy helps to reach a coordinated
diversification equilibrium. In the field of natural catastrophes or terrorism, we can already
see that it is challenging to build up a market without the government (see, e.g., Lakdawalla
and Zanjani (2005),Cummins (2006)). If a market does not exist, the government might
need to cover the loss due to political pressure or to prevent the economy from collapsing.
One example is the Corona pandemic, where (especially in economically strong countries)
the taxpayer took over a significant portion of the loss. So, the government might provide
early incentives to encourage market development to reduce costs for the taxpayer at the time
of the event and protect the economy. We follow here the thoughts of Ibragimov et al. (2009).

Government’s policy may depend on political, economic, social, or media factors. It may
be difficult to predict (and could also be country-specific) what kind of help is supported by
the broad public.10 This could lead to investments that promise short-term survival but cost
the taxpayer long-term. A prediction of actions could be derived using the model of Bryson
et al. (2006), which describes that multiple parties in society - i.e., nonprofits, the media, the
community, and the government - must work together to address challenges effectively and
humanely. Besides, following Arrow and Lind (1970), at least economically strong countries
are acting risk-neutral.

Generally, there are direct and indirect ways of action. Direct actions give money into the
market, whereas indirect actions try to influence the market through a third party, e.g., gen-
eral reduction of (minimum capital) requirements may support the development of a market.
Also, the government could support the creation of alternative risk transfer instruments, e.g,

10For example, whether it is more likely that support for small and medium-sized companies or large
companies is accepted.
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captives.11 Another issue is the perception of risk within the population. The government
can impact this, e.g., through special information programs.12 Viscusi (1995) shows that
in some cases, the structure of how government actions feed into the risk-belief function is
essential. So, determining the magnitude of the impact is also an important issue and not
just the direction.13 However, we do not discuss indirect measures here and focus on the
direct measures.

Most of the criticism of government compensation focuses on ex-post compensation on an
ad hoc basis, see, e.g., Epstein (1996) or Langendonck (2007). Following Harrington (2000),
ex-post government relief reduces incentives to purchase insurance. Bruggeman et al. (2012)
proposed a variety of forms for ex-ante government intervention, in contrast to the ex-post
and ad-hoc approach. (1) the government can rely on the private insurance market (which
means no government action is taken). (2) the government can offer compulsory insurance,
which truncates the damage L (or in the case of fully comprehensive insurance, it eliminates
the private insurance market). (3) the government can also provide catastrophe insurance
itself or underwrite catastrophe losses through an additional layer of insurance, such as a
reinsurer. Table 1 gives an overview of the government’s actions we consider in this paper.
Additionally, Bruggeman et al. (2012) thinks about new forms of government intervention,
such as acting as a lender of last resort or a combination of the possibilities.

Table 1: Overview of government’s actions considered in this paper

Government’s action time
Relying on private insurance market -

Direct compensation of disaster victims (disaster relief) ex-post
(Partly) compulsory insurance (disaster relief) ex-ante

Providing coverage as a (re)insurer (risk pooling) ex-ante

We denote with ω the government decision variable. Optimization problem 13 is adjusted
to

(R∗, K∗) := argmaxR,K U(R,K, ω)

subject to (π̃, Eins
0 , ω) ∈ G̃ins (14)

R ≥ 0

K ≥ R,

11Captives allow (large) companies to access the reinsurance market and thus skip expensive primary
insurers. Captives are especially interesting when there is a hardened (or no) market.

12Viscusi (1995) shows that biases in risk perception potentially have a major impact on insurance and risk
behaviour. Slovic et al. (2016) indicates that disasters are systematically misjudged among the population.

13Misperceptions dramatically affect the trade-off between compensating differences and the magnitude of
the loss, but only slightly affect the trade-off between compensating differences and the magnitude of the
probability.
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where (π̃, Eins
0 ) solves the optimization problem for the premium. Summarized, we look for

the strategy that maximizes the company’s utility knowing the government’s action ω.

Example 1. (Government’s decision)
We denote with A(I(ω)) the government’s return on its action, where I(ω) is the government
investment (e.g., a stimulus package in t = 0). We assume that the government makes an
optimal decision concerning its action function, so Aω = 0 is fulfilled as a necessary condi-
tion and Aω,ω < 0 as a sufficient condition. Accordingly, the structure of A is essential, but
especially socioeconomic processes or political self-interests are difficult to represent mathe-
matically. Looking only economic factors, as proposed in Arrow and Lind (1970), the action
function can be defined as A(I) = ψ(b, ω)−I(ω). b is the input of the company to the economy
of the country and ψ weight this input (like a utility function). At this point, the importance
of the government’s economic situation becomes obvious. Economically constrained countries
are limited in their investment opportunities. This can lead to the fact that the optimal strat-
egy ω∗ cannot be implemented since the related investment I(ω∗) is above the possibilities.
Economically strong countries might not have these constraints. Furthermore, economically
strong countries could tend to act in a risk-neutral way, see, e.g., Arrow and Lind (1970). A
risk-neutral evaluation leads to ψ(·) = E[·]. In contrast, economically weaker countries might
evaluate ψ(·) differently. 14

