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Abstract
This paper explores how insurance companies can coordinate to extend their

joint capacity for the coverage of new and undiversifiable risks. The undiversifiable
nature of such risks causes a shortage of insurance capacity and their limited knowl-
edge makes learning and information sharing necessary. In practice, organizing such
insurance supply amounts to sharing a common value divisible good between ca-
pacity constrained and privately informed insurers with a reserve price. Widely
used ad-hoc co-insurance agreements out to operate as a uniform price auction with
an “exit/re-entry” option. We compare it to a discriminatory auction, another
auction present in the insurance industry. Both auction formats lead to different
coverage/premium tradeoffs. If at least one insurer provides an optimistic expertise
about the risk, ad-hoc co-insurance agreements offer higher coverage. This result is
reversed when all insurers are pessimistic about the risk. Static comparative results
with respect to the severity of the capacity constraints and the reserve price are
provided. In the case of completely new risks, a regulator aiming at maximizing the
expected coverage should promote ad-hoc co-insurance agreements when the reserve
price is low enough or when competition is high enough.
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1 Introduction

This paper develops an explanatory model for the insurance of undiversifiable and new
risks. Certain large unconventional risks such as terrorism, nuclear power production, en-
vironmental protection or pandemic risks cannot be born by a single insurance company.
Indeed, when the amounts of claims are very high, they exceed the financial capacity
of insurers, equity and reinsurance included. In addition, the regulation of insurance
companies requires a minimum level of capital and a target capital to absorb such risks
(Solvability II in the European Union for instance): a single insurer can hardly fulfill this
condition. Finally, these so-called unconventional risks are often poorly understood, the
claim history being limited or even non-existent. All these characteristics explain the dif-
ficulty of their coverage by a standard insurance mechanism. A widespread practice in the
insurance industry to achieve co-insurance is to set up ”ad-hoc co-insurance agreements”.
Ad-hoc co-insurance agreements are developed in the market, facilitated and negotiated
by a broker. Such cooperations not only directly and significantly increases the financial
capacity of participating insurers, but also allow to organize information sharing on the
nature and intensity of the risks insured. The latter characteristic is crucial for the in-
surance of unknown and new risks since the sources of information are often dispersed,
moving and heterogeneous.

We propose to develop a unified theoretical model using auction theory to analyze
these ad-hoc co-insurance agreements. Our theoretical model builds on a simplified rep-
resentation of insurers’ interactions based on empirical findings of a report commissioned
by the European Commission [7].1 Even if some country-specific differences exist, they
share some common features. The prevalent procedure for the conclusion of an ad-hoc co-
insurance agreement is broker-led within a two-stage auction, defining a leading insurer
and following ones. The leader’s selection process may combine the following factors:
capacity, premium, insurer’s expertise or reputation, terms and conditions of the offer.
As European Commission [7] note, “the followers are usually invited to either accept or
decline or take a share of the risk on the same terms and conditions as the lead insurer”.
Based on this, we propose to study a simplified scenario where ad-hoc agreements operate
as a uniform price auction with an “exit/re-entry” option and in which a leading insurer
is selected on the basis of the more competitive bid premium.

Following the observations drawn up, we incorporate several key ingredients to our
modelling strategy. First, the undiversifiable nature of the risks causes a shortage of in-
surance capacity so that a single insurance company cannot insure such risks. These ca-
pacity constraints may come either from legal solvency regulation constraints and capital
requisites that are imposed to prevent from insurers’ bankruptcy or from the character-

1The European Commission [7] provides a detailed description of the procedures leading to the ad-hoc
agreements in several European countries.
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istics of the risk itself. Second, when contemplating insuring new risks whose knowledge
is limited, insurers use their own expertise to evaluate them. Each insurer has its own
learning on the occurrence probability of the risk. At the industry level, this creates infor-
mational asymmetries not only between insurers and insureds, but also between insurers.
The contracts’ terms will not only depend on insurers’ beliefs on the probability of the
risk, but also on the functioning rules of the coinsurance agreement. Third, we will deal
with the most general case in which the insurance of such risk is not mandatory. Policy-
holders may remain uninsured or partially insured if insurance is too costly (see Kousky
and Cooke [14] for instance). In terms of modelling, we will assume that insureds have a
reserve price.

The game we consider is then a particular auction of a common value divisible good
between capacity constrained agents who have private information in presence of a reserve
price. We refer this particular auction as the ”Flexible Uniform auction” (FU auction).
We characterize the equilibrium risk premium of this auction and the resulting insurance
capacity offered. We then compare the outcome of the FU auction to a discriminatory
auction (in which each insurer offers its own conditions (capacity and premium)), an
auction format also prevalent in the insurance sector.2 This leads us to compare different
auction pricing rules and to understand the role of the exit/re-entry option. These auction
formats are compared with respect to premiums and coverage, taking into account the
impact of different markets and characteristics (intensity of competition and risk aversion
via the reserve price). We then provide two kinds of results: some results directly help
the insurance industry and other complete the auction literature.

Let us first discuss the outcome of the FU auction. We determine the unique equi-
librium in symmetric and strictly increasing bidding strategies. Conditional on bidding,
the equilibrium strategy completely reveals the signal an insurer observed. The reserve
price implies the existence of a maximum signal determining the participation to the first
stage of the auction. The equilibrium then exhibits both a complete market failure (no
insurance) when both insurers have private pessimistic evaluations (above the threshold)
and a partial market failure (partial insurance) when only one insurer is pessimistic about
the risk. The re-entry option impacts these market failures in two ways: insurers refrain
from bidding ex-ante (increasing the no-insurance region) but an insurer always has the
possibility to re-enter the auction ex-post if he discovers that his opponent received a
good signal (increasing the full insurance region). All these market failure regions are
affected by the parameters of the model: intensity of the capacity constraints and reserve
price. Increasing competition has two opposite effects on coverage: partial coverage is
more likely but the proportion of uninsured risks decreased. A larger reserve price unam-

2As European Commission [7] note, “Co-insurance may include cases where proportions of a risk
are placed separately, perhaps in different markets, using separate documentation, and with no insurer
assuming the role of leader”.
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biguously increases insurance coverage: full coverage is more likely, and in case this latter
is not achieved, partial coverage occurs more often when the reserve price increases.

Let us now turn to the discriminatory auction. We show that the equilibrium in sym-
metric and strictly increasing bidding strategies is semi-separating or separating and also
involves some complete and partial market failure regions. The nature of the equilibrium
and the maximum signal determining the participation depend on the parameters: inten-
sity of competition and reserve price. The more intense the competition (weak capacity
constraints), the smaller the bidding regions. Similarly, the smaller the reserve price, the
smaller the bidding region. Also, the bidding regions in the discriminatory auctions are
always larger than in the FU one. However, we may observe full insurance with the FU
auction and partial insurance in the discriminatory auction when the leader is optimistic
enough about the risk occurrence and re-enters. The follower’s position is essential to
understand the efficiency of a given auction format. In the FU auction, the follower does
not take any risk, but only enjoys relatively low profits (because of uniform pricing). On
the contrary, in the discriminatory auction, the potential negative profit of the follower
is counterbalanced by higher premiums. It must be noted that the comparison of the
equilibrium bidding strategies differ from the comparison of the premiums. If pricing is
uniform in the FU auction, the leader and the follower offers different premiums in the
discriminatory auction, the follower’s premium being larger. The difficult comparison
of the equilibrium bidding strategies makes the comparison between the premiums quite
involved.

Both auction formats then lead to different coverage/premium tradeoffs and the anal-
ysis shows that ex-ante there is no clear dominance of one auction format. When we
compare these two auctions ex-post (for any possible realization of the two insurers’ sig-
nals), we show that if at least one insurer provides an optimistic expertise about the risk,
the FU auction offers higher coverage. At the opposite, if all insurers receive pessimistic
information, the discriminatory auction offers a better coverage. If insurers agree about
the ex-post evaluation of risk, the FU option has less scope so that the size of the bidding
region is key to determine the insurance coverage. The discriminatory auction therefore
offers more coverage. On the contrary, if insurers receive opposite evaluations, the exercise
of the re-entry option allows to increase insurance coverage.

We provide some results about the ex-ante comparison of auctions for the case of com-
pletely new risks (insurers’ signals are therefore independent). We show that a regulator
aiming at maximizing the expected coverage should promote the FU auction when the
reserve price is low enough or when competition is high enough. Indeed in these two cases,
the bidding regions of the two auction formats converge to the same region. As a result,
the FU auction allows to increase insurance coverage.
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Contribution to the Literature. This paper is related to two different parts of the
literature: insurance of catastrophic and undiversifible risks and auction theory. On im-
portant concern of the literature on catastrophic risk consists in explaining the failure of
the purchase of disaster insurance. Many reasons are evoked: behavioral biases (Kun-
reuther [15]), the role of solvency constraints (Kousky and Cooke [14]), the presence of
default risk (Charpentier and Le Maux [5]). Louaas and Picard [17] highlight the intrin-
sic determinants of demand and supply in the insurance market for catastrophic risks. A
model of the supply side is proposed that takes into account the default risk by introducing
collateral. However, capacity constraints are not taken into account.

The insurance of large risks thanks to a co-insurance mechanism is relatively limited.
The literature on undiversifiable risks has mainly focused on the risk sharing problem
between insurers and policyholders. This risk sharing problem is analyzed for instance in
Doherty and Dionne [6] who introduce a new form of insurance contract called Decom-
posed Risk Transfer contract (DRT contract) defined by an insurance policy packaged
with a residual claim on an insurance pool. They show that this contract increases pol-
icyholders welfare. They characterize the optimal coverage and the risk premium as a
function of the cost of risk bearing derived from asset pricing models. Our setting builds
on such a two dimensional contract (a risk premium and a coverage) but we do not discuss
any risk sharing issue associated with the undiversifiable risk. We consider instead that
because of the particular competition emerging from the auction, the risk premium (paid
by the policyholders) may differ from the actuarial rate (paid by the insurer). Mahul and
Write [18] examine catastrophic risk sharing arrangements in presence of default risk from
the consumers’ perspective. Inderst [10] proposes a detailed description of co-insurance
pools and ad-hoc co-insurance agreements. However, the microeconomic analysis of the
supply side of co-insurance mechanisms under solvency constraints is not treated to our
knowledge.

The organization of insurance supply amounts to sharing a common value divisible
good between capacity constrained agents who have private information in presence of a
reserve price. The auction literature is abundant in this topic and incorporates some of
these characteristics. In presence of reserve price and the existence of secondary markets
for the goods being sold, Haile [9] analyzes a second-price auction between two bidders
with imperfect information about their valuations. A symmetric equilibrium exhibiting
some pooling exists when the reserve price is sufficiently far below the maximum valuation.
Jehiel and Moldovanu [11] analyze a more general setting by introducing positive or
negative externalities in a standard second-price auction in presence of reserve price.
They show that there must be some pooling at the reserve price in presence of positive
externalities (as a resale opportunity for instance). Lizzeri and Persico [16] prove existence
and uniqueness of equilibrium for a general class of two player bidding games in presence
of a reserve price and interdependent values. In our paper, the divisibility of the good

5



(the risk) makes the analysis quite different from these three papers, but we also prove
the existence of a separating or semi-separating equilibrium in the discriminatory auction
depending on reserve price. Moreover, we provide some comparative statics with respect to
the strength of competition highlighting the role of the strength of the budget constraints
on the equilibrium outcome. This allows to extend part of the results of Lizzeri and
Persico [16] to the multi-unit auction setting in case of the discriminatory auction.

The auction format used to reach ad-hod co-insurance agreements introduces the pos-
sibility for the follower to exit or to re-enter ex-post, after the first bidding stage occurred.
By analyzing such two-stage auction setting, we are part of the study of sequential auc-
tions that has developed very quickly since the 2000’s. Caillaud and Mezzetti [4] analyze
sequential auctions in which bidders have correlated valuations for multiple units and
where the seller can freely set the reserve price at the beginning of each auction. Haile [9]
consider a two-stage model in which an auction in the first stage is followed by a resale
auction, held by the first-stage winner. Our work is between these two settings because
we consider a two-stage auction of a multi unit good. Moreover, the second stage only
concerns the follower. The originality of our approach is to provide a theoretical model
a practice used in the insurance industry and to compare it to a more standard auction
setting.

The question of agreeing on a common coverage of a risk is akin to the one of ex-
changing Treasury debt and other divisible securities (where bonds are usually exchanged
through a uniform auction or through a discriminatory auction). However, there is a need
to develop a theoretical model since the auction rules are indeed specific to the insurance
industry Moreover, the nature of the good that is exchanged (reserve price and capacity
constraints) differs from the nature of Treasury bonds. Finally, our objective slightly
differs from the literature on Treasury auctions : if existing studies mainly compare the
auctions with respect to revenues (as Back and Zender [2], Ausubel and Cramton [1] or
Klemperer [13] for instance), we emphasize the ability of each auction to provide full
insurance coverage.

