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is uncertain about the distribution of losses and faces linear transaction costs. We use
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tive compatibility. We characterize optimal insurance contracts and find that the marginal

indemnity is either zero or one except at critical points. We then provide a condition for

a straight deductible to be optimal and show that this condition is satisfied under various

stochastic ordering assumptions on the priors. We discuss specific ambiguity structures,

some of which give rise to indemnities with multiple layers. We also derive compara-
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1 Introduction

Risk sharing is critically important for the functioning of our modern economies. It is thus

no surprise that risk sharing has received substantial attention in the field of development

economics (e.g., Townsend, 1994; Fafchamps and Lund, 2003; Fafchamps and Gubert, 2007).

In the absence of transaction costs, the mutuality principle prescribes that a risk allocation is

only efficient if it completely washes out those risks that are fully diversifiable (Borch, 1962).

Undiversifiable risk is shared across economic agents according to their degree of risk tolerance

(Wilson, 1968; Rubinstein, 1974; Constantinides, 1982). If risk-neutral agents are present in

the economy, they fully insure risk-averse agents to eliminate costly risk premiums. Insurance

markets facilitate the mutualization of risks. However, the transfer of risk to an insurer does

involve significant transaction costs. According to data from the National Association of

Insurance Commissioners between 1990 and 2015, operating expenses account for one third

of insurance premiums charged by US insurance companies.

When insurance involves such large deadweight losses, a complete transfer of risk is no

longer optimal. Instead the policyholder prefers to retain some risk via clauses such as coinsur-

ance, deductibles, or limits to economize on the insurance premium. This raises the question

how to optimally design the insurance contract. The famous contributions by Arrow (1963,

1965, 1971, 1974) provide the cornerstone result in this literature. When the premium is

proportional to the actuarial value of the contract, the optimal indemnity schedule takes the

form of a straight deductible. The policyholder retains losses below the deductible. For losses

above the deductible, she only pays the deductible and the insurer covers the remainder of

the loss. Intuitively, the insurance indemnity is most valuable in states with high marginal

utility. For a concave utility function, marginal utility is high when losses are large. A straight

deductible prioritizes the indemnification of large losses over small losses.

In this paper, we revisit the question of optimal insurance design when the policyholder

is uncertain about the loss distribution. We incorporate ambiguity aversion with the help of

Klibanoff et al.’s (2005) smooth ambiguity model. We use a flexible ambiguity structure that

is not limited to a finite set of priors. We restrict the set of admissible indemnity schedules

by imposing the so-called no-sabotage condition. It stipulates that the indemnity and the

retained loss are both increasing in loss severity so that the policyholder and the insurer

both bear more of the loss the larger its realization. Such indemnity schedules are incentive-

compatible in the sense that they do not encourage upward or downward manipulation of the

loss. Our approach complements Gollier’s (2014) who restricts the analysis to a finite set of

priors and does not impose the no-sabotage condition. While the difference between the two

settings may appear slight, the results can be remarkably different.

Our contribution to the literature is fourfold. First, we characterize optimal indemnity

schedules and show that the marginal indemnity is either zero or one except at critical points.

Second, we provide a condition for the optimal indemnity schedule to be a straight deductible,

thus extending Arrow’s celebrated result to the case of smooth ambiguity aversion. We then

2



Optimal insurance design under ambiguity

identify stochastic ordering assumptions on the priors, under which this condition is satis-

fied. Third, we discuss specific ambiguity structures to isolate the effect of the no-sabotage

condition on the shape of the optimal indemnity schedule. Fourth, we conduct comparative

statics. Greater ambiguity aversion always raises insurance demand in our model whereas

greater ambiguity has indeterminate effects. For ambiguity-prudent policyholders with rel-

ative ambiguity prudence less than two, the intuitive result prevails and greater ambiguity

raises insurance demand. These results are consistent with the comparative statics of smooth

ambiguity aversion in portfolio choice (Gollier, 2011; Huang and Tzeng, 2018), self-insurance

and self-protection (Snow, 2011; Alary et al., 2013), nonperformance risk (Peter and Ying,

2020), and precautionary saving (Peter, 2019) but do not arise in Gollier’s (2014) model.

The problem of optimal insurance design has been extended in many directions. Raviv

(1979), Huberman et al. (1983) and Young (1999) consider other premium principles and

nonlinear transaction costs. Due to a dominance result by Gollier and Schlesinger (1996),

a straight deductible is optimal in any decision-theoretic framework that respects second-

order stochastic dominance (see Zilcha and Chew, 1990; Karni, 1992; Machina, 1995). Other

researchers have studied the effect of background risk,1 belief heterogeneity,2 and probability

distortions.3 Gollier (2013) summarizes the literature on optimal insurance design under

expected utility and Ghossoub (2019b) the literature under non-expected utility.