Example 2. (disaster relief)
Charpentier and Le Maux (2014) presents a model in which one insurer fully covers all claims.
In the case of insolvency of the insurer, the government distributes the default loss ex-post
over all policyholders, including those who have no losses, in the form of taxes. Each loss
increases the tax, thus creating an expense for the victims and other policyholders. Orientated
on the idea of Charpentier and Le Maux (2014), we introduce an ex-ante and ex-post disaster
relief for the companies. If the loss exceed a limit of Rrel, the government pays all losses
above directly to the companies. Only the loss up to Rrel remains in the free market, so Rrel

implies an upper bound for K.15 Unlike risk pooling, companies do not pay a premium here;
instead, they are automatically involved as part of the public economy (e.g., through taxes).
Rrel could be set up ex-ante or ex-post. By ex-ante, the underlying heavy-tailed distribution
is ”truncated”. The company remains responsible for its survival below this limit, e.g., with
an insurance contract. Ex-post has the goal of absorbing the imbalance of some companies.
The difference between the ex-ante and the ex-post strategy is the flow of information to the
companies. In the case of ex-post relief, the company behaves as if there is no government
(optimization problem 13) or relies on the government to cover the loss ex-post, which reduces
the willingness to purchase coverage (see, e.g., Harrington (2000)). In the ex-ante relief, the
company knows the limit Rrel at time t = 0 and can adjust the hedging accordingly. In t = 1,
the payment from the government to the company is Y (Rrel, inf) with Y from equation 2.
Generally, a too high Rrel leads to a company’s insolvency since it cannot absorb the damage
below; a too low Rrel prevents the formation of an insurance market.

14For example, the survival of the company has high priority and thus ψ(·) weights these events more.
15Rrel can be seen as retention that remains in the free market.
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Example 3. (risk pooling)
Lewis and Murdock (1996) propose an approach where the government expands private in-
surance capacity through a form of reinsurance with an excess of loss format. The program
allows the private sector to ”crowd out” the government if it can ensure that layer of catas-
trophe risk well. Here, a risk pool for the insurer would be, next to reinsurance and Cat Bond,
a third possible layer. The insurer pays a premium Πpool to participate in the pool. The pool
is activated when the insurer’s loss extends Rpool. It must hold that Rpool > Kcm

pre, where Kcm
pre

should be estimated as if no government aid is available (e.g., solving optimization problem
13). This ensures that the government does not undercut the free market. The pool pays
all losses up to Kpool and has no default risk. This is similar to an excess of loss reinsur-
ance contract with retention {Rpool, cap Kpool} and the government’s payout to the insurer
is Y (Rpool, Kpool) with Y from equation 2. Section 2.3.1 need to be extend by this possibility.
The activation of the pool and the strength of the effect are strongly dependent on the design
of the previous layers (reinsurance and capital market) as well as on the premium (Πpool).

3 Empirical Analysis

We calibrate the model with real market data. Next to the loss distribution, we propose an
adequate way to estimate the frictional and the risk costs for (re)insurance companies and
the investors in the capital market.

3.1 Distributions

Natural Catastrophe

In progress

Pandemic

Chetty et al. (2020) provide weekly data for U.S. small businesses’ revenue and consumer
spending between January 2020 and January 2022. Based on the revenue, we build a loss in-
dex and estimate a generalized Pareto distribution, see Figure 1. We obtain a scale parameter
of 22.1922 and a shape parameter of −0.00937.16

16To derive a loss distribution, we convert the data to a revenue index RIt, with starting by RI0 = 100
index points on 19 January 2020. Using the revenue index, we define a loss index LIt through LIt =
max(RI0 −RIt, 0) and normalize the loss index by LInormt = LIt

max(LIt)
.
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Figure 1: Loss distribution for pandemic risk

Cyber risk

In progress

3.2 Frictional costs of (re)insurer

We defined the (re)insurers cost as c(Ei
0, Y ) = capital cost(Ei

0, Y ) + ki, where i is either the
insurer or the reinsurer, and the capital costs as

capital cost =frictional costs+ risk costs

:=rf · Ei
0 + αi · Ei

0 + δ · µrisk(Ri) · Ei
0

with ki as the operational costs.