The paper is organized as follows. We present the model in section 2. We then solve the
equilibrium of the FU auction in section 3. In section 4, we introduce the discriminatory
auction and determine the equilibrium. Section 5 is devoted to the comparison between
the two auction formats. All proofs are relegated to the appendix.

2 The model

2.1 Risk, insurers and contract

There exists a new and undiversifiable risk in the economy characterized by its occurrence
probability p and its loss size L.
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In this paper, we analyze insurance supply given an exogenous demand. Therefore, on
the demand side, we assume policyholders ask for the full coverage of this risk. Insurance
is not assumed to be mandatory. Policyholders may prefer to remain uninsured or they
have access to other means of sharing risk. This is captured by the presence of a reserve
price P .

On the supply side, two identical risk neutral insurers, a and b, compete for the
coverage of this risk: i ∈ {a, b} will refer to an insurer and −i to the other. The insurers
choose the premium Pi at which they provide insurance and the quantity they insure qi.
Either because of the idiosyncratic characteristics of both this undiversifiable risk and the
insurance companies or because of solvency regulation and capital requisites applying to
them (see for instance Kousky and Cooke (2012)), insurance companies are assumed to be
capacity constrained so that qi ≤ κi ∈ (1/2, 1), with κa = κb = κ. The lower bound on κ

reflects competition on this market which is too small to absorb the full capacity of both
insurance companies. As the capacity κ increases, competition between insurers increases
too. The minimum risk premium that insurers are willing to accept for this coverage is
the actuarial premium p, and they do not ask more than the reserve price P . Insurer i’
net expected benefit reads qi(Pi−p)L with p ≤ Pi ≤ P . As a consequence, insurer i offers
its maximum capacity, qi = κ.

2.2 Insurers’ expertise

As the risk is new, its occurrence probability p is not perfectly known by the insureds,
nor by the insurers. However, the latter can use their expertise to infer p. We assume
that insurer i privately observes a free signal Si related to the true occurrence probability.
Signals Sa and Sb are distributed according to the same continuous distribution on the
interval [0, 1] and are assumed to be affiliated. As a consequence, if g(.|s) denote the
(symmetric) probability distribution function of an insurer’s signal conditional on the
other insurer having observed signal s, the following condition holds.

Assumption 1

∀s′i > si and s′−i > s−i,
g(s′i|s′−i)
g(s′i|s−i)

≥
g(si|s′−i)
g(si|s−i)

. (1)

The actuarial premium is updated according to all events conveying valuable infor-
mation about the signals. We assume that it can be expressed as a function of insurers’
private information. It is identical for the two insurers and is a symmetric function of all
insurers’ signals.

p(si, s−i) = p(s−i, si) ≡ E [p|Si = si, S−i = s−i] . (2)

We impose the following regularity assumptions on the actuarial premium.
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Assumption 2 The actuarial premium p satisfies the following properties.

(i) Function p is twice continuously differentiable and strictly increasing in the two
variables;

(ii) E [p(Si, 0)] < P < E [p(Si, 1)].

A high value of s signals a risk that is assumed to be more costly to insure and some
risks cannot be insured. Indeed, Assumption 2(ii) means that if insurer −i observes the
best (resp. worst) possible signal, covering the risk is always (resp. never) profitable for
insurer i.

Let us also define signal σ̃ as the maximal signal for which the two insurance companies
accept to cover the risk in case they observe the same signal and function α that can be
interpreted as an isocost curve evaluated at the maximal premium P .3

Definition 1

(i) σ̃ is implicitly defined by
p (σ̃, σ̃) = P . (3)

(ii) α is implicitly defined by

p(α(s), s) = P ∀s ∈ [0, 1]. (4)

2.3 Insurers’ syndication

The organization of insurance supply amounts to the problem of sharing a common value
divisible good between capacity constrained agents with a reserve price. The objective of
this paper is to analyze different auction rules to constitute this syndicate, namely the
Flexible Uniform Auction and the Discriminatory Auction. Each auction determines a
game of incomplete information among the insurers: we look for a symmetric Bayesian
Nash equilibrium that is increasing in the bidding strategies of each resulting game.

3 Analysis of the Flexible Uniform Auction

3.1 The Flexible Uniform Auction rules

In this section, we model ad-hoc co-insurance agreements, a representative organization of
the insurance sector. The European Commission [7] provides a detailed description of the
procedures leading to these agreements in several European countries. Even if country-
specific differences exist, they share common features that we decide to highlight. The

3According to Assumption 2(ii), α is a decreasing function. Moreover, the symmetry of α with respect
to its arguments implies that α−1 = α.
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premium is unique and equals the lowest bid among insurers. The European Commission
[7] also notes that “the followers are usually invited to either accept or decline or take a
share of the risk on the same terms and conditions as the lead insurer”.

We label this particular auction the “Flexible Uniform Auction” (FUA) whose follow-
ing rules incorporate these features. After insurers receive their private signals sa and sb,
a first price auction determines the risk premium. If at least one insurer submits a bid
Pi ≤ P , the insurer that submitted the smallest premium is the leader and sells κ at price
P FU ; the other insurer is the follower and observes P FU . He decides whether he sells 1−κ
at price P FU or not. In this particular auction, the follower has both an exit and a re-
entry option since he can join or exit the agreement whatever his initial choice to submit
a bid ex-ante. Indeed, the follower has the possibility to exit the syndicate after having
observed P FU : in this case, the leader is still committed to serve its announced capacity
and there is partial insurance. Moreover, if an insurer is too pessimistic to submit a bid
ex-ante, he may still re-enter and participate ex-post if the leader’s bid reveals a good
risk.

3.2 Separating equilibrium

We look for a separating equilibrium characterized by a threshold σ̂FU . When si ≤ σ̂FU ,
insurer i bids according to a strictly increasing bidding strategy P FU(si) with P FU(σ̂FU) =
P . When si > σ̂FU , insurer i is willing to participate ex-post only. The bid unambiguously
reveals the private signal the bidding insurer observed. The profit of insurer i who observed
a signal si and bids a premium P FU(si) reads

ΠFU (si) =



κ (1−G (si|si))E
[
PFU (si)− p(si, S−i)|S−i > si

]
+(1− κ)G (si|si)E

[(
PFU (S−i)− p(si, S−i)

)
+
|S−i < si

]
for si ≤ σ̂FU (5a)

(1− κ)G
(
σ̂FU |si

)
E

[(
PFU (S−i)− p(si, S−i)

)
+
|S−i < σ̂FU

]
for si > σ̂FU (5b)

When si ≤ σ̂FU , insurer i submits a bid ex-ante. The first term of equation (5a),
the leader’s value, corresponds to the case where insurer i observes the lowest signal.
This happens when S−i > si, an event of probability 1 − G (si|si). In such case, insurer
i proposes the lowest premium and becomes the leader, serving the quantity κ at his
bid P FU(si). The second term of equation (5a) corresponds to the case where insurer
i observes the highest signal (this happens with probability G (si|si)). He proposes the
highest risk premium and becomes the follower, serving the residual demand, 1 − κ, at
insurer j’s price P FU(s−i). Note that if his payoff turns out to be negative, insurer i can
withdraw from the auction (hence the subscript “+”). Therefore, this term is named the
exit option value. Equation (5b) corresponds to the case where insurer i observes a signal
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greater than σ̂FU and therefore does not want to participate ex-ante whereas his opponent
submits a bid smaller than P . Insurer i as the follower agrees to re-enter in case it is
profitable. In such case, he serves the residual demand 1 − κ at insurer −i’s proposed
price P FU(s−i). We refer to this term as the re-entry option value. Submitting a bid in
this auction does not commit to stay in the auction for the highest bidder. This feature
is unusual in the auction literature and implies a strong asymmetry between the leader
and the follower.

The participation constraint requires that bidders with signals greater than σ̂FU prefer
not to bid to submitting the bid P . Next Lemma characterizes σ̂FU .

Lemma 1 The threshold σ̂FU exists and is uniquely defined by

E
[
P − p(σ̂FU , S−i)|S−i > σ̂FU

]
= 0 (6)

Moreover, σ̂FU < σ̃.

Given the specific rules of the FUA (uniform pricing, options to exit and to re-enter),
the follower profit is the same whatever the choice to participate to the auction ex-ante. At
si = σ̂FU , the exit option value exactly compensates the re-entry option value. Therefore,
the threshold σ̂FU only matters for the leader’s strategy and is determined to guarantee
that the maximum net expected benefit is equal to zero which refrains from bidding when
signals are too high. The tradeoff for an insurer is between insuring a large capacity with
the risk of ex-post negative profit (leader) and insuring a smaller capacity at no risk of
loss (follower).

The equilibrium bidding strategy is described in Proposition 1.

Proposition 1 There exists a unique symmetric Nash equilibrium in strictly increasing
equilibrium bidding strategies where

P FU(s) = 2κ− 1
κ

(
1− L(σ̂FU |s)

)
P +

∫ σ̂FU

s
p(x, x)dL(x|s) ∀ s ≤ σ̂FU (7)

with
L(x|s) = 1− exp

(
−2κ− 1

κ

∫ x

s

g(τ |τ)
1−G(τ |τ)dτ

)
(8)

and σ̂FU defined by equation (6).

The expression of the equilibrium bidding strategy is standard in the auction literature:
the first term takes into account the reserve price whereas the upper bound in the integral
of the second term reflects the exit/re-entry option.4 As for the premium that is indeed
paid by the policyholders, it depends on the signal of the two insurers. In Figure 1(a),

4Observe that x 7→ L(x|s) is an increasing function with L(s|s) = 0.
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insurer i turns out to be the leader when si ≤ s−i in which case the premium corresponds
to its bid. But when si > s−i, the premium corresponds to insurer −i’s bid. When
si > σ̂FU , observe that insurer i decides to re-enter ex-post when P FU(s−i) > p(si, s−i).
Let us define function sFU(si) for si ∈ [0, σ̂FU ] that takes value on [σ̂FU , 1].5 It is implicitly
defined by

P FU(si) = p(si, sFU(si)). (9)

Therefore, insurer i decides to re-enter ex-post if si < sFU(s−i). In Figure 1(b), insurer
i’s opponent observes a signal higher than σ̂FU , so that he does not bid and insurer i is
always the leader.

(a) s−i < σ̂FU . (b) s−i > σ̂FU .

Figure 1: Insurer i’s premium for different insurer −i’s signal values.

One of the specificities of this FUA is that insurance coverage can be full even if only
one insurer submits a bid ex-ante (when the re-entry option value is exerted). Similarly,
when the exit option value is exerted, insurance coverage can be partial even if the two
insurers submit a bid ex-ante. The following lemma tells us that, under an additional
assumption, an insurer that submits a bid ex-ante never wants to withdraw ex-post.

Assumption 3 Function p is supermodular,

∂2p(si, s−i)
∂si∂s−i

≥ 0,∀(si, s−i) ∈ [0, 1]2; (10)

Supermodularity implies that some form of positive correlation exists between the two
signals values.6

5This defines a function since p is increasing in each of its argument.
6Note that this additional assumption is compatible with MLRP. Assume for instance that

the true probability is a function of the two signals and a third continuous random variable Y
with a pdf fY distributed on an interval [a, b] and independent of the signals such that p =
ψ(Si, S−i, Y ). In this case p(si, s−i) = p(s−i, si) =

∫ b
a
ψ(si, s−i, y)fY (y)dy. Assumption 3 is satisfied

if
∫ b
a

∂2

∂si∂s−i
ψ(si, s−i, y)fY (y)dy ≥ 0.
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Lemma 2 Under Assumption 3, an insurer that submits a bid ex-ante never wants to
withdraw ex-post.

P FU(s−i)− p(si, s−i) > 0 ∀ s−i < si ≤ σ̂FU . (11)

Lemma 2 implies that there will always be full coverage when the two insurers submit
a bid ex-ante. Indeed, in this case, both insurers are optimistic enough on the risk to
submit a bid. If Assumption 3 is satisfied, the least optimistic insurer is reassured by the
leader’s bid and remains in the agreement.

Figure 2: The different insurance coverages for all signals’ values.