Camerer and Weber (1992) define ambiguity as “uncertainty about probability, created by

missing information that is relevant and could be known.” In the context of optimal insurance

design, a policyholder typically faces uncertainty about the loss distribution. Even with the

most comprehensive data, it is impossible to narrow down the loss distribution perfectly and

any parameter estimate comes with nontrivial confidence intervals. Against this background, a

realistic approach to optimal insurance design should take uncertainty into account. Ellsberg’s

(1961) famous thought experiment reveals that people are sensitive to ambiguity. Ambiguity

aversion has been documented in laboratory experiments (e.g., Einhorn and Hogarth, 1986;

Chow and Sarin, 2001), market settings with educated individuals (e.g., Sarin and Weber,

1993), and surveys of business owners and managers (e.g., Viscusi and Chesson, 1999; Chesson

and Viscusi, 2003). While not universal (Kocher et al., 2018; Baillon and Emirmahmutoglu,

2018), recent survey evidence of US households confirms the role of ambiguity aversion for

financial decision-making in the field (Dimmock et al., 2016)

Popular models of decision-making under ambiguity include Choquet expected utility

(Schmeidler, 1989), the maxmin expected utility model (Gilboa and Schmeidler, 1989), the

α-maxmin expected utility model (Ghirardato et al., 2004), and smooth ambiguity aversion

1 See Mayers and Smith Jr (1983), Eeckhoudt and Kimball (1992), Gollier (1996), Dana and Scarsini (2007),
Chi and Wei (2018) and Chi and Tan (2021).

2 See Marshall (1992), Ghossoub (2017), Boonen and Ghossoub (2019) and Chi and Wei (2020).

3 See Bernard et al. (2015), Xu et al. (2019) and Ghossoub (2019b).

3



Optimal insurance design under ambiguity

(Klibanoff et al., 2005). From a conceptual standpoint, the main advantage of the smooth

model is that it disentangles tastes and beliefs. This property allows us to derive clean compar-

ative statics by varying the degree of ambiguity aversion while keeping the level of uncertainty

fixed, or varying the level of uncertainty while keeping the degree of ambiguity aversion fixed.

Based on the exchange between Epstein (2010) and Klibanoff et al. (2012), Cubitt et al. (2020)

construct an experimental test that discriminates between different classes of decision-making

models under ambiguity. They find greater support for the smooth ambiguity model than for

the maxmin or α-maxmin models, with the relative support being stronger for subjects who

are classified as ambiguity-averse.4

We are not the first to study optimal insurance design under ambiguity. Carlier et al.

(2003) analyze Pareto-optimal insurance contracts under Choquet expected utility with epsilon-

contaminated priors. In their model, optimal insurance contracts necessarily satisfy the no-

sabotage condition. Unlike the smooth model, Choquet expected utility does not separate

tastes and beliefs. Alary et al. (2013) show the optimality of a straight deductible in the

smooth ambiguity model under very restrictive conditions. They require that only the loss

probability is subject to uncertainty and that policyholders know the loss severity distribution

perfectly. Gollier (2014) provides a more general analysis of optimal insurance design in the

smooth model. He derives a condition under which a disappearing deductible is optimal and

highlights the possibility that an increase in the policyholder’s degree of ambiguity aversion

may have the counterintuitive effect to reduce optimal insurance demand.

We take a fresh look at optimal insurance design under smooth ambiguity aversion. Our

setting yields a general characterization of optimal indemnity schedules, which is to date lack-

ing in the literature. A straight deductible is optimal under a broader set of circumstances in

our model. Arrow’s famous result is thus often “robust” to uncertainty. Unlike previous stud-

ies, we find that indemnities with multiple layers can arise. Finally, the comparative statics

of greater ambiguity aversion and greater ambiguity yield intuitive results in our setting that

are consistent with the literature. Compared to Gollier’s (2014) approach, the no-sabotage

condition often leads to qualitatively different results. Whether insurers are willing to offer

contracts that violate the no-sabotage condition is an empirical issue. If not, the no-sabotage

condition only rules out indemnity schedules that are not observed in practice anyway.

The paper proceeds as follows. Section 2 outlines the model. Section 3 presents prop-

erties of optimal indemnity schedules including our main characterizing theorem. Section 4

provides a condition for a straight deductible to be optimal and discusses stochastic ordering

assumptions under which this condition is satisfied. Section 5 analyzes several specific ambigu-

ity structures including left-against-right ambiguity, one-against-all ambiguity, and two-state

ambiguity. Section 6 derives comparative statics with respect to the policyholder’s degree of

ambiguity aversion and the level of ambiguity. A final section concludes.

4 Cubitt et al. (2020) summarize the evidence on distinguishing between different ambiguity models empirically
and the conceptual challenges that arise in this literature, see their Section 2.3.
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2 The model

A policyholder is endowed with initial wealth w and faces a loss of X ≥ 0. The random

variable X is defined on a probability space (Ω,F ,P) and the policyholder is uncertain about

the loss distribution. We let the distribution of X be parameterized by Θ, which is also a

random variable. Our ambiguity structure is thus quite flexible and includes Gollier’s (2014)

setting with a finite number of priors as a special case. To see this, let random variable Θ

take n possible values, θ1, . . . , θn, and define

Fi(x) = P(X ≤ x|Θ = θi) for x ∈ R and i = 1, . . . , n.

Fi denotes the cumulative distribution function of loss X conditional on Θ = θi. If we set

qi = P(Θ = θi), we can interpret (q1, . . . , qn) as the policyholder’s second-order belief, where

qi denotes the probability that Fi is the true loss distribution.

In our analysis, we do not restrict Θ to have a finite number of outcomes. For example,

the policyholder may have a particular family of loss distributions in mind and estimate a

location parameter from past observations. In this case, we can let Θ take values from an

estimated confidence interval and let the distribution of Θ under P be the distribution of the

estimator. Our ambiguity structure thus generalizes the ambiguity structure in Gollier (2014).