We assume that everything that cannot be identified as a risk premium must be frictional
costs, see, e.g. Bauer et al. (2013) or Braun et al. (2019b). We estimate the total cost of
capital using the FF-3 model of Fama and French (1993) (see, e.g., Cummins and Phillips
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(2005))17 and define the intercept as the frictional costs through

rj,t − rf,t = αj,fric + βj,MKTMKTj,t + βj,SMBSMBj,t + βj,HMLHMLj,t + εj,t,

where rj,t is the stock return of (re)insurer j in time t, MKT is the excess market return,
SMB is the difference between the average of the returns on small-stock portfolios and the
average of the returns on big-stock portfolios and HML is the difference between the av-
erage of the returns on the high-BE/ME portfolios and the average of the returns on the
low- BE/ME portfolios.18 We verify the results with the FF-5 five factor model from Fama
and French (2015) by adding the factors RMWj,t and CMAj,t where RMW is the difference
between the returns on diversified portfolios of stocks with robust and weak profitability and
RMW is the difference between the returns on diversified portfolios of the stocks of low
and high investment firms (conservative and aggressive) and with a FF-5+ model by adding
the TERM and DEF factor from Fama and French (1993) to the FF-5 model.19 Thereby
TERM is a premium computed as the difference between the monthly long-term government
bond return and the one month Treasury bill rate measured at the end of the previous and
DEF is the default premium computed difference between the return on a market portfolio
of long-term corporate bonds and the long-term government bond return. Following Braun
et al. (2019a), we compute TERM through the monthly return on the Barclays U.S. Long-
Term Government Bond Index in excess of the one-month T-Bill rate. DEF we compute as
the difference between Bloomberg Barclays U.S. Corporate High Yield Bond Index and the
Barclays U.S. Long-Term Government Bond Index. The other factors are downloaded from
Kenneth French’s website (see French (2022)) and the stock return are drawn from Thomson
Reuters Eikon. Cochrane (2005) advice 240 months or 20 years as the shortest period to
test a factor model. So, we retrieve monthly observation between July 1994 and December
2015 for the 20 largest listed P&C insurers in the U.S. and data of the same period for the
5 largest listed reinsurance companies worldwide. 20 Only companies for which at least 36
consecutive months of data are available are considered, which is standard practice, see e.g.,
Cummins and Phillips (2005). The estimation results are shown in Table 2 and Table 3. An
overview of all estimated betas are in the Appendix B, Table 8 and Table 9 We estimate
the frictional costs by calculating the mean of all significant intercepts and obtain for the
insurer an annual αins of 7.553% and for the reinsurer an annual αre of 6.1704%. Thus, our
estimate for the insurer is in line with the results of Dal Moro (2008) and Swiss Re (2005),
which measure costs of 6.57 % and about 7%, respectively.

17There are also models like Ben Ammar et al. (2018) that deal with the insurance-specific risk premiums
(liability side). In our model, only this risk is considered since the assets of the (re)insurers are invested at
the risk-free interest rate. Therefore, we filter out the market risk (asset side) in the calibration process by
using the Fama French models.

18BE/ME is the ratio of book value of equity (BE) to market value of equity (ME).
19Thus, we use all known risk factors from Fama and French (1993) and Fama and French (2015)
20According to AM.Best (2021), the world’s five largest reinsurers write almost half the gross premiums

of the 50 largest reinsurers. Biener et al. (2017) mention that large reinsurers are characterized by high cost
efficiency, while small reinsurers exhibit superior efficiency only when specialized. Therefore, to model an
average of the large reinsurers, we focus on the largest five in terms of premium volume.
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Our objective within the calibration is to show the model with an average (re)insurer.
This is problematic since the markets are very heterogeneous. For example, Kielholz (2000)
shows that the cost of capital varies strongly within European countries. Also in our analysis
in Table 8 and Table 9, we see high variances in the estimated betas as well as the adjusted
R2. Another problem is shown by McKinsey (2022) in their study. Since 2015, insurers have
struggled to earn their cost of capital. We can confirm this through our calibrations. If data
until 2022 are used, we get negative or non frictions. To prevent this, we took data only
until the end of 2015. Also, it has to be questioned whether a factor model can be applied.
Roll (1977) already shows that the CAPM and all extensions are misleading and untestable.
Therefore, this estimate is not satisfying, but there are no other methods to estimate the
cost of capital yet, see Exley and Smith (2006).21 The sensitivity tests in Tables 6 and 7
show that the frictional costs are stable and slight variations do not significantly impact the
results of our model.