Figure 2 describes insurance coverage for all signals’ values. The diagram is symmetric
with respect to the 45 degree line and three possible cases appear: full coverage, partial
coverage and no coverage. Assume insurer i observes the smallest signal. There is full
coverage when both insurers initially receive a signal smaller than σ̂FU , but also when
insurer −i who decided not to submit a bid ex-ante decides to re-enter ex-post (si ≤ σ̂FU

and σ̂FU ≤ s−i ≤ sFU(si), so that P FU(si) > p(si, s−i)). There is partial coverage when
insurer i bids ex-ante and insurer −i does not participate to the auction, so that only
capacity κ is provided. The boundary between the full coverage and the partial coverage
regions is

{
(si, s−i) ∈ [0, 1]2|P FU(si) = p(si, s−i)

}
and corresponds to sFU(si): insurer −i

is indifferent between entering ex-post and never participating to the FUA since its payoff
is zero. Therefore, when there is partial coverage, the leader’s payoff is negative, there
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is winner’s curse. According to Lemma 2, the boundary sFU is greater than σ̂FU . Note
that sFU(si) might be non-monotonic with respect to si. In particular, as ∂2PFU (si)

∂si∂κ
≥ 0,

the higher κ, the steeper P FU(si). Therefore, if si 7→ P FU(si)− p(si, s−i) is a decreasing
function of si when κ = 1

2 , it might be a non monotonic function of si when κ is close to
1 as the Figure 2 illustrates. In the no coverage region, the two insurers observe a signal
greater than σ̂FU , none of them submits a bid.

3.3 Equilibrium properties

Increasing competition. Competition is captured by the parameter κ in our model.
Interval [0, σ̂FU ], that represents the region of the signal values for which insurers decide
to submit a bid ex-ante, is independent of κ (see equation (6) defining σ̂FU). However, the
value of κ modifies the equilibrium bid P FU which in turn affects the follower’s decision
to enter or not ex-post.

Proposition 2 When competition increases, the equilibrium bidding strategy P FU de-
creases and the full coverage region decreases.

The equilibrium bidding strategy is represented in Figure 3 for two values of κ. Com-
petition unambiguously lowers bids. As a result, increasing competition (κ) has two
opposite effects on coverage: partial coverage is more likely but the quantity of uninsured
risk decreases.

Figure 3: The equilibrium bidding strategy P FU(s) for two values of κ.

Our analysis highlights that a regulatory cap for the market share of the co-insurance
syndicate members (low κ) should generate high commercial premiums and large coverage.

Modifying the reserve price. According to insurance demand models, an increase in
the reserve price can also be interpreted as an increase in insureds’ risk aversion.
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Proposition 3 When the reserve price increases, σ̂FU increases and the equilibrium bid-
ding strategy P FU increases.

If a higher reserve price unambiguously increases the bidding regions, it has an am-
biguous effect on the equilibrium bidding strategy. Indeed, on the one hand, for a given
bidding region, a greater reserve price tends to increase the premium (direct effect). But
on the other hand, as bidding regions increase (σ̂FU increases with P ) and because the
equilibrium is in strictly increasing strategies, this tends to lowers the premiums for a
given signal value (indirect effect). However, Proposition 3 shows that the direct effect
always dominates so that the higher the reserve price, the higher the equilibrium bidding
strategy as Figure 4 illustrates. As a result, a larger reserve price unambiguously increases
insurance coverage.

Figure 4: The equilibrium bidding strategy P FU(s) for two values of P .

An increase in the reserve price can also be viewed as a strengthening of the participa-
tion constraint for the insureds. In this case, making insurance mandatory (high reserve
price) trivially increases insurance coverage, but increases premiums too.

4 An alternative syndication: the Discriminatory Auc-
tion

We now consider the Discriminatory Auction (DA) that is also widespread in the insurance
industry. In this bidding process, each insurer proposes a risk premium ex-ante according
to the private signal he received. Unlike the FUA, insurers sell insurance coverage at their
announced premium.

14



4.1 Equilibrium analysis

Separating equilibrium We first look for a separating equilibrium characterized by
a threshold σ̂D such that when si ≤ σ̂D, insurer i bids according to a strictly increasing
bidding strategy PD(si) with PD(σ̂D) = P and when si > σ̂D, insurer i does not partici-
pate anymore. The profit of insurer i that observed a signal si and bids a risk premium
PD(si) reads

ΠD (si) =


κ (1−G (si|si))E

[
PD(si)− p(si, S−i)|S−i > si

]
+(1− κ)G (si|si)E

[
PD(si)− p(si, S−i)|S−i < si

]
for si ≤ σ̂D (12a)

0 for si > σ̂D. (12b)

As for the FUA, the leader’s value (first term of equation (12a)) correspond to the
case where insurer i proposes the smallest risk premium. Unlike the FUA, the follower’s
value (second term of equation (12a)) now depends on the follower’s premium and not
on the leader’s premium. It tends therefore to be greater than the follower’s value in the
FUA. Note also that ni the follower’s value, the subscript “+” does not appear since the
follower cannot withdraw the DA.

Incentive compatibility requires that bidders with signals greater than σ̂D prefer not
to bid to submitting the bid P . A new variable κ∗ is needed to characterize threshold σ̂D.

Definition 2

κ∗
(
P
)

= max

 G (σ̃|σ̃)E
[
P − p(σ̃, S−i)|S−i < σ̃

]
G (σ̃|σ̃)E

[
P − p(σ̃, S−i)|S−i < σ̃

]
− (1−G (σ̃|σ̃))E

[
P − p(σ̃, S−i)|S−i > σ̃

] , 1
2

 .
(13)

Lemma 3 The threshold σ̂D exists and is uniquely defined on [0, σ̃] by

κ
(
1−G

(
σ̂D|σ̂D

))
E
[
P − p(σ̂D, S−i)|S−i > σ̂D

]
+(1− κ)G

(
σ̂D|σ̂D

)
E
[
P − p(σ̂D, S−i)|S−i < σ̂D

]
= 0

(14)
if and only if κ ≥ κ∗

(
P
)
.

Contrary to equation (6) that defined the FUA’s threshold, the follower’s payoff (the
second term of equation (14)) matters in the definition of σ̂D. The leader’s expected
payoff is negative at the threshold making the winner’s curse more intense.7 Indeed, an
insurer bids until σ̂D in the expectation of being the follower rather than the leader. As a
consequence, σ̂D may be larger than σ̃ depending on the parameters of the model as the
lemma explains.

7In the DA,
(
1−G

(
σ̂D|σ̂D

))
E
[
P − p(σ̂D, S−i)|S−i > σ̂D

]
< 0, whereas, in the FAU, it holds that(

1−G
(
σ̂FU |σ̂FU

))
E
[
P − p(σ̂FU , S−i)|S−i > σ̂FU

]
= 0.
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Semi-separating equilibrium. If κ < κ∗
(
P
)
, there does not exist a threshold σ̂D ≤

σ̃. Therefore, we must look for another equilibrium strategy that involves pooling for
some values of the signal. More precisely, we look for a semi-separating equilibrium
characterized by two thresholds σD and σD > σD such that: (i) when si ∈ [0, σD], insurer
i bids according to a strictly increasing bidding strategy PD(si) with PD(σD) = P ; (ii)
when si ∈ [σD, σD], insurer i bids P ; and (iii) when si > σD, insurer i does not participate
anymore. The profit of insurer i that received a signal si and proposes a risk premium
PD(si) reads

ΠD (si) =



κ (1−G (si|si))E
[
PD(si)− p(si, S−i)|S−i > si

]
+(1− κ)G (si|si)E

[
PD(si)− p(si, S−i)|S−i < si

]
for si ≤ σD (15a)

κ
(
1−G

(
σD|si

))
E
[
P − p(si, S−i)|S−i > σD

]
+1

2
(
G
(
σD|si

)
−G

(
σD|si

))
E
[
P − p(si, S−i)|σD < S−i < σD

]
for σD < si ≤ σD

+(1− κ)G
(
σD|si

)
E
[
P − p(si, S−i)|S−i < σD

]
(15b)

0 for si > σD. (15c)

The first term corresponds to the leader’s value, the last to the follower’s value. As
for the second term, it corresponds to the case where the two insurers bid P so that
they equally share the market. Incentive compatibility conditions imply that the two
thresholds are thus defined by the following system.8



(
G
(
σD|σD

)
−G

(
σD|σD

))
E
[
P − p(σD, S−i)|σD < S−i < σD

]
= 0 (16a)

κ
(
1−G

(
σD|σD

))
E
[
P − p(σD, S−i)|S−i > σD

]
+1

2
(
G
(
σD|σD

)
−G

(
σD|σD

))
E
[
P − p(σD, S−i)|σD < S−i < σD

]
+ (1− κ)G

(
σD|σD

)
E
[
P − p(σD, S−i)|S−i < σD

]
= 0. (16b)

It must also be checked that an insurer bidding P when it observes a signal comprised
between σD and σD does not have an incentive to underprice.9

When the separating equilibrium exists (κ ≥ κ∗
(
P
)
), the three thresholds σD, σD and

σ̂D vanish into the same value eliminating any pooling. We can then state the following
8Incentive compatibility requires that insurers with signal in [σD, σD] prefer submitting P to not

participating and to submitting any lower bid. Moreover, insurers with signals greater than σD prefer
not to bid to submitting the bid P .

9This comes down to checking that(
G
(
σD|si

)
−G

(
σD|si

))
E
[
P − p(si, S−i)|σD < S−i < σD

]
≤ 0 ∀si ∈ [σD, σD].

This is done in the proof of Lemma 4.
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proposition that characterizes the equilibrium strategy.10

Proposition 4 If κ ≥ κ∗
(
P
)
, the unique equilibrium in increasing strategy is the sepa-

rating equilibrium.
If κ < κ∗

(
P
)
, the unique equilibrium in increasing strategy is the semi-separating

equilibrium. In this case, the following ranking holds

α(σD) ≤ σD < σ̃ < α(σD) ≤ σD ≤ σ̂D.

Corollary 1 In the separating equilibrium, the strictly increasing bidding equilibrium
strategies read

PD(s) = P (1−K(σ̂D|s)) +
∫ σ̂D

s
p(x, x)dK(x|s) ∀s ≤ σ̂D. (17)

with σ̂D defined by equation (14).

In the semi-separating equilibrium, the increasing bidding equilibrium strategies read

PD(s) =

P (1−K(σD|s)) +
∫ σD

s
p(x, x)dK(x|s) for s ≤ σD (18a)

P for σD < s ≤ σD. (18b)

with σD and σD defined by equations (16a) and (16b).

Function K equals

K(x|s) = 1− exp
(
−
∫ x

s

(2κ− 1) g(τ |τ)
κ− (2κ− 1)G(τ |τ)dτ

)
. (19)

Note that these results complement the literature on auction. We prove the existence
of a separating or a semi-separating equilibrium depending on the reserve price or the
competition level in a common value auction with affiliated values.

4.2 Equilibrium properties

This section provides a comparative static analysis of the DA equilibrium where we em-
phasize the role of competition and of the reserve price.

Increasing competition. The characterization of the equilibrium already highlighted
the role of competition on the nature of the equilibrium that emerges. Therefore, contrary
to the FUA, the region in which insurance companies submit bids now depends on the
competition strength.

10The complete characterization of the equilibrium is presented in Appendix A.2.
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Lemma 4 The following comparative static results hold for the different thresholds:

∂σ̂D

∂κ
≤ 0, ∂σ

D

∂κ
≥ 0 and ∂σD

∂κ
≤ 0.

κκ*0

σ
D

σD

σD

σ


Figure 5: The different thresholds as a function of κ.

In Figure 5, we retrieve the results of Proposition 4 that the equilibrium is separating
when κ ≥ κ∗

(
P
)

and semi-separating when κ < κ∗
(
P
)
. The more intense the compe-

tition, the smaller the bidding regions. The perspective of a tougher competition makes
insurers more prudent when bidding. Note that when the equilibrium is semi-separating,
σD decreases with κ and σD increases with κ: the region for which insurers bid P shrinks.

The results on the bidding regions are closely related to the way the bidding strategies
evolve with respect to κ. Holding the bidding regions constant, an increase in competition
has the direct effect of reducing the bidding strategies. However, as we just saw, an
increase in κ also affects the bidding regions introducing an indirect effect.11 When
κ < κ∗

(
P
)
, as σD increases, P is reached for higher signals’ values so that the direct

and the indirect effect go in the same direction, implying that bidding strategies decrease
with competition. On the contrary, when κ ≥ κ

(
P
)∗

, σ̂D decreases: the indirect effect
therefore tends to increase bidding strategy and the total effect is ambiguous.

Modifying the reserve price. Observe first that, in the general case, it is not straight-
forward to determine whether the equilibrium is separating or semi-separating when the
reserve price increases. Indeed, the dependance of κ∗(P ) with respect to P is difficult to

11This indirect effect writes:

−∂min(σ̂D, σD)
∂κ

(
P − p(min(σ̂D, σD),min(σ̂D, σD))

) dK(x|s)
dx

∣∣∣∣
x=min(σ̂D,σD)

. (20)
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analyze. This is in part due to the dependence of σ̃ with respect to P that intervenes
both directly (through p(S, σ̃)) and indirectly (through affiliation and the distribution
function) in the definition of κ∗(P ).

As for the comparative static of the thresholds with respect to the reserve price, the
following result holds.

Lemma 5 It holds that
∂σ̂D

∂P
≥ 0 and ∂σD

∂P
≥ 0.