Denote by Mθ the essential supremum of X conditional on Θ = θ. Clearly, M = supθ Mθ is

then the essential supremum of random variable X, and we assume M < ∞.

The policyholder can purchase insurance to mitigate the risk of loss. An insurance contract

is a pair (I, π), where I is the indemnity schedule and π is the insurance premium. The

indemnity schedule specifies the amount paid by the insurer to the policyholder. This amount

is I(x) conditional on a loss of X = x. The policyholder’s retained loss is given by RI(x) =

x − I(x). In actuarial terms, the functions I and RI are usually called the policyholder’s

ceded and retained loss functions. One can think of I(X) as the amount of risk ceded to

the insurer and of RI(X) as the amount of risk retained by the policyholder. We make the

following assumptions about the indemnity schedule and the retained loss function:

A1: Principle of indemnity: For all x, we have 0 ≤ I(x) ≤ x;

A2: No-sabotage condition: I and RI are increasing in x.

Arrow (1963) introduces I(x) ≥ 0 for all x and Raviv (1979) assumes the full principle

of indemnity. It is widely accepted in the insurance economics literature because it rules out

short-selling of insurance and overinsurance.5 The no-sabotage condition states that both

the policyholder and the insurer bear more of the insurable loss the larger its realization.

Huberman et al. (1983) justify increasing indemnity schedules with the policyholder’s ability

5 Gollier (1987) and Ghossoub (2019a) analyze optimal insurance design without the principle of indemnity.
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to misrepresent downward the magnitude of loss. They also show that indemnity schedules

with an increasing retained loss help rule out counterfactual insurance contracts. If the

retained loss were decreasing, the policyholder would have an incentive to inflate the size of

the claim or create further damage, leading to an ex-post moral hazard problem. Chiappori

et al. (2006) focus on indemnity schedules for which the retained loss is increasing and state

that “this property is satisfied empirically“ and “relies on compelling theoretical arguments.”

More recently, Xu et al. (2019) and Chi and Wei (2020) use the no-sabotage condition for

optimal insurance design in the context of rank-dependent utility and belief heterogeneity.

Let C denote the set of admissible indemnity schedules satisfying A1 and A2. Note that

I ∈ C if, equivalently, I(0) = 0, I is increasing and one-Lipschitz continuous,

0 ≤ I(x)− I(y) ≤ x− y for all 0 ≤ y ≤ x.

It follows that any admissible indemnity schedule I ∈ C is differentiable with 0 ≤ I ′(x) ≤ 1

almost everywhere.

The insurer operates on a competitive market, is risk- and ambiguity-neutral, and faces

linear transaction costs. For each dollar of indemnity payment, the insurer incurs a cost of

(1 + τ) dollars. The premium π for indemnity schedule I is thus given by

π(I(X)) = (1 + τ)E[I(X)].

We can interpret τ as a safety loading coefficient. From the policyholder’s perspective, the

insurance premium is actuarially fair when τ = 0 and actuarially unfair when τ > 0.

The policyholder’s final wealth when choosing insurance contract (I, π) is given by

WI = w −X + I(X)− (1 + τ)E[I(X)].

Following Klibanoff et al. (2005) and Neilson (2010), we characterize the policyholder’s risk

and ambiguity preferences with functions u and ϕ. In this setting, u is a von Neumann-

Morgenstern (vNM) utility function of final wealth that is strictly increasing, u′ > 0, and

strictly concave, u′′ < 0. The ambiguity function ϕ is assumed strictly increasing, ϕ′ > 0. Its

curvature characterizes the policyholder’s attitude towards ambiguity. If ϕ is linear, ϕ′′ = 0,

the policyholder is ambiguity-neutral and the model collapses to expected utility. If ϕ is

strictly concave, ϕ′′ < 0, the policyholder is ambiguity-averse, and her ex-ante welfare is

lowered by the presence of ambiguity. On a competitive insurance market, the insurer offers

a contract that maximizes the policyholder’s ex-ante welfare and thus solves

max
I∈C

J(I) = E[ϕ(E[u(WI)|Θ])]. (1)
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When the policyholder is ambiguity-neutral, we obtain Arrow’s (1971) classical model as

a special case. For later reference, we will briefly revisit its solution. Consider the problem

max
I∈C

E[u(WI)], (2)

which has the same solution as Problem (1) when ϕ is linear. We define by SX(x) = P(X > x)

the survival function of the loss X. Let

xτ = inf

{
x ≥ 0 : SX(x) ≤ 1

1 + τ

}
(3)

be the smallest loss amount so that the survival function is below the inverse of the insurer’s

gross premium rate. Loss amount xτ is a critical level. The probability of losses larger than

xτ is less than 1/(1+ τ) whereas the probability of losses smaller than xτ is at least τ/(1+ τ).

The threshold xτ is increasing in τ , and when τ = 0, we obtain xτ = 0. For D ∈ [0,M),

we consider the straight deductible contract ID(x) = max(0, x−D) with associated premium

πD = (1+τ)E[max(0, X−D)]. In the actuarial literature, this shape of the indemnity schedule

is often referred to as stop-loss insurance. Chi and Wei (2018) introduce the following function:

V 0(D) =
u′(w −D − πD)

E[u′(w −min(X,D)− πD)]
.