Table 2: Time series OLS results for insurers

FF-3 FF-5 FF-5+
Insurer αins p-value αins p-value αins p-value

1 AMERICAN.INTL.GP. -0.494 0.5054 0.2468 0.8648 0.0197 0.9887
2 ALLEGHANY 0.3321 0.1695 0.3271 0.2051 0.3181 0.2325
3 ALLSTATE.ORD.SHS 0.1211 0.6641 -0.1773 0.5086 -0.3435 0.3183
4 ARCH.CAP.GP. 0.6235 0.0768 0.3691 0.3293 0.1509 0.679
5 BERKSHIRE.HATHAWAY.A. 0.5142 0.0611 0.5209 0.0903 0.4965 0.0883
6 CHUBB 0.5921 0.1444 0.4342 0.3345 0.4362 0.3374
7 CINCINNATI.FINL. 0.3166 0.341 0.008 0.9797 0.0073 0.9815
8 CNA.FINANCIAL -0.5513 0.1336 -0.5111 0.2248 -0.6213 0.1578
9 ERIE.INS.GROUP 0.3391 0.4383 0.0197 0.9592 -0.1228 0.7794
10 EVEREST.RE.GP. 0.6113 0.1005 0.3329 0.3913 0.2063 0.5891
11 FAIRFAX.FINL.HDG. 0.7434 0.3257 0.5282 0.5437 0.2931 0.752
12 HARTFORD.FINL.SVS.GP. -0.1665 0.7618 -0.2016 0.7451 -0.6187 0.3029
13 KEMPER -0.1353 0.676 -0.3072 0.3632 -0.2955 0.3984
14 MARKEL 0.7504 0.0035 0.4754 0.0694 0.4818 0.0959
15 MERCURY.GENERAL 0.2148 0.6065 -0.1089 0.7955 -0.2273 0.5561
16 OLD.REPUBLIC.INTL. 0.2076 0.6205 0.0529 0.8965 -0.2069 0.5933
17 PROGRESSIVE.OHIO 0.5695 0.1505 0.3553 0.3986 0.3175 0.4882
18 SELECTIVE.IN.GP. 0.2219 0.5446 -0.1279 0.7312 -0.1598 0.6479
19 TRAVELERS.COS. 0.3843 0.2746 0.0558 0.8806 0.04 0.916
20 W.R.BERKLEY 0.6856 0.1213 0.2182 0.634 0.1119 0.8034

Mean 0.6294 0.4981 0.4892

21The goal of the paper is to find a general model for the interactions between the global players. Due to
the lack of alternatives, this approach is therefore acceptable.

18



Table 3: Time series OLS results for reinsurers

FF-3 FF-5 FF-5+
Reinsurer αre p-value αre p-value αre p-value

1 MUENCHENER.RUCK. -0.003 0.9949 -0.1368 0.7945 -0.057 0.9071
2 SWISS.RE -0.2163 0.6358 -0.3892 0.4029 -0.4256 0.3914
3 HANNOVER.RUECK 0.4609 0.3505 0.2118 0.6605 0.3082 0.5386
4 SCOR.SE -0.4574 0.4704 -0.8329 0.2015 -0.8329 0.1783
5 BERKSHIRE.HATHAWAY.A. 0.5142 0.0611 0.5209 0.0903 0.4965 0.0883

Mean 0.5142 0.5209 0.4965

3.3 Frictional costs of the investors in the capital market

We need to find the spread to compute the premium the insurer pays to the investors. Usually
the Cat Bond is sold at par, thus CB = N holds and we convert equation 11 to

1

1 + γ
sN = N − 1 + rf

1 + γ
N +

1

1 + γ
E[Y cm].

⇔ sN = (1 + γ)N − (1 + rf )N + E[Y cm]

⇔ s = 1 + γ − (1 + rf ) +
E[Y cm]

N

⇔ s = (γ − rf ) +
E[Y cm]

N
,

where γ−rf is the risk premium and E[Y cm]
N

the expected loss ratio. Once γ is determined, the
premium Πcm can be computed. The risk-adjusted discount rate is normally a composition
of a frictional term and a risk term which cannot be explained by the approach from Zanjani
(2002). Because Cat Bonds have virtually no default risk (100% collateral from U.S. T-bills,
taxes at the investor level), the market observed γ contain a large proportion of frictions.
Thus, we need a solid model to estimate the frictional term. Since Cat Bond rates are
historically observable, a pragmatic approach is to calculate

γ − rf = frictions+ risk

⇔ frictions = (γ − rf )− risk

with the assumption that frictions (further noted as αcm) must cause everything that cannot
be explained as a risk premium. Unfortunately, for extreme events such as pandemics and
cyber risk exist not enough sufficient market data for a risk premium estimation yet. We use
Cat Bond returns as a basis and estimate a lower limit for the frictions22. In general, there
are two possible estimation approaches:

1. A classical CAPM or APT-style factor model.

2. A consumption-based model.

22For the extreme events like a pandemic or cyber, this term might be higher
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From an economic point of view, the second one might be preferable since it can consider a
downside risk or rare disaster risk extension as done in Dionne et al. (2018) or Wachter (2013).
However, empirical implementation becomes problematic. Even if the correlations between
Log Consumption Growth with quarterly data and ILS Returns can be estimated, we get val-
ues close to zero (and the resulting Euler equation will be zero).23 A downside risk measure
or a rare event risk process will be practically impossible to estimate empirically because of
the lack of high-frequency data. It might therefore be preferable to use an APT factor model.