As for the FUA, a higher reserve price unambiguously increases the bidding regions.
There is more surplus to extract from the insureds so that insurance companies continue
to bid even if they are less optimistic about the risk occurrence. However, the comparative
statics of the bidding strategy does not lead to direct results.

An illustration is provided in Figure 6. In this example, the equilibrium is separating
if and only if the reserve price is smaller than some threshold P

∗(κ). For a large reserve
price, there is more surplus to extract from the insureds so that insurance companies can
afford bidding less aggressively. Therefore, the equilibrium is semi-separating.

P
P
*
(κ)0

σ

(P

*
(κ))

σ
D

σD

σD

Figure 6: The different thresholds as a function of P .

5 Which auction for the coverage of these risks?

Auctions are generally compared with respect to revenues. In our setting, the policyholder
is both concerned with premiums’ levels and coverage.

5.1 FUA vs DA

Both auctions deal with different risk/return tradeoff for the insurers and in particular
for the one turning out to be follower. The follower’s position is essential to understand
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the efficiency of a given auction format. In the FUA, the follower does not take any risk,
but only enjoys relatively low profits (because of uniform pricing), whereas in the DA the
potential negative profit of the follower is counterbalanced by higher premiums.

Lemma 6 It holds that
σ̂FU ≤ min

(
σ̂D, σD

)
.

A direct consequence of this lemma is that the DA offers a positive coverage (partial
or full) of the risk whereas the FUA offers no coverage when the leader signal is between
σ̂FU and σ̂D. However, in order to be able to compare coverage when the leader’s signal
is smaller than σ̂FU , it is necessary to compare sFU(s) to σ̂D. To do that, a comparison
of the premiums in the two settings is necessary. Unfortunately, the very general setting
of the model does not allow us to have a clear result.

Lemma 7 The bidding strategies in the FUA and in the DA cross at most one.

- Either PD(s) < P FU(s) for all s ∈ [0, σ̂FU ],

- Or, PD(s) > P FU(s) and then PD(s) > P FU(s), when s increases from 0 to σ̂FU .

When the leader’s signal s ≤ σ̂FU is such that PD(s) < P FU(s), the FU auction always
offer more coverage than the discriminatory auction.

The classic tradeoff between quantity and price is highlighted as being the one driving
the differences between the two syndications. Observe that there are only two regions of
the signals values for which the coverage in the two organizations differs.

- When the leader’s signal belongs to [σ̂FU ,min
(
σ̂D, σD

)
], no coverage is offered in

the FUA whereas either full of partial coverage is offered in the DA (depending on
the follower’s signal);

- When the leader’s signal is smaller than σ̂FU , the follower’s signal determines
whether coverage is partial or full. When the boundary sFU is larger than σ̂D,
the FUA offers full coverage whereas only partial coverage is offered in the DA. The
reverse holds when sFU is smaller than σ̂D. We show in the proof of Lemma 7, that
when PD(s) < P FU(s) then sFU is larger than σ̂D. However, in the general case,
comparing the boundary sFU to σ̂D is difficult and sFU may cross σ̂D.

As a consequence, when one of the insurance companies is optimistic about the risk
(the leader’s signal is smaller than σFU) and PD(s) < P FU(s), the FUA tends to offer more
coverage at a larger price. However, if the forecasts about the risk occurrence are rather
pessimistic (when the most optimistic insurance company is already quite pessimistic,
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that is when the leader’s signal belongs to [σ̂FU ,min
(
σ̂D, σD

)
), only the DA allows to

offer a positive coverage (partial or full coverage).
However, as it has already been highlighted, the comparison of the equilibrium bid-

ding strategies differ from the comparison of the premiums. If pricing is uniform in the
FUA, the leader and the follower offers different premiums in the discriminatory auction,
the follower’s premium being larger. The difficult comparison of the equilibrium bidding
strategies makes the comparison between the premiums even more tricky.

This analysis shows that ex-ante there is no clear dominance of one auction format.
However, we can highlight two messages depending on the realization of the signals. If
insurers agree about the ex-post evaluation of risk (si close to s−i), the FUA has less scope
so that the size of the bidding region is key to determine the insurance coverage. The DA
therefore offers more coverage. On the contrary, if insurers receive opposite evaluations,
the exercise of the re-entry option allows to increase insurance coverage.

As Lemma 7 underlines, the generality of our model makes the comparison of the
two organizations quite involved (the fact that the bidding strategies cross or not de-
pends on the comparison of P FU(0) with PD(0) which involves all the parameters of the
model). Therefore, as an illustration, we propose to solve explicitly an example in the
next subsection.

5.2 The case of independent signals and linear premium rate

We consider the case in which the two insurance companies receive independent signals
that are distributed according to a uniform distribution on [0, 1]. This corresponds to the
case where the risk is new so that each insurer gathers together its own information on
the occurrence probability. The cost function is moreover assumed to be linear in the two
signals

p(si, s−i) = si + s−i
2 .

In this case, Assumption 2(ii) implies that P ∈ [1/4, 3/4]. Note also that σ̃ = P . All
the computations are detailed in the Appendix C. In particular, we do not detail here the
equilibrium strategies that are explicitly computed in the Appendix. In this illustration,
we restrict ourselves to the case where the separating equilibrium exists in the DA. This
implies that we restrict κ to be greater than κ∗(P ) = max

(
2P−1
P

2 , 0
)
. Observe that when

P ∈ [1/4, 1/2], the equilibrium is separating for any value of κ (κ∗(P ) = 0).

Proposition 5 If κ ≥ κ∗(P ), there exists a unique P̂ such that

- if P < P̂ , P FU(s) > PD(s), ∀s ∈ [0, σ̂FU ]
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- if P ≥ P̂ , P FU(s) < PD(s) and then P FU(s) > PD(s), when s increases from 0 to
σ̂FU .

When the reserve price is low, the FUA offers higher premiums and higher coverage
than the DA. All these results are ex-post as they depend on the signals’ realization.
This example allows us to have a look at an ex-ante analysis. To do that, we compute
both the expected profit and the expected coverage in the two organizations for all pa-
rameters’ values (whether the equilibrium in the discriminatory auction is separating or
semi-separating). While their expression is given is the Appendix, we provide a compari-
son of both of them in Figures 7 and 8.

0.3 0.4 0.5 0.6 0.7
0.5

0.6

0.7

0.8

0.9

1.0

P

κ expected profit larger in the pool

expected profit larger in the discriminatory auction

no separating equilibrium

Figure 7: Comparison of the expected profits.

Remember the basic tradeoff highlighted in the previous subsection. Depending on
the parameters’ values (when the reserve price is low enough), the FUA provides more
coverage at a higher premium when at least one insurer is optimistic about the risk
occurrence probability. But it does not offer any coverage when the two insurers provide
a pessimistic estimation of the risk occurrence probability. According to Figure 7, for
a given κ, the FUA generates a larger expected profit if and only if the reserve price is
smaller than a threshold. Indeed, when the reserve price is large, insurers taking part
to the DA can extract higher rents from the insureds, in part because the follower has a
larger risk premium than the leader.

Another criteria that might be of interest for a regulator concerns the expected cov-
erage generated by each of the organization.

As expected, we observe in Figure 8 that the expected coverage is larger in the FUA
when the reserve price is low. However, for a given competition level, when the reserve
price increases, observe that the expected coverage becomes larger in the DA. As a matter
of fact, the region of signals values such that insurance coverage is only provided with the
DA (min(σ̂D, σD)− σ̂FU) increases when P increases. On the contrary, for a given P high
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Figure 8: Comparison of the expected coverage.

enough, when competition increases, the discriminatory auction offers a smaller expected
coverage. Indeed, as κ increases, σ̂D and σD decreases so that the region in which only
the discriminatory auction provides coverage (min(σ̂D, σD)− σ̂FU) decreases.

5.3 Conclusion

In this paper, we investigate how insurance companies can coordinate to extend their
joint capacity for the coverage of large new risks. Organizing such insurance supply
amounts to auction a common value divisible good between capacity constrained insurers
where insurers have private information. Two auctions formats, a flexible uniform auction
(FUA) and a discriminatory auction (DA), are compared with respect to premiums and
their ability to offer full and partial coverage.

We show that both auction formats lead to different coverage/premium tradeoffs.
Our findings may not entirely negate the existence of ad-hoc co-insurance agreements
to cover large unconventional risk categories in the insurance sector. If insurers agree
about the ex-post evaluation of risk, the discriminatory auction offers more coverage. On
the contrary, if insurers receive opposite evaluations, the exercise of the re-entry option
allows to increase insurance coverage. We also provide some results about the ex-ante
comparison of the two auctions for the case of new risks (independent insurers’ signals).
We show that a regulator aiming at maximizing the expected coverage should promote
the FUA when the reserve price is low enough or when competition is high enough.

Two major differences exist between the two settings. The follower pricing rule (uni-
form versus heterogenous pricing) and the re-entry option. When re-entry is possible, an
insurer takes less risks in its bidding strategy since submitting a bid is not a necessary
condition to participate to the auction anymore. Therefore, an insurer reduces the risk
of being a leader despite a high signal by reducing the bidding region. Introducing the
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re-entry option in the DA then leads to more conservative strategies. Also, being a fol-
lower in the first stage leads to higher premiums than re-entering in the second stage and
being a follower at the leader’s premium. Therefore, the re-entry option is less valuable
under heterogenous pricing. As a consequence, insurers take advantage of the first stage
by enlarging the bidding region, compared to the FUA. The presence of re-entry option
in an auction then yields to more complete market failure but reduces the partial market
failure. In the DA, re-entry raises premium since re-entering followers benefit from the
leader’s revenue. When re-entry is possible, the comparison between heterogenous and
uniform pricing relies on the same forces than the ones described in Lemma 7. Re-entry
also increases premium in the uniform auction. The presence of re-entry option yields to
higher premiums both with heterogenous and uniform pricing.
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A Equilibrium analysis

A.1 Equilibrium analysis in the FUA

We look for an equilibrium strategy such that insurer i has an incentive to submit a bid
according to its true signal. The profit of insurer i who observed a signal si and bids a
risk premium P FU(b) reads

ΠFU (b, si) =



κ (1−G (b|si))E
[
PFU (b)− p(si, S−i)|S−i > b

]
+(1− κ)G (b|si)E

[(
PFU (S−i)− p(si, S−i)

)
+
|S−i < b

]
for b ≤ σ̂FU

(1− κ)G
(
σ̂FU |si

)
E

[(
PFU (S−i)− p(si, S−i)

)
+
|S−i < σ̂FU

]
for b > σ̂FU .

Therefore, in order the incentive compatibility constraint to be satisfied, the risk
premium satisfies ∀si ≤ σ̂FU

∂ΠFU (b, si)
∂b

|b=si = 0.

As a consequence, the equilibrium bid P FU(si) satisfies the following differential equation

P FU ′(si) = 2κ− 1
κ

g(si|si)
1−G(si|si)

(
P FU(si)− p(si, si)

)
,∀si ≤ σ̂FU .

It is solved with the boundary condition that P FU(σ̂FU) = P . Using the method of the
parameters’ variation, we obtain that

P FU(s) = P (1− L(σ̂FU |s)) +
∫ σ̂FU

s
p(x, x)dL(x|s) ∀ s ≤ σ̂FU

with
L(x|s) = 1− exp

(
−2κ− 1

κ

∫ x

s

g(τ |τ)
1−G(τ |τ)dτ

)
.

A.2 Equilibrium analysis in the DA

First case: κ ≥ κ∗. We look for an equilibrium strategy such that insurer i has an
incentive to submit a bid according to his true signal. Therefore, at equilibrium, the risk
premium satisfies ∀si ≤ σ̂D

∂ΠD (b, si)
∂b

|b=si = 0

so that the equilibrium bid PD(si) satisfies the following differential equation

PD′(si) = (2κ− 1) g(si|si)
κ− (2κ− 1)G(si|si)

(
PD(si)− p(si, si)

)
, ∀si ≤ σ̂D.
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It is solved with the boundary condition that PD(σ̂D) = P . Using the method of the
parameters’ variation, we obtain that

PD(s) = P (1−K(σ̂D|s)) +
∫ σ̂D

s
p(x, x)dK(x|s) ∀ s ≤ σ̂D

with
K(x|s) = 1− exp

(
−
∫ x

s

(2κ− 1) g(τ |τ)
κ− (2κ− 1)G(τ |τ)dτ

)
.

Second case: κ < κ∗. We look for an equilibrium strategy such that insurer i has an
incentive to submit a bid according to his true signal. Therefore, at equilibrium, the risk
premium satisfies ∀si ≤ σD

∂ΠD (b, si)
∂b

|b=si = 0

so that the equilibrium bid PD(si) satisfies the following differential equation

PD′(si) = (2κ− 1) g(si|si)
κ− (2κ− 1)G(si|si)

(
PD(si)− p(si, si)

)
,∀si ≤ σFU .