It relates the policyholder’s marginal utility at the deductible D to her expected marginal

utility over the whole range of possible loss realizations. Chi and Wei (2018) show that

V 0(D) is increasing in D over [xτ ,M) and obtain the following result.

Proposition 1. Suppose the policyholder is ambiguity-neutral (i.e., ϕ′′ = 0). Then, the

optimal insurance contract is a straight deductible, ID∗
0
(x) for all x ≥ 0. The optimal deductible

D∗
0 is given as follows:

D∗
0 = max

(
sup

{
D ∈ [xτ ,M) : V 0(D) ≤ 1 + τ

}
, xτ

)
. (4)

Proposition 1 is Arrow’s (1965, 1971) famous result that a straight deductible is the

optimal indemnity schedule. It also arises as a special case of Gollier’s (2014) model when

the policyholder is ambiguity-neutral, see his Proposition 1, and continues to hold under our

generalized ambiguity structure. In addition, we provide the optimal level of the deductible

in Eq. (4) explicitly. Set sup ∅ = −∞ by convention. Then, the optimal deductible is at least

xτ as defined in Eq. (3). It coincides with xτ if V 0(D) exceeds (1+ τ) for all deductible levels

D larger than xτ . Otherwise, the optimal deductible is the largest value so that V 0(D) is

just below the insurer’s gross premium rate (1 + τ). Intuitively, insurance is most valuable

when final wealth is low because then marginal utility is high. This is the case when losses are

large. A straight deductible prioritizes the indemnification of large losses over small losses,

and is thus an effective way to maximize the policyholder’s expected utility.
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3 Properties of optimal indemnity schedules

In this section, we first show the existence and uniqueness of a solution to Problem (1) for a

policyholder who is ambiguity-averse. We then characterize optimal indemnity schedules and

use our characterization to verify Mossin’s (1968) Theorem.

Lemma 1.

(i) A solution to Problem (1) exists.

(ii) The solution to Problem (1) is unique almost surely if one of the following two conditions

is satisfied:

(a) The loading is strictly positive, τ > 0.

(b) A loss of zero belongs to the support of X, that is, P(X < ϵ) > 0 for all ϵ > 0.

Then, if I1 and I2 are both solutions to Problem (1), we have P(I1(X) = I2(X)) = 1.

The proof is similar to the proof of Lemma 2.1 in Chi and Wei (2020) and is therefore

omitted. The idea behind result (i) is to define a metric on C under which C is compact, and

then apply the Arzelà-Ascoli Theorem. Result (ii) is obtained by establishing the optimality

of convex combinations of two optimal solutions I1 and I2, which allows us to show that

the associated final wealth prospects coincide almost surely under P. In practice, conditions

(a) and (b) are not restrictive because insurance contracts are rarely actuarially fair unless

governmental subsidies are in place, and a loss of zero is usually an outcome with positive

probability. So in most cases, conditions (a) and (b) will both be satisfied although each one

of them alone is sufficient to ensure the uniqueness of the solution.

To provide a necessary and sufficient condition for an indemnity schedule to be optimal, we

need to make some technical assumptions. Let W0 = w−X−(1+τ)E[X] be the policyholder’s

final wealth if she bears the entire loss and the cost of full insurance. Throughout the paper,

we assume that the following two assumptions hold:

A3: Boundedness: E[u′(W0)] < ∞ and supθ ϕ
′(E[u(W0)|Θ = θ]) < ∞;

A4: Dominated convergence: E[Xu′(W0)] < ∞.

For any admissible indemnity schedule I ∈ C, we then have

W0 = w −X − (1 + τ)E[X] ≤ w −X + I(X)− (1 + τ)E[I(X)] = WI .

This inequality follows from the principle of indemnity, which implies E[I(X)] ≤ E[X]. As

a result, u(W0) ≤ u(WI) and u′(WI) ≤ u′(W0). Assumption A3 then ensures that the

policyholder’s expected marginal welfare does not explode,

E[ϕ′(E[u(WI)|Θ])u′(WI)] ≤ sup
θ

ϕ′(E[u(W0)|Θ = θ]) · E[u′(W0)] < ∞.
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This guarantees that the following auxiliary function is well-defined:

VI(x) =
E[ϕ′(E[u(WI)|Θ])u′(WI)|X > x]

E[ϕ′(E[u(WI)|Θ])u′(WI)]
, for x ∈ [0,M). (5)

Auxiliary function VI(x) plays a central role in our analysis. It compares the policyholder’s

expected marginal welfare for losses in excess of x to her overall expected marginal welfare

under indemnity schedule I ∈ C. Assumption A4 is a technical condition that allows us

to exchange the operations of expectation and differentiation due to Lebesgue’s dominated

convergence theorem. The following result characterizes the optimal indemnity schedule.