We choose the factor model from Fama and French (1993) with the additional factors
TERM and DEF and compute24

rILS,t − rf,t =αcm + βMKTMKTt + βSMBSMBt + βHMLHMLt + βTERMTERMt+

βDEFDEFt + εt.

For the ILS Returns, we use the AON Total Return Index from January 2001 to December
2020 and verify the results with the Swiss RE Total Return Index from February 2002 to
December 2020. Both indices were downloaded from Thomson Reuters Eikon. The results
are shown in Table 4. We estimate for the investors at the capital market annual frictions of
4.5%

23For the calculation we used the log growth rate of the Personal Consumption Expenditures, provided by
fred.stlouisfed.org and the AON Cat Bond return index, quarterly from the 2002 to the end 2020. In total,
we used 76 data points. We get a correlation coefficient of 0.023957.

24Empirical studies such as Braun et al. (2019a) have shown that the TERM and DEF factors are significant
for ILS fund returns.
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Table 4: Results for the ILS Index

Dependent variable:

Cat Bond Indices

AON Index SWISS RE Index

MKT 0.017 −0.002
(0.018) (0.021)

SMB −0.009 −0.034
(0.023) (0.027)

HML 0.022 0.010
(0.019) (0.024)

TERM 0.105∗∗ 0.172∗∗∗

(0.052) (0.058)

DEF 0.059∗∗ 0.103∗∗∗

(0.028) (0.032)

Constant 0.375∗∗∗ 0.406∗∗∗

(0.057) (0.064)

Observations 240 226
R2 0.068 0.084
Adjusted R2 0.048 0.063
Residual Std. Error 0.842 (df = 234) 0.901 (df = 220)
F Statistic 3.395∗∗∗ (df = 5; 234) 4.036∗∗∗ (df = 5; 220)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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3.4 Risk costs

Natural Catastrophe

For catastrophe losses, we assume that losses are uncorrelated with the capital market (see,
e.g.,Cummins and Harrington (1985), Froot et al. (1995) , Zanjani (2002)). Therefore, for
the (re)insurer µrisk = 0 holds and we define the cost of capital as

capital cost = αi · Ei
0 i ∈

{
insurer, reinsurer

}
.

For the Cat Bond index, we found risk premiums given by the TERM and DEF factors.
Thus, µrisk = βTERMTERMT + βDEFDEFT holds and the risk-adjusted discount rate is

E[γ − rf ] = αcm + βTERME[TERM ] + βDEFE[DEF ].

Pandemic

To estimate the pandemic risk premium we choose a consumption-based approach. Following
Braun et al. (2019b), the consumption-based model calculates the expected excess return via
the Euler equation which we modify lightly to25

µrisk = λ(R) · ρ(rc, rloss) · σ(rc) · σ(rloss) · η,

where λ(R) is a weighting function with λ(0) = 1, ρ the correlation coefficient, rc the con-
sumption rate, rloss the loss rate, σ the standard deviations and η the relative risk aversion
coefficient.26

We use again the data provided by Chetty et al. (2020). For the consumption rate, we
use the weekly consumer spending between January 2020 and January 2022 and for the loss
rate, we use the weekly revenue data for U.S. small businesses between January 2020 and
January 2022. For both rates we compute the log growth, see Figure 2.

25If returns are too small, a consumption-based approach with a downside risk estimator like in Dionne
et al. (2018) may be a better choice.

26η is the market risk coefficient derived from the power utility function. We will use a different utility
function in the Empirical Analysis. This is still consistent, since each function matches other players
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Figure 2: The growth in consumption and revenue between January 2020 and January 2022

While η is a constant factor for the general risk aversion, λ can be viewed as a higher order
risk preference, see, e.g., Deck and Schlesinger (2010), Ebert (2013), Deck and Schlesinger
(2014). Thereby events which occur rarely should be weighted higher, the correlation does
not decrease linearly in retention R. For illustration, a linear λ and a concave λ are given in
Figure 3.

We define the (re)insurers capital costs as

capital cost = αi · Ei
0 + λ(Ri) · ρ(rc, rloss) · σ(rc) · σ(rloss) · η · Y i(Ri, Ki) i ∈

{
insurer, reinsurer

}
= αi · Ei

0 + δ · µrisk · Y i(Ri, Ki)

and the risk-adjusted discount rate as

E[γ − rf ] = αcm + λ(Rcm) · ρ(rc, rloss) · σ(rc) · σ(rloss) · η
= αcm + µrisk.
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Figure 3: Consumption matrix µrisk for η = 1. R corresponds to the % quantile of the loss
distribution