It is solved with the boundary condition that PD(σD) = P . Using the method of the
parameters’ variation, we obtain that

PD(s) = P (1−K(σD|s)) +
∫ σD

s
p(x, x)dK(x|s) ∀ s ≤ σD

with
K(x|s) = 1− exp

(
−
∫ x

s

(2κ− 1) g(τ |τ)
κ− (2κ− 1)G(τ |τ)dτ

)
.

When s ∈ [σD, σD], PD(s) = P .

B Proofs

B.1 Proof of Lemma 1

The participation constraint requires that bidders with signals greater than σ̂FU prefer
not to bid to submitting the bid P :

σ̂FU = inf{σ ∈ [0, 1] : (1−G (σ|σ))E
[
P − p(σ, S−i)|S−i > σ

]
≤ 0}. (22)

Since p in continuous and because of Assumption 2, this implies that
(
1−G

(
(σ̂FU |(σ̂FU

))
E
[
P − p(σ̂FU , Sj)|Sj > σ̂FU

]
= 0. (23)
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We first prove that σ̂FU < σ̃. Assume by contradiction that σ̂FU ≥ σ̃. Then,

(
1−G

(
σ̂FU |σ̂FU

))
E
[
P − p(σ̂FU , S−i)|S−i > σ̂FU

]
=

∫ 1

σ̂FU

(
P − p(σ̂FU , s−i)

)
g
(
s−i|σ̂FU

)
ds−i

<
(
P − p(σ̂FU , σ̂FU)

) (
1−G(σ̂FU |σ̂FU)

)
≤ 0

where the first inequality comes from the fact that p is strictly increasing in each of its
argument, and the second from the fact that σ̂FU is assumed to be greater than or equal
to σ̃. This contradicts the definition of σ̂FU (see equation (23)). A direct consequence is
that

(
1−G

(
(σ̂FU |(σ̂FU

))
> 0 since σ̂FU < σ̃ so that σ̂FU can be defined as

E
[
P − p(σ̂FU , Sj)|Sj > σ̂FU

]
= 0. (24)

We introduce function
Ψ(x) ≡ E

[
P − p(x, S)|S > x

]
that is decreasing (Milgrom and Weber (1982)). As Ψ(0) > 0 and Ψ(1) < 0 (Assumption
2), we conclude that σ̂FU is unique. 2

B.2 Proof of Proposition 1

See Subsection A.1.

B.3 Proof of Lemma 2

We have that si 7→ P FU(s−i)− p(si, s−i) is a decreasing function. We prove the result by
showing that P FU(s−i)− p(σ̂FU , s−i) > 0, ∀s−i ≤ σ̂FU .

P FU(s−i)− p(σ̂FU , s−i)

= P
(
1− L

(
σ̂FU |s−i

))
+
∫ σ̂FU

s−i
p(x, x)dL(x|s−i)− p

(
σ̂FU , s−i

)
= P

(
1− L

(
σ̂FU |s−i

))
+ L

(
σ̂FU |s−i

) ∫ σ̂FU

s−i
p(x, x) dL(x|s−i)

L (σ̂FU |s−i)
− p

(
σ̂FU , s−i

)
≥ P

(
1− L

(
σ̂FU |s−i

))
+ L

(
σ̂FU |s−i

)
p
(
σ̂FU , s−i

)
− p

(
σ̂FU , s−i

)
=

(
P − p

(
σ̂FU , s−i

)) (
1− L

(
σ̂FU |s−i

))
> 0

where the first inequality holds if
∫ σ̂FU
s−i

p(x, x) dL(x|s−i)
L(σ̂FU |s−i) ≥ p

(
σ̂FU , s−i

)
and the second

inequality holds since s−i ≤ σ̂FU < σ̃.
The rest of the proof consists in proving that

∫ σ̂FU
s−i

p(x, x) dL(x|s−i)
L(σ̂FU |s−i) ≥ p

(
σ̂FU , s−i

)
,

∀s−i ≤ σ̂FU . As p is symmetric and supermodular (Assumption 3), it holds that p(σ̂FU , σ̂FU)+
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p(s−i, s−i) ≥ 2p(σ̂FU , s−i) so that it is sufficient to prove that

∫ σ̂FU

s−i
p(x, x) dL(x|s−i)

L (σ̂FU |s−i)
≥ p(s−i, s−i) + p(σ̂FU , σ̂FU)

2 ∀s−i ≤ σ̂FU . (25)

An integration by part implies that
∫ σ̂FU

s−i
p(x, x) dL(x|s−i)

L (σ̂FU |s−i)
= p

(
σ̂FU , σ̂FU

)
−
∫ σ̂FU

s−i

d

dx
p(x, x) L(x|s−i)

L (σ̂FU |s−i)
dx.

Therefore, inequality (25) reads

p(σ̂FU , σ̂FU)− p(s−i, s−i)− 2
∫ σ̂FU

s−i

d

dx
p(x, x) L(x|s−i)

L (σ̂FU |s−i)
dx ≥ 0 ∀s−i ≤ σ̂FU .

The derivative of function

s−i 7→ p(σ̂FU , σ̂FU)− p(s−i, s−i)− 2
∫ σ̂FU

s−i

d

dx
p(x, x) L(x|s−i)

L (σ̂FU |s−i)
dx

equals

− d

dx
p(x, x)|x=s−i − 2

∫ σ̂FU

s−i

d

dx
p(x, x)

L2(x|s−i)L
(
σ̂FU |s−i

)
− L(x|s−i)L2

(
σ̂FU |s−i

)
(L (σ̂FU |s−i))2 dx < 0

since L(s−i|s−i) = 0 and since x 7→ L2(x|s)
L(x|s) is decreasing. Moreover, as

p(σ̂FU , σ̂FU)− p(s−i, s−i)− 2
∫ σ̂FU

s−i

d

dx
p(x, x) L(x|s−i)

L (σ̂FU |s−i)
dx = 0

when s−i = σ̂FU it follows that

p(σ̂FU , σ̂FU)− p(s−i, s−i)− 2
∫ σ̂FU

s−i

d

dx
p(x, x) L(x|s−i)

L (σ̂FU |s−i)
dx ≥ 0 ∀s−i ≤ σ̂FU

and the result is proved. 2

B.4 Proof of Proposition 2

Observe first that Lκ(x|s) is increasing in κ.12 Remember that

P FU(s) = P (1− Lκ(σ̂FU |s)) +
∫ σ̂FU

s
p(x, x)dLκ(x|s).

As σ̂FU is independent from κ, Lκ(σ̂FU |s) is increasing in κ as we just underlined. This also
implies that

∫ σ̂FU
s p(x, x)dLκ(x|s) is increasing in κ because, for κ′ > κ function Lκ first

12The subscript “κ” indicates the parameter value, κ.
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order stochastic dominates Lκ′ . The boundary between regions the full coverage region
and the partial coverage region is defined by κ

{
{(si, s−i) ∈ [0, 1]2|P FU(si) = p(si, s−i)

}
.

For a given s−i, if κ increases, in order the equality P FU(si) = p(si, s−i) to hold it must
be the case that si decreases, so that the region where full coverage happens shrinks. As
a consequence, the region in which partial coverage holds expands. 2

B.5 Proof of Proposition 3

We know that σ̂FU is such that Ψ(σ̂FU) = 0. Differiating this expression with respect to
P implies that

∂σ̂FU

∂P
= −

∂Ψ(σ̂FU )
∂P

Ψ′(σ̂FU) = − 1
Ψ′(σ̂FU) > 0

since the denominator is negative (see the proof of Lemma 1).

As for the equilibrium bidding strategy, observe that

∂P FU(s)
∂P

= 1− L
(
σ̂FU |s

)
− L1

(
σ̂FU |s

) σ̂FU
∂P

(
P − p

(
σ̂FU , σ̂FU

))
.

The first term is positive and corresponds to the direct effect, whereas the second term is
negative and corresponds to the indirect effect. It is therefore necessary to compute all
the terms together. Observing that

L1
(
σ̂FU |s

)
= 2κ− 1

κ

g
(
σ̂FU |σ̂FU

)
1−G (σ̂FU |σ̂FU)

(
1− L

(
σ̂FU |s

))
,

we have that

∂PFU (s)
∂P

=
(
1− L

(
σ̂FU |s

))1− σ̂FU

∂P

(
P − p

(
σ̂FU , σ̂FU

)) 2κ− 1
κ

g
(
σ̂FU |σ̂FU

)
1−G (σ̂FU |σ̂FU )


=

(
1− L

(
σ̂FU |s

)) ((
1−G

(
σ̂FU |σ̂FU

))
Ψ′(σ̂FU )− 1−κ

κ

(
P − p

(
σ̂FU , σ̂FU

))
g
(
σ̂FU |σ̂FU

))
(1−G (σ̂FU |σ̂FU )) Ψ′(σ̂FU )

> 0.

It follows that P FU(s) is an increasing function of P . 2
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B.6 Proof of Lemma 3

Introduce functions φ, ψ and θ defined by

φ(x) ≡ G (x|x)E
[
P − p(x, S)|S < x

]
(26)

ψ(x) ≡ (1−G (x|x))E
[
P − p(x, S)|S > x

]
(27)

θ(x) ≡ κψ(x) + (1− κ)φ(x) (28)

σ̂D (Equation (14)) is defined by θ(σ̂D) = 0. Observe that the only possibility for Equation
(14) to be satisfied is that φ(σ̂D) > 0 and ψ(σ̂D) < 0.
Introduce in addition functions Φ defined by

Φ(x) ≡ E
[
P − p(x, S)|S < x

]
(29)

and remember that we defined in Lemma 1

Φ(x) ≡ E
[
P − p(x, S)|S < x

]
. (30)

It follows that θ (x) = κ (1−G (x|x)) Ψ (x) + (1− κ)G (x|x) Φ (x). As we already noted,
Φ and Ψ are decreasing functions (Milgrom and Weber (1982)).

Step 1. Assume first that κ ≥ κ∗. We show that a unique threshold σ̂D ∈ [0, σ̃] exists.
Observe that θ(0) > 0 and that θ(σ̃) ≤ 0 when κ ≥ κ∗. Therefore, function θ has at least
one zero. Therefore, σ̂D exists. We are going to prove that the derivative of θ is negative
at σ̂D.

θ′(σ̂D) = (1−κ)G(σ̂D|σ̂D)Φ′(σ̂D)+κ(1−G(x|x))Ψ′(σ̂D)+ dG (x|x)
dx

∣∣∣∣∣
x=σ̂D

(
(1− κ)Φ(σ̂D)− κΨ(σ̂D)

)

The first two terms are negative. Since φ(σ̂D) > 0 and ψ(σ̂D) < 0, it follows that
(1− κ)Φ(σ̂D)− κΨ(σ̂D) ≥ 0. Therefore, if dG(x|x)

dx
|x=σ̂D < 0, θ′(σ̂D) ≤ 0. To complete this

part of the proof, we must treat the case where dG(x|x)
dx
|x=σ̂D > 0. To do that, we have to
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detail the expressions of φ′(x) and ψ′(x).

θ′(x) = κψ′(x) + (1− κ)φ′(x)

= −κ
(
P − p(x, x)

)
g (x|x)− κ

∫ 1

x
p1(x, s−i)g (s−i|x) ds−i

+κ
∫ 1

x

(
P − p(x, s−i)

)
g2 (s−i|x) ds−i + (1− κ)

(
P − p(x, x)

)
g (x|x)

−(1− κ)
∫ x

0
p1(x, s−i)g (s−i|x) ds−i + (1− κ)

∫ x

0

(
P − p(x, s−i)

)
g2 (s−i|x) ds−i

= −κ
∫ 1

x
p1(x, s−i)g (s−i|x) ds−i − (1− κ)

∫ x

0
p1(x, s−i)g (s−i|x) ds−i

−(2κ− 1)
(
P − p(x, x)

)
g (x|x) + κ

∫ 1

x

(
P − p(x, s−i)

)
g2 (s−i|x) ds−i

+(1− κ)
∫ x

0

(
P − p(x, s−i)

)
g2 (s−i|x) ds−i.

An integration by part of the last two terms imply that

θ′(x) = −κ
∫ 1

x
p1(x, s−i)g (s−i|x) ds−i − (1− κ)

∫ x

0
p1(x, s−i)g (s−i|x) ds−i

−(2κ− 1)
(
P − p(x, x)

)
g (x|x) + κ

∫ 1

x
p2(x, s−i)G2 (s−i|x) ds−i

+(1− κ)
∫ x

0
p2(x, s−i)G2 (s−i|x) ds−i − (2κ− 1)

(
P − p(x, x)

)
G2 (x|x)

= −κ
∫ 1

x
p1(x, s−i)g (s−i|x) ds−i − (1− κ)

∫ x

0
p1(x, s−i)g (s−i|x) ds−i

+κ
∫ 1

x
p2(x, s−i)G2 (s−i|x) ds−i + (1− κ)

∫ x

0
p2(x, s−i)G2 (s−i|x) ds−i

−(2κ− 1)
(
P − p(x, x)

) dG (x|x)
dx

.