Theorem 1. An indemnity schedule I∗ ∈ C is a solution to Problem (1) if and only if it

satisfies the following condition almost everywhere:

I∗′(x) =

{
1, for VI∗(x) > 1 + τ,

0, for VI∗(x) < 1 + τ.
(6)

Appendix A.1 provides the proof. Theorem 1 gives a general characterization of the

optimal solution to Problem (1). Specifically, the marginal indemnity I∗′(x) is either 0 or 1,

with some irregularities at the critical point(s) where VI∗(x) = 1 + τ . This means that, at

the margin, when the loss increases by a dollar, the additional loss is either fully covered if

I∗′(x) = 1, or not covered at all if I∗′(x) = 0. While Theorem 1 does not explicitly solve

the insurance design problem, it is useful in verifying the optimality of an indemnity schedule

and establishing qualitative properties of optimal solutions. Theorem 1 also yields a strategy

to improve suboptimal indemnity schedules, which we show in Appendix C. Furthermore, it

implies that the policyholder optimally retains small losses in the following sense.

Corollary 1. An optimal indemnity schedule I∗ satisfies I∗(x) = 0 for all x < xτ , where xτ

is defined in Eq. (3).

Proof. This follows directly from Theorem 1. For x < xτ , we obtain

VI∗(x) ≤
1

P(X > x)
< 1 + τ.

In other words, the optimal insurance contract generally has a deductible if xτ > 0. An

exception arises if τ = 0 because then the insurance contract is actuarially fair and xτ = 0. In

this case, full insurance is optimal. As it turns out, τ = 0 is also necessary for the optimality

of full insurance as summarized in our next result.

Proposition 2. Full insurance is an optimal solution to Problem (1) if and only if the contract

is actuarially fair (τ = 0).
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Proof. Denote the indemnity schedule for full insurance by If (x) = x. With full insurance,

the policyholder’s final wealth is constant, WIf = w − (1 + τ)E[X]. As a result, auxiliary

function VIf is also constant, VIf (x) = 1 for all x ∈ [0,M). Thus, Theorem 1 implies that

If (x) is an optimal solution if and only if 1 = VIf (x) ≥ 1+τ , which is equivalent to τ = 0.

Proposition 2 is often referred to as Mossin’s (1968) Theorem in insurance economics

(see Schlesinger, 2013). Gollier (2014) shows it in his Proposition 2 and we extend it to

our generalized ambiguity structure. It is not obvious that Mossin’s Theorem remains valid

under ambiguity. Dow and da Costa Werlang (1992) obtain a no-trade result, and Mukerji

and Tallon (2001) find that financial markets are incomplete under ambiguity. As explained

by Lang (2017), the preferences in the last two papers exhibit first-order ambiguity aversion

whereas Klibanoff et al.’s (2005) smooth model has second-order ambiguity aversion. For this

reason, complete risk transfer can only be optimal when the premium is actuarially fair.

So far we have seen that a straight deductible is optimal under ambiguity neutrality

(Proposition 1) and that full insurance is optimal if and only if the premium is actuarially fair

(Proposition 2). Gollier (2014) also finds these results. More realistically, policyholders are

ambiguity-averse, ϕ′′ < 0, and the premium is actuarially unfair, τ > 0. Then, full insurance

is no longer optimal, which raises the question of optimal insurance design. As we will show

in the next section, Theorem 1 allows us to derive a condition for the optimality of a straight

deductible, which is satisfied under various stochastic ordering assumptions on the priors. It

is in this case that our results often differ from those in Gollier (2014).

4 Optimality of straight deductible contracts

Recall that ID(x) denotes the indemnity schedule with a straight deductibleD ≥ 0. Indemnity

schedule IM represents the no-insurance strategy because IM(X) = 0 almost surely. The

following result holds.

Theorem 2. If VID(x) is increasing in x on [xτ ,M) for any D ≥ xτ , then the solution to

Problem (1) is a straight deductible with deductible level

D∗ = inf {D ≥ xτ : VID(D) ≥ 1 + τ} . (7)

Appendix A.2 gives the proof. When the auxiliary function VID(x) is increasing in x on

[xτ ,M) for any deductible level D ≥ xτ , we can apply Theorem 1 to indemnity schedule ID∗

to verify its optimality. We emphasize that Eq. (7) allows us to find the optimal deductible

with the help of auxiliary function VID(x) evaluated at x = D. One might wonder how

restrictive it is to require VID(x) to be increasing in x ∈ [xτ ,M) for all D ≥ xτ . To answer

this question and make Theorem 2 more applicable, we now introduce different stochastic

ordering assumptions.
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Definition 1. Let Y and Z be two random variables.

(i) Y is smaller than Z in the first-order stochastic dominance (FSD) sense, denoted as

Y ≤fsd Z, if P(Z ≤ x) ≤ P(Y ≤ x) for all x.

(ii) Y is smaller than Z in the hazard rate order, denoted as Y ≤hr Z, if P(Z > x)/P(Y > x)

is increasing in x.

(iii) Y is smaller than Z in the likelihood ratio order, denoted as Y ≤lr Z, if, for all measur-

able sets A and B with A ≤ B, we have P(Y ∈ A) · P(Z ∈ B) ≥ P(Y ∈ B) · P(Z ∈ A).

(iv) Y is less risky than Z in the sense of Rothschild and Stiglitz (1970), denoted as Y ≤RS Z,

if E[Y ] = E[Z] and
∫ x
−∞ P(Y ≤ t) dt ≤

∫ x
−∞ P(Z ≤ t) dt for all x.