Cyber risk

In progress

3.5 Results

We consider the exponential utility function

U(E) = 1− exp(−ι · E)

which is a special form of the Expo-power utility from Saha (1993). According to Cerreia-
Vioglio et al. (2015), this function has been applied in a variety of fields, such as finance,
intertemporal choices, and agriculture economics (including crop insurance). Also in the
general insurance frame it is used, see, e.g., Freifelder (1979). Holt and Laury (2002) find
that this function is a good fit for data that includes both low and high stakes. An overview
over all variables is in Table 5.
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Table 5: Initial values

Variable Symbol Value
Company’s initial equity Ecom

0 50
(Re) insurers operation cost k 0
Risk free rate rf 1%
Company’s growth rate rcom 2.5%
Frictions insurer αins 7.553%
Frictions reinsurer αre 6.1704%
Frictions capital market αcm 4.5%
Risk coefficient ι 0.15
Risk coefficient market η 1
Diversification factor δ 1
Simulations - 10′000

Natural Catastrophe

In progress

Pandemic

Figure 4, left side up, show the premium paid by the company and right side up, respectively,
the company’s utility without reinsurance, capital market and government intervention. The
middle shows the absolute difference when the reinsurer and the capital market enter the
market and down is the fully hedged market. It can be seen that when the insurer can pass
on part of the risk, the premium decreases, and thus the utility of the company increases. In
our example, if the insurer does not hedge, the company chooses the coverage with R∗ = 10
and K∗ = 80 and pays π = 20.1641. If the insurer hedges the company chooses the contract
with R∗ = 10 and K∗ = 85 and the premium decreases, although the protection increases,
to π = 19.2209. In general, the utility for the company first increases with K, and then
decreases slightly. The company has a high utility in covering part of the tail, but at the
same time wants to to have protection for small losses. Accordingly, the very rare losses
above K∗ are no factor in the coverage decision. By including hedging, especially the pre-
miums with a high K decrease, and accordingly the utility rises in this area. Nevertheless,
it is still not enough to choose a higher cap, but the utilities move closer together. In our
example, the company would be insolvent in 88 out of 10′000 simulations, which corresponds
approximately to an event which occurs one time in 100 years. Assuming that the gov-
ernment bears all losses where L > K∗, the government has average expenses of 17.5346.
Now we suppose that the government announced ex-ante that it pays all damages which are
2.5 times the size of the company’s equity, meaning L > 125. In that case, the company
chooses a K∗ of 110, which is an increase of almost 30%, and the governments expenses
decreased by around 7.5% to an average of 16.2468. This example shows that if the gov-
ernment acts early, more risk retains in the market and government spending can be reduced.

25



Figure 4: Premium and utility for different R and K. In red, the best choice.
Upper part; The market without insurer’s hedging; Middle part: Market change if the insurer
change; Down: Total market without government

Cyber risk

In progress
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4 Conclusion

Against the background of the worldwide coronavirus, we analyze in this paper how (global)
extreme events can be insured. These events can be identified mainly by a heavy tailed
distribution and a correlation to the capital market. Based on the fundamental literature as
for example Zanjani (2002), we derive a theoretical framework that includes a company, the
insurer and furthermore interactions with a reinsurer, the investors in the capital market and
the government. Finally, we calibrate this model to actual market data and show that the
offer of the (re)insurer is strongly affected by the cost of capital. In particular, a correlation of
the risk to the capital market drastically amplifies this effect. At the same time, investors in
the capital market expect a high return. These aspects make the purchase of extreme event
coverage prohibitively expensive or unattractive for a company. Finally, it is shown that,
particularly for the most extreme events, government backstops in the highest loss layers are
necessary for a private insurance market to share heavy tail risk in the first place.
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A Proofs

A.1 Reforming premium

We first need to rewrite

E[Dins] = E[max
(
0, Y − E[Y ]− E[Eins

1 ]
)
]

= E[max
(
0, Y − E[Y ]− (1 + rf )(E

ins
0 + π − c) + E[Y ]]

= E[max
(
0, Y − (1 + rf )(E

ins
0 + π − c)]

= E[1Y+(1+rf )c>(1+rf )(Eins
0 +π)(Y − (1 + rf )(E

ins
0 + π − c)]

= E[1Y+(1+rf )c>(1+rf )(Eins
0 +π)Y ]− P

(
Y + (1 + rf )c > (1 + rf )(E

ins
0 + π)

)
(1 + rf )(E

ins
0 + π − c)

So, according to the definition of the premium we get

π = B0

(
E[Y ]− E[Dins]

)
+ c

= B0

(
E[Y ]− E[1Y+(1+rf )c>(1+rf )(Eins

0 +π)Y ]+

P
(
Y + (1 + rf )c > (1 + rf )(E

ins
0 + π)

)
(1 + rf )(E

ins
0 + π − c)

)
+ c

= B0

(
E[Y ]− E[1Y+(1+rf )c>(1+rf )(Eins

0 +π)Y ]
)

+ P
(
Y + (1 + rf )c > (1 + rf )(E

ins
0 + π)

)
(Eins

0 + π − c) + c.