The first four terms are negative (remember that affiliation implies that G2 < 0). As for
the last term, it is negative when evaluated at x = σ̂D since σ̂D < σ̃ and dG(x|x)

dx
|x=σ̂D > 0.

When θ equals zero, its derivative is negative meaning that σ̂D is unique.

Step 2. Assume now that κ < κ∗. We show that function θ does not cancel on [0, σ̃] so
that there does not exist σ̂D.
When κ < κ∗, θ(σ̃) > 0, so that either θ never cancels on [0, σ̃], or it cancels an even
number of times. However, we have shown that when θ cancels on [0, σ̃], its derivative is
negative. Therefore, when κ < κ∗, θ is positive and θ̂D does not exist. 2

B.7 Proof of Proposition 4

We prove first that if the separating equilibrium does not exist (κ < κ∗), then the semi-
separating equilibrium exists and is unique.
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The first part of this proof goes through a series of steps. Let us first introduce function
I, J and K

I(x, y) ≡ (G (y|x)−G (x|x))E
[
P − p(x, S)|x < S < y

]
(31)

J(x, y) ≡ (G (y|y)−G (x|y))E
[
P − p(y, S)|x < S < y

]
(32)

H(x, y) ≡ θ(y) + 1
2J(x, y) (33)

where θ is defined by equation (28). Observe that ψ(x) = I(x, 1), φ(x) = J(0, x) and
θ(x) = κI(x, 1) + (1− κ)J(0, x). Let us also introduce

J (x, y) ≡ E
[
P − p(y, S)|x < S < y

]
(34)

J is decreasing in each of its argument (Milgrom and Weber [19]).
Step 1.
We show that α(σD) < σD < σ̃ < α(σD) < σD < σ̂D.
To prove this step, assume that (σD, σD), with σD, σD, is a solution meaning that I(σD, σD) =
0 and H(σD, σD) = 0. I(σD, σD) = 0 implies that

P
(
G(σD|σD)−G(σD|σD)

)
=

∫ σD

σD
p(σD, t)g(t|σD)dt

> p(σD, σD)
(
G(σD|σD)−G(σD|σD)

)
.

Therefore, P > p(σD, σD) implying that σD < σ̃.

Remember that t 7→ P−p(σD, t) is a decreasing function. In order to have I(σD, σD) =
0, it must be the case that P − p(σD, t) is first positive and then negative as t increases
from σD to σD. In particular, we must have that P − p(σD, σD) < 0. This implies that
σD > α(σD) and σD > α(σD) where function α is defined by equation (4).13

To prove that σD < σ̂D, we show that J(σD, σD) < 0 so that θ(σD) > 0.

J(σD, σD) =
∫ σD

σD

(
P − p(t, σD)

)
g(t|σD)g(t|σD)

g(t|σD)dt

<
∫ σD

σD

(
P − p(t, σD)

)
g(t|σD)g(t|σD)

g(t|σD)dt

=
∫ α(σD)

σD

(
P − p(t, σD)

)
g(t|σD)g(t|σD)

g(t|σD)dt+
∫ σD

α(σD)

(
P − p(t, σD)

)
g(t|σD)g(t|σD)

g(t|σD)dt

≤ g(α(σD)|σD)
g(α(σD)|σD)I(σD, σD)

= 0.
13Note that the symmetry of p and the fact that it is increasing with respect to each of its argument

imply that α = α−1.
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The second inequality holds because t 7→ g(t|y)
g(t|x) is an increasing function ∀x ≤ y.

It therefore holds that α(σD) < σD < σ̃ < α(σD) < σD < σ̂D. This allows us to define
the region D ≡

{
(x, y) ∈ [0, 1]2|α(y) < x < σ̃ < α(x) < y < σ̂D

}
to which the solution to

the following system should belong to
{
I(x, y) = 0
H(x, y) = 0.

Step 2.
We show that xI(y) defined by I(xI(y), y) = 0 on Dy =

{
σ̃ < y < σ̂D|α(y) < xI(y) < σ̃

}
is a decreasing function.
The implicit function theorem implies that

dxI(y)
dy

= −I2(xI(y), y)
I1(xI(y), y) .

I2(xI(y), y) = (P − p(xI(y), y))g(y|xI(y)) ≤ 0 since α(y) < xI(y) (or equivalently y >

α(xI(y))).

I1(xI(y), y) = −
(
P − p(xI(y), xI(y))

)
g(xI(y)|xI(y))−

∫ y

xI(y)
p1(xI(y), t)g(t|xI(y))

+
∫ y

xI(y)
(P − p(xI(y), t))L (t|xI(y)) g(t|xI(y))dt

The first two terms are negative (the first because xI(y) < σ̃). The third term is negative,
too. To see that, let us introduce

L (s|x) ≡ 1
g (s|x)

dg (s|x)
dx

. (35)

Function s 7→ L(s|x) is increasing according to Assumption 1. As a consequence,∫ y

xI(y)
(P − p(xI(y), t))L (t|xI(y)) g(t|xI(y))dt

≤ L (α(xI(y))|xI(y))
∫ y

xI(y)
(P − p(xI(y), t))g(t|xI(y))dt

= 0.

This implies that y 7→ xI(y) is a decreasing function.
Note moreover that xI(σ̃) = σ̃ and that xI(σ̂D) > α(σ̂D). To prove this last inequality,

observe that∫ σ̂D

xI(σ̂D)

(
P − p(α(σ̂D), t)

)
g(t|xI(σ̂D))dt >

∫ σ̂D

xI(σ̂D)

(
P − p(α(σ̂D), σ̂D)

)
g(t|xI(σ̂D))dt

= 0,
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implying that xI(σ̂D) > α(σ̂D).

The last property that remains to be shown for this function xI is that y 7→ xI(y)
and y 7→ α(y) only cross once when y ∈ [σ̃, σ̂D]. This is not a priori obvious since the
two functions are decreasing. We know that xI(σ̃) = α(σ̃) = σ̃. Assume that there exists
y ∈ (σ̃, σ̂D] such that xI(y) = α(y). By definition of xI , this implies that

∫ y

α(y)

(
P − p (α(y), t) g (t|α(y))

)
dt = 0.

However, p (α(y), t) < p (α(y), y) = P , ∀t ∈ [α(y), y], so that it is not possible that the
integral equals 0. Therefore such an y does not exist. As a consequence, y 7→ xI(y) and
y 7→ α(y) only cross for y = σ̃, and ∀y ∈ [σ̃, σ̂D], xI(y) > α(y).

Step 3.
We show that yH(x) defined byH(x, yH(x)) = 0 onDx =

{
α
(
σ̂D
)
< x < σ̃|α(x) < yH(x) < σ̂D

}
is an increasing function.
The implicit function theorem implies that

dyH(x)
dx

= −H1(x, yH(x))
H2(x, yH(x)) .

Remembering that H(x, y) = θ(y) + (1/2)J(x, y) (where θ is defined by equation (28)), it
follows that

H1(x, yH(x)) = 1
2J1(x, yH(x))

= −1
2(P − p(x, yH(x)))g(x|yH(x)))

> −1
2(P − p(x, α(x)))g(x|yH(x)))

= 0.

In order to prove that H2(x, yH(x)) is negative, let us first write

H(x, y) = κ (1−G (y|y)) Ψ (y) + (1− κ)G (y|y) Φ (y) + 1
2 (G (y|y)−G (x|y))J (x, y)

= κ
∫ 1

y

(
P − p(y, t)

)
G1 (t|y) dt+ (1− κ)

∫ y

0

(
P − p(y, t)

)
G1 (t|y) dt

+1
2

∫ y

x

(
P − p(y, t)

)
G1 (t|y) dt
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Differentiating H with respect to y implies that

H2(x, y) = −κ
∫ 1

y
p1(y, t)G1(t|y)dt− (1− κ)

∫ y

0
p1(y, t)G1(t|y)dt− 1

2

∫ y

x
p1(y, t)G1(t|y)dt

−
(3

2 − 2κ
)(

P − p(y, y)
)
G1 (y|y) + κ

∫ 1

y

(
P − p(y, t)

)
G12 (t|y) dt

+(1− κ)
∫ y

0

(
P − p(y, t)

)
G12 (t|y) dt+ 1

2

∫ y

x

(
P − p(y, t)

)
G12 (t|y) dt

The first four terms are negative (remember that κ < κ∗ ≤ 1/2). Let us analyze the
last three. The objective is to evaluate them at (x, yH(x)).

κ

∫ 1

yH(x)

(
P − p(yH(x), t)

)
G12 (t|yH(x)) dt+ (1− κ)

∫ yH(x)

0

(
P − p(yH(x), t)

)
G12 (t|yH(x)) dt

+1
2

∫ yH(x)

x

(
P − p(yH(x), t)

)
G12 (t|yH(x)) dt

= κ

∫ 1

yH(x)

(
P − p(yH(x), t)

)
L (t|yH(x))G1 (t|yH(x)) dt

+(1− κ)
∫ α(yH(x))

0

(
P − p(yH(x), t)

)
L (t|yH(x))G1 (t|yH(x)) dt

+(1− κ)
∫ 1

α(yH(x))

(
P − p(yH(x), t)

)
L (t|yH(x))G1 (t|yH(x)) dt

+1
2

∫ yH(x)

x

(
P − p(yH(x), t)

)
L (t|yH(x))G1 (t|yH(x)) dt

≤ κL (1|yH(x))
∫ 1

yH(x)

(
P − p(yH(x), t)

)
G1 (t|yH(x)) dt

+(1− κ)L (0|yH(x))
∫ α(yH(x))

0

(
P − p(yH(x), t)

)
G1 (t|yH(x)) dt

+(1− κ)L (y|yH(x))
∫ 1

α(yH(x))

(
P − p(yH(x), t)

)
G1 (t|yH(x)) dt

+1
2L (y|yH(x))

∫ yH(x)

x

(
P − p(yH(x), t)

)
G1 (t|yH(x)) dt

= κ (L (1|yH(x))− L (yH(x)|yH(x)))
∫ 1

yH(x)

(
P − p(yH(x), t)

)
G1 (t|yH(x)) dt

−(1− κ) (L (yH(x)|yH(x))− L (0|yH(x))−)
∫ α(yH(x))

0

(
P − p(yH(x), t)

)
G1 (t|yH(x)) dt

≤ 0

where the first and the last inequalities come from the fact that t 7→ L(t|y) is an increasing
function and the second equality holds because H2(x, yH(x)) = 0 so that
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1
2

∫ yH(x)

x

(
P − p(yH(x), t)

)
G1 (t|yH(x)) dt+ (1− κ)

∫ 1

α(yH(x))

(
P − p(yH(x), t)

)
G1 (t|yH(x)) dt

= −(1− κ)
∫ α(yH(x))

0

(
P − p(yH(x), t)

)
G1 (t|yH(x)) dt− κ

∫ 1

yH(x)

(
P − p(yH(x), t)

)
G1 (t|yH(x)) dt

As a result, H2(x, yH(x)) ≤ 0 and yH is an increasing function.
Moreover note that yH(σ̃) ∈ [σ̃, σ̂D]. Suppose by contradiction that yH(σ̃) > σ̂D. In

this case, θ(yH(σ̃)) < 0 and J(σ̃), yH(σ̃) > 0. This implies that

0 <
∫ yH(σ̃)

σ̃

(
P − p (yH(σ̃), t)

)
g (t|yH(σ̃)) dt

<
∫ yH(σ̃)

σ̃

(
P − p (σ̃, t)

)
g (t|yH(σ̃)) dt

< 0,

leading to a contradiction. Therefore yH(σ̃) ≤ σ̂D. The same reasoning implies that
yH(σ̃) ≥ σ̃.

Step 4.
We show that the solution (σD, σD) is unique.
xI is a decreasing function such that xI(σ̃) = σ̃, xI(σ̂D) > α(σ̂D) and yH is an increasing
function such that yH(σ̃) ∈ [σ̃, σ̂D]. As xI(y) > α(y), ∀y ∈ (σ̃, σ̂D], the two function cross
only once on D. This intersection point that is unique corresponds to the unique solution
of the system that is (σD, σD).

The last part of the proof consists in showing that if the semi-separating equilibrium
exists, then the separating equilibrium does not exist. We are going to prove that if the
separating equilibrium exists then the semi-separating equilibrium does not exist. Assume
therefore that σ̂FU < σ̃. We have proven in Step 1 that σFU ≤ σ̂FU , this implies that
σD < σD < σ̃. But in this case, I(σD, σD) > 0. Therefore, if σ̂FU < σ̃, there do not exist
(σD, σD) satisfying I(σD, σD) = 0 and H(σD, σD) = 0.