First-order stochastic dominance is often referred to as the usual stochastic order in actu-

arial science. If Z dominates Y by FSD, then E[v(Z)] ≥ E[v(Y )] for all increasing functions v

such that the expectations exist. Intuitively, Z is more likely to take on large values than Y ,

which is appreciated when higher values are a good thing. The hazard rate is defined as the

intensity of failure, and the hazard rate order then ranks random variables according to this

intensity. Hazard rates feature prominently in survival analysis. The likelihood ratio order is

used extensively in the moral hazard literature. Rogerson (1985a,b) shows that the first-order

approach to the principal-agent problem is valid when the monotone likelihood ratio property

holds and when the distribution function of outcomes is concave in the agent’s effort level.

The likelihood ratio property also features prominently in the theory of monotone compara-

tive statics under uncertainty (Athey, 2002). The order in Rothschild and Stiglitz (1970) is

a variability order because if Y is less risky than Z, it has a lower variance, Var[Y ] ≤ Var[Z],

provided the variances exist. It is referred to as the convex order in actuarial science because

E[v(Z)] ≥ E[v(Y )] for all convex functions v, given the expectations exist.

Shaked and Shanthikumar (2007) provide a systematic overview of properties of these

stochastic orders in their Chapter 1. Specifically, they show the following:

Y ≤lr Z =⇒ Y ≤hr Z =⇒ Y ≤fsd Z.

Ordering random variables by the likelihood ratio order is more restrictive than ordering

them by the hazard rate order which, in turn, is more restrictive than ordering them by first-

order stochastic dominance. All of these orders are partial in the sense that any two random

variables may or may not be ordered in a particular way. Based on Definition 1, we can now

define the notion of stochastic increasingness.

Definition 2. Random variable X is increasing in random variable Θ in the FSD sense,

denoted as X ↑fsd Θ, if [X|Θ = θ1] is smaller than [X|Θ = θ2] in the FSD sense for all θ1 and

θ2 such that θ1 ≤ θ2.
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As Θ takes on larger values, random variable X becomes larger stochastically. Stochastic

increasingness in the hazard rate order and in the likelihood ratio order are defined analo-

gously. We can likewise define stochastic decreasingness by assuming that higher realizations

of Θ decrease random variable X stochastically. Jindapon and Neilson (2007) use a stochas-

tic ordering assumption for higher-order risk to characterize comparative Arrow-Pratt and

comparative Ross risk aversion (see also Liu and Neilson, 2019). Crainich et al. (2016) use a

similar set-up to analyze how risk changes affect effort provision.

The following result uses stochastic ordering assumptions to ensure that auxiliary function

VID(x) satisfies the criterion in Theorem 2.

Proposition 3. The solution to Problem (1) is a straight deductible with the deductible level

specified in Eq. (7) if one of the following conditions holds:

(i) The ratio P(X > x|Θ = θ)/P(X > xτ |Θ = θ) is independent of θ for all x ≥ xτ ;

(ii) Random variables X and Θ are increasing or decreasing in each other in the FSD sense;

(iii) Random variable X is increasing or decreasing in Θ in the hazard rate order.

Appendix A.3 states the proof. Condition (i) implies so-called tail independence between

X and Θ. When given X > xτ , the distribution of X conditional on Θ is independent

of Θ. Condition (i) is satisfied when the ambiguity is concentrated on losses below xτ .

Gollier (2014) considers this special case in his Proposition 5 and concludes that a straight

deductible is optimal if the degree of ambiguity aversion is small enough. Result (i) extends

this conclusion to our more flexible ambiguity structure and removes the restriction on the

degree of ambiguity aversion by virtue of the no-sabotage condition. A straight deductible is

thus the optimal insurance contract in a larger set of circumstances under our approach.

Condition (ii) requires that X and Θ are mutually ordered in the FSD sense. If X is

increasing in Θ in the FSD order, then losses become larger in the FSD sense as θ increases.

As such random variable Θ orders the priors from better to worse because stochastically

smaller losses are preferred over stochastically larger losses. Condition (ii) also requires Θ to

be increasing in X. Conditional on observing a large loss, the probability that the underlying

realization of Θ is large is greater than conditional on observing a small loss. Assuming Θ to

be increasing in X justifies the inference that large losses are more likely to originate from

worse priors. As discussed in Cai and Wei (2012), monotonicity in the FSD sense is not

symmetric, and we thus need to assume X to be monotonic in Θ and vice versa.

Gollier (2014) only studies the case in which Θ ranks the priors in the FSD sense in his

Proposition 9 for the special case that ambiguity is concentrated on losses below xτ . Our

result (ii) shows that letting X and Θ be mutually ordered in the FSD sense ensures the

optimality of a straight deductible regardless of whether ambiguity is concentrated on losses

below xτ or not. Yet again, this expands the set of circumstances under which a straight

deductible is optimal. Our condition (iii) shows that ordering priors by the hazard rate order

12
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also leads to the optimality of a straight deductible. Monotonicity in the hazard rate order is

implied by monotonicity in the liklihood ratio order, which proves the following result.

Corollary 2. The solution to Problem (1) is a straight deductible with deductible level specified

in Eq. (7) if random variable X is increasing or decreasing in Θ in the likelihood ratio order.

Corollary 2 follows from Proposition 3(iii) because ranking random variables by the likeli-

hood ratio order implies their ranking by the hazard rate order. It also follows from Proposi-

tion 3(ii) because increasingness in the likelihood ratio order is symmetric, see Appendix B.4,

and implies increasingness in the FSD order. Gollier (2014) considers the likelihood ratio

order in his Proposition 8 only for the special case of two priors, that is, P(Θ ∈ {θ1, θ2}) = 1.