We rerange after the premium and obtain

π − P
(
Y + (1 + rf )c > (1 + rf )(E

ins
0 + π)

)
π = B0

(
E[Y ]− E[1Y+(1+rf )c>(1+rf )(Eins

0 +π)Y ]
)

+ P
(
Y + (1 + rf )c > (1 + rf )(E

ins
0 + π)

)
Eins

0

− P
(
Y + (1 + rf )c > (1 + rf )(E

ins
0 + π)

)
c+ c

We remember that 1 − P
(
Y + (1 + rf )c > (1 + rf )(E

ins
0 + π)

)
= P

(
Y + (1 + rf )c ≤

(1 + rf )(E
ins
0 + π)

)
, so

P
(
Y + (1 + rf )c ≤ (1 + rf )(E

ins
0 + π)

)
π = B0

(
E[Y ]− E[1Y+(1+rf )c>(1+rf )(Eins

0 +π)Y ]
)

+ P
(
Y + (1 + rf )c > (1 + rf )(E

ins
0 + π)

)
Eins

0

+ P
(
Y + (1 + rf )c ≤ (1 + rf )(E

ins
0 + π)

)
c
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and we get

π =
B0

(
E[Y ]− E[1Y+(1+rf )c>(1+rf )(Eins

0 +π)Y ]
)

P
(
Y + (1 + rf )c ≤ (1 + rf )(Eins

0 + π)
) +

P
(
Y + (1 + rf )c > (1 + rf )(E

ins
0 + π)

)
Eins

0

P
(
Y + (1 + rf )c ≤ (1 + rf )(Eins

0 + π)
)

+
P
(
Y + (1 + rf )c ≤ (1 + rf )(E

ins
0 + π)

)
c

P
(
Y + (1 + rf )c ≤ (1 + rf )(Eins

0 + π)
) .

We shorten this term to

π =
B0

(
E[Y ]− E[1Y+(1+rf )c>(1+rf )(Eins

0 +π)Y ]
)

+ Eins
0

P
(
Y + (1 + rf )c ≤ (1 + rf )(Eins

0 + π)
) − Eins

0 + c

We see, there is no closed form for π since it occurs always on both sides.

A.2 Company optimal solution

First order conditions leads to∇E[U(Ecom
1 (R,K))] = 0, so

E[U(Ecom
1 (R,K))]

dR
= 0 and

E[U(Ecom
1 (R,K))]

dK
=

0.

A.2.1 Case R

dE[U(Ecom
1 )]

dR
= E[UEcom

1

dEcom
1

dR
]

= E[UEcom
1

(−(1 + rcom)
dπ

dR
+
dY

dR
− dDins

dR
)
)
.

We can compute

dY

dR
=


0 if L < R

−1 if R ≤ L ≤ K

−1 if L > K

,

so dY
dR

= −1(L≥R). This leads to

E[dU ]

dR
= E[UEcom

1
(−(1 + rcom)

dπ

dR
− dDins

dR
− 1(L≥R))]

= E[−(1 + rcom)UEcom
1

dπ

dR
]− E[UEcom

1

dDins

dR
]− E[UEcom

1
1(L≥R)]
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(1 + rcom) dπ
dR

is a deterministic term, so

E[dU ]

dR
= −(1 + rcom)

dπ

dR
E[UEcom

1
]− E[UEcom

1

dDins

dR
]− E[UEcom

1
1(L≥R)]

= 0.

This expression we transform to

E[UEcom
1

] =
−E[UEcom

1
1(L≥R)]− E[UEcom

1

dDins

dR
]

(1 + rcom) dπ
dR

.

A.2.2 Case K

dE[U(Ecom
1 )]

dK
= E[UEcom

1

dEcom
1

dK
]

= E[UEcom
1

(−(1 + rcom)
dπ

dK
+
dY

dK
− dDins

dK
)].

We compute

dY

dK
=


0 if L < R

0 if R ≤ L ≤ K

1 if L > K

so dY
dK

= 1(L>K). This leads to

E[dU ]

dK
= E[UEcom

1
(−(1 + rcom)

dπ

dK
− dDins

dK
+ 1(L>K))]

= E[−(1 + rcom)UEcom
1

dπ

dK
]− E[UEcom

1

dDins

dK
] + E[UEcom

1
1(L>K)]

dπ
dK

is a deterministic term, so

E[dU ]

dK
= −(1 + rcom)

dπ

dK
E[UEcom

1
]− E[UEcom

1

dDins

dK
] + E[UEcom

1
1(L>K)]

= 0.

This expression we transform to

E[UEcom
1

] =
E[UEcom

1
1(L>K)]− E[UEcom

1

dDins

dK
]

(1 + rcom) dπ
dK

.
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A.3 Insurer optimal solution

First order conditions leads to∇E[U ins(Eins
1 )] = 0, so E[

dU ins(Eins
1 )

dR
] = 0 and E[

dU ins(Eins
1 )

dK
] = 0.