It remains to prove that
∫ σD

σD

(
P − p(s, t)

)
g (t|s) dt ≤ 0 ∀s ∈ [σDσD].

36



∫ σD

σD

(
P − p(s, t)

)
g (t|s) dt =

∫ σD

σD

(
P − p(t, s)

)
g(t|σD) g(t|s)

g(t|σD)dt

≤
∫ σD

σD

(
P − p(t, σD)

)
g(t|σD) g(t|s)

g(t|σD)dt

=
∫ α(σD)

σD

(
P − p(t, σD)

)
g(t|σD) g(t|s)

g(t|σD)dt

+
∫ σD

α(σD)

(
P − p(t, σD)

)
g(t|σD) g(t|s)

g(t|σD)dt

≤ g(α(σD)|s)
g(α(σD)|σD)I(σD, σD)

= 0.

B.8 Proof of Corollary 1

See Subsection A.2.

B.9 Proof of Lemma 4

θ(σ̂D) = κψ(σ̂D) + (1− κ)φ(σ̂D) = 0. As we noted in the proof of Lemma 3, φ(σ̂D) > 0.
The implicit function theorem implies that

∂σ̂D

∂κ
= −

ψ
(
σ̂D
)
− φ

(
σ̂D
)

κψ′ (σ̂D) + (1− κ)φ′ (σ̂D) =
φ
(
σ̂D
)
− ψ

(
σ̂D
)

θ′ (σ̂D) .

In Lemma 3, we have proved that θ′(σ̂D) ≤ 0 so that ∂σ̂D

∂κ
≤ 0.

If σ̂D > σ̃, σD and σD are such that{
I(σD, σD) = 0
H(σD, σD) = 0.

The implicit function theorem implies that

∂σD

∂κ
= I(σD, 1)− J(0, σD)

I2(σD,σD)
I1(σD,σD)H1(σD, σD)−H2(σD, σD)

∂σD

∂κ
= −∂σ

D

∂κ

I2(σD, σD)
I1(σD, σD) .

We have proven in the proof of Proposition 4 thatH2(σD, σD) ≤ 0 and thatH1(σD, σD) ≥
0 (in Step 3) and that I1(σD,σD)

I2(σD,σD) ≥ 0 (Step 2). This implies that the denominator of ∂σD

∂κ
is

negative and that ∂σD

∂κ
and ∂σD

∂κ
have opposite signs. Moreover, we know that I(σD, 1) < 0

and J(0, σD) > 0. As a consequence, ∂σD

∂κ
≤ 0 and ∂σD

∂κ
≥ 0.
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B.10 Proof of Lemma 5

We proceed as in the proof of Lemma 4. Therefore, the implicit function theorem applied
to the definition of σ̂D implies that

∂σ̂D

∂P
= −

κ
(
1−G(σ̂D|σ̂D)

)
+ (1− κ)G(σ̂D|σ̂D)

θ′(σ̂D) .

The numerator is positive and we already proved that the denominator is negative. It
follows that

∂σ̂D

∂P
≥ 0.

The implicit function theorem applied to the definition of (σD, σD) implies that

∂σD

∂P
= −

−H1(σD,σD)
I1(σD,σD)

(
G(σD|σD)−G(σD|σD)

)
+ κ+

(
3
2 − 2κ

)
G(σD|σD)− 1

2G(σD|σD)
I2(σD,σD)
I1(σD,σD)H1(σD, σD)−H2(σD, σD)

∂σD

∂P
= −G(σD|σD)−G(σD|σD)

I1 (σD, σD) − ∂σD

∂P

I2(σD, σD)
I1(σD, σD) .

The denominator of ∂σD

∂P
is negative as we proved in Lemma 4. The numerator is

negative since I1(σD, σD) ≤ 0, H1(σD, σD) ≥ 0 and κ ≤ 1/2, implying that (3/2)− 2κ ≥
1/2. It follows that

∂σD

∂P
≥ 0.

However, ∂σD

∂P
equals the difference between two negative terms so that its sign is ambigu-

ous. 2

B.11 Proof of Lemma 6

Remember that

- σ̂FU is such that ψ(σ̂FU) = 0 where ψ is defined in Equation (27),

- σ̂D is such that θ(σ̂D) = κψ(σ̂D) + (1 − κ)φ(σ̂D) = 0 where φ and θ are defined in
Equations (26) and (28),

- σD and σD are the solution of the system I(σD, σD) = 0 and H(σD, σD) = 0 where
I and J are defined in Equations (32) and (33).

Assume first that σ̂D ≤ σ̃.
We already noted (see the proof of Lemma 3) that ψ(σ̂D) < 0. In addition, we also proved
in Lemma 1 that ψ(x) > 0⇔ x < σ̂FU . As ψ(σ̂FU) = 0, this implies that σ̂FU ≤ σ̂D.
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Assume now that σ̂D > σ̃.
ψ(σD) = I(σD, 1) < I(σD, σD) = 0. The same reasoning implies that σFU ≤ σ̂D.

B.12 Proof of Proposition 7

Note first that P FU(σ̂FU) = P > PD(σ̂FU). Second, imagine that the two functions
P FU and PD cross at some point such that P FU(s) = PD(s) at this point. Using the
differential equations satisfied by the two premiums (Equations (??) and (??)), we have
that P P ′(s) > PD′(s). Therefore, if the two functions cross, it happens only once. If
PD(0) ≤ P FU(0), the two curves never crossed.

To prove that the boundary sFU is larger than σ̂D, let us first remark that Lemma 2
could easily apply to bidding strategy of the discriminatory auction. This implies that
PD(s) − p(s, t) > 0, ∀s < t < σ̂D, so that if sD is defined by PD(s) = p(s, sD), it holds
that sD > σ̂D. Therefore, if P FU(s) > PD(s), then sFU(s) > sD(s) > σ̂D > σ̂FU . As a
result, when s ≤ σ̂FU , the FU auction offers full coverage for a larger set of the follower’s
signals than the discriminatory auction. 2

C Analysis of the example

As an illustration and to obtain explicit results, we consider the case in which the two
insurance companies receive independent signals that are distributed according to a uni-
form distribution on [0, 1]. The cost function is moreover assumed to be linear in the two
signals

p(si, s−i) = si + s−i
2 .

In this case, Assumption 1(ii) implies that P ∈ [1/4, 3/4]. Note also that σ̃ = P .

With this specification, the FU auction is characterized by a threshold σFU = 4P−1
3 .

The bidding strategy equals

P FU(s) = κ+ (2κ− 1) s
3κ− 1 − (κ+ 1)(1− P )

3(3κ− 1)

(4
3

) 2κ−1
κ

(
1− P
1− s

) 2κ−1
κ

, ∀s ∈ [0, σFU ].

Proof. Remember that
(
1−G

(
(σ̂FU |(σ̂FU

))
E
[
P − p(σ̂FU , S−i)|S−i > σ̂FU

]
= 0.

With the specification, this reads
∫ 1

σ̂FU

(
P − σ̂FU + s

2

)
ds = 0
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implying that

σ̂FU = 4P − 1
3 .

As for the equilibrium bidding strategy, Proposition 1 tells us that

P FU(s) = P (1− L(σ̂FU |s)) +
∫ σ̂FU

s
p(x, x)dL(x|s) ∀ s ≤ σ̂FU

with
L(x|s) = 1− exp

(
−2κ− 1

κ

∫ x

s

g(τ |τ)
1−G(τ |τ)dτ

)
In this example,

L(x|s) = 1− exp
(
−2κ− 1

κ

∫ x

s

1
1− τ dτ

)
= 1−

(1− x
1− s

) 2κ−1
κ

,

so that

P FU(s) = P

(
1− σ̂FU

1− s

) 2κ−1
κ

+
2κ−1
κ

(1− s) 2κ−1
κ

∫ σ̂FU

s
τ(1− τ)

2κ−1
κ
−1dτ

= κ+ (2κ− 1) s
3κ− 1 − κ+ 1

3(3κ− 1)

(4
3

) 2κ−1
κ
( 1

1− s

) 2κ−1
κ

(1− P )
2κ−1
κ

+1.

2

As for the discriminatory auction,

κ∗(P ) = max
 P

2

2P 2 − 2P + 1
,
1
2

 .
In the case where the equilibrium is separating (κ ≥ κ∗(P )),

σ̂D =
κ+ 2 (2κ− 1)P −

√(
κ+ 2 (2κ− 1)P

)2
− 3κ (2κ− 1) (4P − 1)

32κ−1
κ

.

The bidding strategy equals

PD(s) = P (κ− (2κ− 1) σ̂D)
κ− (2κ− 1) s + (2κ− 1) (σ̂D − s)(σ̂D + s)

2(κ− (2κ− 1) s) ,∀s ∈ [0, σD].

In the case where the equilibrium is semi-separating (κ < κ∗(P )),

σD =

9κ+ 2 (2κ− 1)P − 3
√

9κ2 + 11κ (2κ− 1)− 20 (2κ− 1)P (2κ− (2κ− 1)P )
11 (2κ− 1)

σD = 4P − σD
3
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PD (s) =


P (κ− (2κ− 1)σD)
κ− (2κ− 1) s + (2κ− 1) (σD − s)(σD + s)

2(κ− (2κ− 1) s) for s ≤ σD

P for σD ≤ s ≤ σD

Proof. From the definition of κ∗(P ), we immediately get that

κ∗(P ) = max
 P

2

2P 2 − 2P + 1
,
1
2

 .
Let us first focus on the case where κ ≥ κ∗(P ). Observe that the constraint is always

satisfied when P ∈ [1/4, 1/2]. σ̂D is the solution smaller than P such that

(1−G (x|x))E
[
P − p(x, S−i)|S−i > x

]
+
(

1− 2κ− 1
κ

)
G (x|x)E

[
P − p(x, S−i)|S−i < x

]
= 0.

This implies that σ̂D is the solution smaller than P of∫ 1

0

(
P − x+ s

2

)
ds− 2κ− 1

κ

∫ x

0

(
P − x+ s

2

)
ds = 0

⇔ 3
4

2κ− 1
κ

x2 −
(1

2 + 2κ− 1
κ

P
)
x+ P − 1

4 = 0. (38)

This quadratic equation has two solutions, one of them larger than 1, the other belonging
to [0, P ].14 It follows that

σ̂D =
κ+ 2 (2κ− 1)P −

√
(κ+ 2 (2κ− 1)P )2 − 3κ (2κ− 1) (4P − 1)

3 (2κ− 1) .

In the analysis of the general case, we proved that, in the separating equilibrium,

PD(s) = P (1−K(σ̂D|s)) +
∫ σ̂D

s
p(x, x)dK(x|s) ∀s ≤ σ̂D,

where
K(x|s) = 1− exp

(
−
∫ x

s

(2κ− 1) g(τ |τ)
κ− (2κ− 1)G(τ |τ)dτ

)
.

With our specification,

K(x|s) = 1− exp
∫ x

s

− (2κ− 1)
κ− (2κ− 1) τ dτ

= 1− κ− (2κ− 1)x
κ− (2κ− 1) s ,

14The discriminant ∆x =
( 1

2 + 2κ−1
κ P

)2− 4
(
P − 1

4
) 3

4
2κ−1
κ is a deceasing function of P . When P = 3

4 ,
it is positive so that two real solutions exist. As the highest root is greater than 1 (this is straightforward
to prove), it follows that σ̂D is the smallest root.
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so that

PD(s) = P

(
κ− (2κ− 1) σ̂D
κ− (2κ− 1) s

)
+
∫ σ̂D

s

(2κ− 1)x
κ− (2κ− 1) sdx

= P

(
κ− (2κ− 1) σ̂D
κ− (2κ− 1) s

)
+ (2κ− 1) (σ̂D − s)(σ̂D + s)

2(κ− (2κ− 1) s) .

Second, let us analyze the case of the semi-separating equilibrium. As we underlined
in the beginning of the proof, the equilibrium is semi-separating iff P ∈ [1/2, 3/4] and
κ ≤ κ∗(P ). σFU and σFU are the roots (smaller than P for σFU and greater than P for
σFU) of the following system of equations

(G (z|y)−G (y|y))E
[
P − p(y, S−i)|y < S−i < z

]
= 0

(1−G (z|z))E
[
P − p(z, S−i)|S−i > z

]
+ 1

2 (G (z|z)−G (y|z))E
[
P − p(z, S−i)|y < S−i < z

]
+
(1− κ

κ

)
G (y|z)E

[
P − p(z, S−i)|S−i < y

]
= 0.