He finds a so-called “disappearing deductible” to be optimal because in his result the retained

loss above the deductible is nonincreasing in x. Corollary 2 removes the restrictive assumption

of only two priors. Furthermore, the no-sabotage condition rules out disappearing deductibles

and we then find a straight deductible to be optimal. Proposition 3(iii) shows that the likeli-

hood ratio order is unnecessarily constraining though because it suffices to rank priors by the

hazard rate order to obtain the same result. Yet again, our approach extends the optimality

of a straight deductible considerably by virtue of the no-sabotage condition.

We discussed after Proposition 3 that condition (i) holds when ambiguity is concentrated

on losses below xτ . We now show that Theorem 1 also applies to the dual scenario in which

ambiguity is concentrated on losses above D∗
0, where D∗

0 is the optimal deductible for an

ambiguity-neutral policyholder as defined in Eq. (4).

Proposition 4. Let ambiguity be concentrated on losses above D∗
0 so that P(X ≤ x|Θ = θ)

is independent of θ for any x ≤ D∗
0. In this case, the solution to Problem (1) is a straight

deductible with deductible level D∗
0. Ambiguity has no effect on the optimal insurance contract.

Appendix A.4 gives the proof. Gollier’s (2014) Proposition 3 reaches the same conclusion.

Our Proposition 4 extends this result to our more flexible ambiguity structure. Whether

ambiguity is concentrated on losses below xτ or above D∗
0, or is not concentrated at all is

an empirical issue. In practice, the answer to this question is likely to depend on the type

of loss exposure. In the situation of parameter uncertainty mentioned in the introduction,

ambiguity is not concentrated on any particular portion of the loss distribution. In this case,

conditions (ii) and (iii) establish the optimality of a straight deductible whereas Gollier’s

(2014) model remains silent about the shape of the optimal indemnity schedule. Our Eq. (7)

even specifies the optimal deductible level, which will, in general, be different from D∗
0. Before

we discuss these comparative statics, we will investigate some specific ambiguity structures

to isolate the effect of the no-sabotage condition on optimal insurance design and highlight

additional differences between our results and those in Gollier (2014).
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5 Some specific ambiguity structures

5.1 Preliminaries

Consider the following three-piece setting:

P(X ≤ x|Θ = θ) = (1− p)P(X̂ ≤ x) + p(1− θ)P(X1 ≤ x) + pθP(X2 ≤ x) for x ≥ 0, (8)

where we let p ∈ [0, 1], θ ∈ [0, 1], and X̂,X1 and X2 be nonnegative random variables. The

ambiguity structure in Eq. (8) says intuitively that the policyholder is certain about the loss

distribution on one set of values but uncertain about the loss distribution on another set of

values. If p = 0, the policyholder is certain that the loss distribution is that of X̂. As soon

as p > 0, the value of θ matters and the policyholder faces uncertainty over the true loss

distribution. In the special case of p = 1, the policyholder believes that the loss distribution

can be any mixture of the distributions of X1 and X2 depending on θ. For example, if θ = 0

and θ = 1 each have a 50% chance of occurring, the policyholder thinks that the true loss

distribution is equally likely to be that of X1 or that of X2.

Eq. (8) includes many ambiguity structures as special cases including left-against-right

ambiguity, one-against-all ambiguity, and two-state ambiguity. We discuss them in the sequel.

5.2 Left-against-right ambiguity

We obtain the special case of left-against-right ambiguity by ordering the random variables

X1, X̂, and X2 from left to right. One possibility to order them is to require

ess supX1 ≤ ess inf X̂ and ess sup X̂ ≤ ess infX2, (9)

where ess supX and ess infX denote the essential supremum and the essential infimum of

random variable X. Intuitively, under the left-against-right ambiguity structure the policy-

holder is uncertain about the loss distribution on the two tails but certain about the loss

distribution for losses of intermediate size. We obtain the following result.

Lemma 2. Under assumptions (8) and (9), X is increasing in Θ in the likelihood ratio order.

Appendix A.5 gives the proof. If the positions of X1 and X2 are switched in condition (9),

leading to ess supX2 ≤ ess inf X̂ and ess sup X̂ ≤ ess infX1, then X is decreasing in Θ in

the likelihood ratio order.

Ordering assumption (9) is restrictive. The proof of Lemma 2 reveals that, for X to

be increasing in Θ in the likelihood ratio order, all we need is that X1 ≤lr X̂ ≤lr X2.

Condition (9) is sufficient but not necessary for ranking X1, X̂ and X2 by the likelihood ratio

order. In fact, if we impose the constraint that X1, X̂ and X2 have disjoint supports, then

X1 ≤lr X̂ ≤lr X2 also implies condition (9) but requiring disjoint supports is itself restrictive.
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One might thus wonder how X and Θ are ordered if we relax the ordering assumption on

X1, X̂ and X2. The next lemma answers this question.

Lemma 3. Under assumption (8), if X1 ≤hr X̂ ≤hr X2, then X is increasing in Θ in the

hazard rate order.

Appendix A.6 states the proof. Weakening the ordering assumption on X1, X̂ and X2

also weakens the ordering of X in Θ. Stochastic increasingness in the hazard rate order is,

however, strong enough to establish the optimality of a straight deductible. We summarize

this result in the next proposition.