A.3.1 Case R

E[
dU ins(Eins

1 )

dR
] = E[U ins

Eins
1

dEins
1

dR
]

= E[U ins
Eins

1

(
(1 + rf )(

dπ

dR
− dc

dR
)− dY

dR

)
]

We compute

dY

dR
=


0 if L < R

−1 if R ≤ L ≤ K

−1 if L > K

,

so dY
dR

= −1(L≥R). This leads to

E[
dU ins(Eins

1 )

dR
] = E[U ins

Eins
1

(
(1 + rf )(

dπ

dR
− dc

dR
) + 1(L≥R)

)
]

= E[U ins
Eins

1
(1 + rf )(

dπ

dR
− dc

dR
)] + E[U ins

Eins
1
1(L≥R)]

= 0,

what we reform to

E[U ins
Eins

1
] =
−E[U ins

Eins
1
1(L≥R)]

(1 + rf )(
dπ
dR
− dc

dR
)

A.3.2 Case K

E[
dU ins(Eins

1 )

dK
] = E[U ins

Eins
1

dEins
1

dK
]

= E[U ins
Eins

1

(
(1 + rf )(

dπ

dK
− dc

dK
)− dY

dK

)
]

We compute

dY

dK
=


0 if L < R

0 if R ≤ L ≤ K

1 if L > K

,
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so dY
dK

= 1(L>K). This leads to

E[
dU ins(Eins

1 )

dK
] = E[U ins

Eins
1

(
(1 + rf )(

dπ

dK
− dc

dK
)− 1(L>K)]

= E[U ins
Eins

1
(1 + rf )(

dπ

dK
− dc

dK
)]− E[U ins

Eins
1
1(L>K)]

= 0,

what we reform to

dπ

dK
E[U ins

Eins
1

] =
E[U ins

Eins
1
1(L>K)]

(1 + rf )(
dπ
dK
− dc

dK
)

A.4 Proof Lemma 1

Proof. We set rf = 0 and rcom = 0. We assume, we found the optimal R and K for the
insurer. We can reform the insurance part to

dπ

dR
= −

E[U ins
Eins

1
1(L≥R)]

E[U ins
Eins

1
]

+
dc

dR

dπ

dK
=

E[U ins
Eins

1
1(L>K)]

E[U ins
Eins

1
]

+
dc

dK

We put this in into the equation for the company and reform it to

E[U ins
Eins

1
1(L≥R)]

E[U ins
Eins

1
]
− dc

dR
=

E[UEcom
1

1(L≥R)] + E[UEcom
1

dDins

dR
]

E[UEcom
1

]
,

E[U ins
Eins

1
1(L>K)]

E[U ins
Eins

1
]

+
dc

dK
=

E[UEcom
1

1(L>K)]− E[UEcom
1

dDins

dK
]

E[UEcom
1

]
,

We reform again to

E[U ins
Eins

1
1(L≥R)]

E[U ins
Eins

1
]
−

E[UEcom
1

1(L≥R)]

E[UEcom
1

]
=

E[UEcom
1

dDins

dR
]

E[UEcom
1

]
+
dc

dR
,

E[U ins
Eins

1
1(L>K)]

E[U ins
Eins

1
]

−
E[UEcom

1
1(L>K)]

E[UEcom
1

]
= −

E[UEcom
1

dDins

dK
]

E[UEcom
1

]
− dc

dK
,

Since on the left side the terms are normalized in each case, and the indicator terms are
identical, the result equals always 0. If we look at the right side, it equals zero only if both
terms are identical with different signs or equal to zero. According to the definition, UEcom

1
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is always positive. With increasing R the insurer takes less risk, therefore his default risk
decreases, so dDins

dR
≤ 0. With the same logic follows dDins

dK
≥ 0. Therefore, in case R the first

term is always negative or equal to zero, and in case K it is greater than or equal to zero. If
less risk is transferred, the costs decrease, with more risk they increase. Accordingly dc

dR
< 0

and dc
dK

> 0. It follows that on the right side both terms have the same sign, so they cannot
add up to zero, and at least the change of the costs is always greater than 0. Therefore the
equation is violated.
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B Additional Figures and Tables

Table 6: Sensitivity test for insurer

αins 5% 7.553% 10 %
R∗ 10 10 10
K∗ 90 80 70
π∗ 19.6849 20.3709 20.3923

Table 7: Sensitivity test for (re)insurer; return variables are R∗, K∗,π∗

αins

5% 7.553% 10 %
5% 10/90/19.6849 10/90/19.6849 10/90/19.6849

αre 6.1704 % 10/95/19.9415 10/85/20.0392 10/85/20.0392
10 % 15/95/16.0639 10/85/20.4651 10/70/20.3923
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