In our illustration, this reads

∫ z

y

(
P − y + s

2

)
ds = 0∫ 1

z

(
P − z + s

2

)
ds+

(
1−

2κ−1
κ

2

)∫ z

y

(
P − z + s

2

)
ds+ (1− 2κ− 1

κ
)
∫ y

0

(
P − z + s

2

)
ds = 0.

implying that
P − y

2 −
1
4(z + y) = 0 (41a)

P − z

2 −
1
4 −

2κ− 1
2κ

((
P − z

2

)
(z − y)− 1

4(z − y)(z + y)
)
− 2κ− 1

κ

((
P − z

2

)
− y2

4

)
= 0. (41b)

By eliminating y thanks to (41a), one gets that

11
4

2κ− 1
κ

z2 −
(9

2 + P
2κ− 1
κ

)
z + 9

(
P − 1

4

)
− 42κ− 1

κ
P = 0.

This quadratic equation has two solutions, one greater than 1, the other belonging to
[P , 1].15 It follows that

σD =
9κ+ 2P (2κ− 1)− 3

√
9κ2 + 11κ (2κ− 1)− 20κ (2κ− 1)P (2κ− (2κ− 1)P )

11 (2κ− 1) .

15The discriminant equals ∆z = 45 2κ−1
κ

2
P

2 − 90 2κ−1
κ P + 81+99 2κ−1

κ

4 . It is a decreasing function of P
and is positive for P = 3

4 so that it is positive for all values of P . To check that the smallest root is smaller
than 1, it is necessary to study the function P 7→ 16 2κ−1

κ

2
P

2 − 4 2κ−1
κ (9− 2κ−1

κ )P + 2κ−1
κ (27− 11 2κ−1

κ ).
This is a decreasing function, taking positive values for P = 3/4. It is straightforward to prove that the
smallest root is greater than P .
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Using (41a),

σD = 4P − σD
3 .

Using the computations done for the separating equilibrium, it follows that

PD (s) =


P (κ− (2κ− 1)σD)
κ− (2κ− 1) s + (2κ− 1) (σD − s)(σD + s)

2(κ− (2κ− 1) s) for s ≤ σD

P for σD ≤ s ≤ σD

2

In order to continue the analysis of this example, let us focus on the parameters’ values
such that the separating equilibrium exist in the discriminatory auction. This implies that
we restrict κ to be greater than κ∗(P ). Observe that when P ∈ [1/4, 1/2], the equilibrium
is separating for any value of κ (κ∗(P ) = 1/2).

Proposition 5 If κ ≥ κ∗(P ), there exists a unique P̂ such that

- if P < P̂ , P FU(s) > PD(s), ∀s ∈ [0, 1]

- if P ≥ P̂ , P FU(s) < PD(s) and then P FU(s) > PD(s), when s increases from 0 to
1.

Proof. We have proven in the general case that P FU and PD cross at most once and
this happens when PD(0) > P FU(0). The objective of this proof is therefore to determine
the sign of P FU(0) − PD(0). We decide to analyze this difference as a function of P .
Highlighting the dependence with respect to P , we compute the following

∂P FU(0;P )
∂P

= (κ+ 1)(3κ− 1)
3κ(3κ− 1)

(4
3

) 2κ−1
κ

(1− P )
2κ−1
κ > 0

∂2P FU(0;P )
∂P

2 = −(κ+ 1) (2κ− 1)
3κ2

(4
3

) 2κ−1
κ

(1− P )
2κ−1
κ
−1 < 0

∂3P FU(0;P )
∂P

3 = −(κ+ 1) (2κ− 1) (1− κ)
3κ3

(4
3

) 2κ−1
κ

(1− P )
2κ−1
κ
−2 < 0

P 7→ ∂2PFU (0;P )
∂P

2 is therefore a decreasing function. As

∂2P FU(0; 1
4)

∂P
2 = −(κ+ 1) (2κ− 1)

3κ2
4
3 < 0,

43



this implies that ∂2PFU (0;P )
∂P

2 is negative ∀P . The same analysis is conducted for PD

∂PD(0;P )
∂P

= 1− 2κ− 1
κ

σ̂D − 2κ− 1
κ

∂σ̂D

∂P

(
P − σ̂D

)
∂2PD(0;P )

∂P
2 = −22κ− 1

κ

∂σ̂D

∂P
+ 2κ− 1

κ

(
∂σ̂D

∂P

)2

− 2κ− 1
κ

(
P − σ̂D

) ∂2σ̂D

∂P
2

∂3PD(0;P )
∂P

3 = 32κ− 1
κ

∂2σ̂D

∂P
2

(
∂σ̂D

∂P
− 1

)
− 2κ− 1

κ

(
P − σ̂D

) ∂3σ̂D

∂P
3

In order to compute the partial derivatives of σ̂D, we apply the implicit function
theorem to (38).

∂σ̂D

∂P
=

2
(
κ− (2κ− 1) σ̂D

)
κ+ 2 (2κ− 1)P − 3 (2κ− 1) σ̂D

> 0

∂2σ̂D

∂P
2 = ∂σ̂D

∂P

2κ− 1
κ

(
3∂σ̂D
∂P
− 4

)
κ

κ+ 2 (2κ− 1)P − 3 (2κ− 1) σ̂D

= ∂σ̂D

∂P
2 (2κ− 1) κ+ 3 (2κ− 1) σ̂D − 4 (2κ− 1)P(

κ+ 2 (2κ− 1)P − 3 (2κ− 1) σ̂D
)2 > 0

∂3σ̂D

∂P
3 = ∂2σ̂D

∂P
2 (2κ− 1)

−6 + 9∂σ̂D
∂P

κ+ 2 (2κ− 1)P − 3 (2κ− 1) σ̂D

= ∂2σ̂D

∂P
2

2κ− 1
κ

12
(
1− 2κ−1

κ
P
)

(
1 + 22κ−1

κ
P − 32κ−1

κ
σ̂D
)2 > 0.

It follows that

∂3PD(0;P )
∂P

3

= ∂2σ̂D

∂P
2

3 (2κ− 1)
(
κ2 − 4κ (2κ− 1)P + 4 (2κ− 1)2 Pσ̂D + 2κ (2κ− 1) σ̂D − 3 (2κ− 1)2

(
σ̂D
)2
)

κ
(
κ+ 2 (2κ− 1)P − 3 (2κ− 1) σ̂D

)2

> 0.

P 7→ ∂2PD(0;P )
∂P

2 is therefore an increasing function. As

∂2PD(0; 1
4)

∂P
2 =

(2κ− 1)
(
(2 (2κ− 1)− 4κ)2 + 8κ (2κ− 1)

)
(4κ− 1)3 > 0,

this implies that ∂2PD(0;P )
∂P

2 is positive ∀P .
This analysis allows us to conclude that P 7→ ∂PFU (0;P )

∂P
− ∂PD(0;P )

∂P
is a decreasing
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function.

∂P FU(0; 1
4)

∂P
−
∂PD(0; 1

4)
∂P

= (2κ− 1) (1− κ)
3κ(4κ− 1)

∂P FU(0; 3
4)

∂P
−
∂PD(0; 3

4)
∂P

= 3(4κ− 3)(κ+ 1)− 2κ2 × 4 2κ−1
κ

9κ× 4 2κ−1
κ (4κ− 3)

< 0.

This concludes the proof. 2

It follows that P 7→ P FU(0;P ) − PD(0;P ) is increasing and then decreasing as P
increases.

P FU(0; 1
4)− PD(0; 1

4) = 0

P FU(0; 1
4)− PD(0; 3

4) =
3 2κ−1

κ

(
19κ (2κ− 1)− 9 (2κ− 1)2 − 8κ2 − 3 (2κ− 1) (κ+ 1)

)
(3κ− 1)36 (2κ− 1) 3 2κ−1

κ

< 0

Therefore there exists a unique P̂ such that

- for all P < P̂ , P FU(0;P ) > PD(0;P ) and

- for all P > P̂ , P FU(0;P ) < PD(0;P ).

Let us now compute the expected profit in both organizations using expressions (5),
(12) and (15). In the FU auction, computations imply that

ΠFU =
∫ σ̂FU

0
πFU(s)ds+

∫ sFU (σ̂FU )

σ̂FU
πFU(s)ds+

∫ 1

sFU (σ̂FU )
πFU(s)ds

=
∫ σ̂FU

0
(1− s)κ

κ+ (2κ− 1)s
3κ− 1 − κ(κ+ 1)(1− P ) 2κ−1

κ
+1

3(3κ− 1)(1− κ)

(
4

3(1− s)

) 2κ−1
κ

− 1 + 3s
4

 ds
+

∫ σ̂FU

0
(1− κ)

s(4κ− s(5κ− 1))
4(3κ− 1) − κ(κ+ 1)(1− P ) 2κ−1

κ
+1

3(3κ− 1)(1− κ)

(4
3

) 2κ−1
κ (

1− (1− s)1− 2κ−1
κ

) ds
+

∫ sFU (σ̂FU )

σ̂FU
(1− κ)

σ̂FU
(
4κ− (1− κ)σ̂FU − 2s(3κ− 1)

)
4(3κ− 1)) ds

−
∫ sFU (σ̂FU )

σ̂FU
(1− κ)κ(κ+ 1)(1− P ) 2κ−1

κ
+1

3(3κ− 1)(1− κ)

(4
3

) 2κ−1
κ (

1− (1− σ̂FU)1− 2κ−1
κ

)
ds

+
∫ 1

sFU (σ̂FU )
(1− κ)

(sFU)−1(s)
(
4κ− (1− κ)(sFU)−1(s)− 2s(3κ− 1)

)
4(3κ− 1) ds

−
∫ 1

sFU (σ̂FU )
(1− κ)κ(κ+ 1)(1− P ) 2κ−1

κ
+1

3(3κ− 1)(1− κ)

(4
3

) 2κ−1
κ (

1− (1− (sFU)−1(s))1− 2κ−1
κ

)
ds.

As for the discriminatory auction, we have to distinguish the case where κ ≥ κ∗(P ) or
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κ < κ∗(P ). In case the separating equilibrium exists (κ ≥ κ∗(P )),

ΠD =
∫ σ̂D

0

(
2P (κ− (2κ− 1)σ̂D) + (2κ− 1)(σ̂D − s)(σ̂D + s)− s(κ− (2κ− 1)s)

2 − κ− (2κ− 1)s2

4

)
ds.

When κ < κ∗(P ),

ΠD =
∫ σD

0

(
2P (κ− (2κ− 1)σD) + (2κ− 1)(σ̂D − s)(σD + s)− s(κ− (2κ− 1)s)

2 − κ− (2κ− 1)s2

4

)
ds

+
∫ σD

σD

(
2P − s

4
(
2κ− (2κ− 1)σD − (2κ− 1)σD

)
− 1

8
(
2κ− (2κ− 1)(σD)2 − (2κ− 1)(σD)2

))
ds.

As for the expected coverage denoted C, it holds that

CFU = 2κσ̂FU + (1− κ)
∫ σ̂FU

0
sFU(x)dx− (σ̂FU)2.

As for the discriminatory auction, if κ ≥ κ∗(P ), then

CD = (σ̂D)2 − 2κ(1− σ̂D)σ̂D.

When κ < κ∗(P ), then
CD = (σD)2 − 2κ(1− σD)σD.

To finish the analysis this example, let us analyze how min(σ̂D, σD) − σ̂FU evolves
with respect to P and κ. Let us first focus on the comparative statics with respect to
κ. As σ̂FU is independent of κ and as we proved in Lemma 4 that both σ̂D and σD are
decreasing with κ, this implies that min(σ̂D, σD)− σ̂FU decreases when κ increases.

To determine the comparative statics with respect to P , observe that σ̂FU is linear
with respect to P and that we proved that ∂2σ̂D

∂P
2 > 0. Therefore, P 7→ ∂σ̂D

∂P
− ∂σ̂FU

∂P
is

increasing. Moreover,

∂σ̂D

∂P

∣∣∣∣∣
P= 1

4

= 4κ

∂σ̂FU

∂P

∣∣∣∣∣
P= 1

4

= 3
4 .

It follows that ∂σ̂D

∂P
− ∂σ̂FU

∂P
is positive for all values of P and that P 7→ σ̂D − σ̂FU is an
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increasing function. Let us now focus on σD − σ̂FU .

∂σD

∂P
= 2

11 + 60
11

κ− (2κ− 1)P√
9κ2 + 11κ(2κ− 1)− 20(2κ− 1)P (2κ− (2κ− 1)P )

∂2σD

∂P
2 = 11(2κ− 1)(1− κ)κ2

(
√

31κ2 − 11κ+−20(2κ− 1)P (2κ− (2κ− 1)P ))3
> 0.

Therefore, P 7→ ∂σD

∂P
− ∂σ̂FU

∂P
is increasing. Moreover,

∂σ̂D

∂P

∣∣∣∣∣
P= 1

2

= 2.

As ∂σ̂FU

∂P
= 3

4 , it follows that ∂σD

∂P
− ∂σFU

∂P
is positive for all values of P and that P 7→

σD − σ̂FU is an increasing function.
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