Proposition 5. Under assumption (8) with X1 ≤hr X̂ ≤hr X2, the solution to Problem (1)

is a straight deductible with the deductible level specified in Eq. (7).

Proposition 5 follows directly from Proposition 3(iii) because X is increasing in Θ in the

hazard rate order when X1, X̂ and X2 are ordered in the hazard rate order (Lemma 3). As

a corollary, a straight deductible with the deductible level specified in Eq. (7) is also optimal

when X1, X̂ and X2 are ordered in the likelihood ratio order or when they satisfy ordering

assumption (9). We can either conclude this from Proposition 5 because the likelihood ratio

order is a special case of the hazard rate order, or from Lemma 2 and Corollary 2.

Gollier (2014) does not discuss left-against-right ambiguity. We add this ambiguity struc-

ture to the list for two reasons. First, it illustrates the usefulness of Theorem 2 and Propo-

sition 3. Second, it corroborates our main point that a straight deductible is the solution

to the optimal insurance design problem under smooth ambiguity aversion in a large set of

circumstances. Left-against-right ambiguity is one of them.

5.3 One-against-all ambiguity

We obtain the one-against-all ambiguity structure by setting p = 1 and X1 = x1 with x1 ≥ 0

in Eq. (8). Specifically, the distribution of the loss X conditional on Θ = θ is given by

P(X ≤ x|Θ = θ) = (1− θ)1{x1≤x} + θP(X2 ≤ x) for x ≥ 0, (10)

where 1A denotes the indicator function of event A. Gollier (2014) considers one-against-

all ambiguity and refers to x1 as the ambiguous state. Intuitively, Eq. (10) means that the

probability of state x1 is ambiguous, and this ambiguity is compensated by all other states.

The distribution of X2 does not depend on θ, and therefore all other states exhibit a constant

level of ambiguity. Gollier (2014) finds that “[t]he optimal deductible applied to the ambiguous

loss is smaller than the deductible applied to all other losses.” This rules out a straight

deductible in his model. In our model, the optimal contract may be of the straight deductible

type even though other shapes are possible as we show in the next proposition.

Proposition 6. Under the one-against-all ambiguity structure, the solution to Problem (1)

is a multi-layer contract that takes one of the following two forms:
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(i) Il(x;Dl, U) = min(max(x−Dl, 0), U) + max(x− x1, 0) with 0 ≤ Dl ≤ Dl + U ≤ x1.

(ii) Ir(x;Dr, U) = min(max(x− x1 + U, 0), U) + max(x−Dr, 0) with 0 ≤ U ≤ x1 ≤ Dr.

Appendix A.7 shows this result. To interpret the indemnity schedules in Proposition 6,

we rewrite them to see how losses of different size are indemnified. For case (i), we have

Il(x;Dl, U) =


0, for x ≤ Dl,

x−Dl, for Dl < x ≤ U +Dl,

U, for U +Dl < x ≤ x1,

x− (x1 − U), for x > x1.

Indemnity schedule Il provides U dollars of coverage for losses below x1 subject to a deductible

of Dl. For losses above x1, it provides full insurance above a deductible of x1 − U . Malamud

et al. (2016) refer to these segments of the loss distribution as tranches and show how they arise

endogenously in an insurance market with multiple providers. As stated in Proposition 6(i),

we have Dl ≤ x1 −U so the deductible increases as we go from the loss layer below x1 to the

loss layer above x1. For case (ii), we have

Ir(x;Dr, U) =


0, for x ≤ x1 − U,

x− (x1 − U), for x1 − U < x ≤ x1,

U, for x1 < x ≤ Dr,

x− (Dr − U), for x > Dr.

Indemnity schedule Ir provides U dollars of coverage for losses belowDr subject to a deductible

of x1 − U . For losses above Dr, it provides full insurance above a deductible of Dr − U . We

have x1 ≤ Dr, as stated in Proposition 6(ii), so the deductible increases from x1−U to Dr−U

as we go from the loss layer below Dr to the loss layer above Dr. In Gollier’s (2014) model,

losses below and above x1 are subject to a larger deductible than a loss of x1. The deductible

thus decreases when going from losses below x1 to a loss of x1, and then increases when going

from a loss of x1 to losses above x1. This non-monotonic behavior can lead to violations of

the no-sabotage condition in his model, and is thus ruled out in our model.

Figure 1 illustrates indemnity schedule Il in panel (a) and the associated retained loss

function RIl in panel (b). If we wanted to illustrate Ir and RIr instead, all we need to do is to

change the labels on the x-axis and on the y-axis. We observe that the principle of indemnity

is satisfied because Il(x) is always between zero and x, and that the no-sabotage condition

holds because both Il and RIl are increasing. Furthermore, we can directly observe Theorem 1

because I ′l(x) is either zero or one except at the critical points Dl, U +Dl and x1. At those

points, the indemnity schedule has kinks and is not differentiable. As a consequence, R′
Il
(x)

is also either zero or one except at the critical points.

In some special cases, the optimal insurance contract can be simplified to a straight de-

ductible. We provide some sufficient conditions in the following result.
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(a) Indemnity schedule Il(x;Dl, U) (b) Retained loss function RIl(x)

Figure 1: Illustration of indemnity schedule Il(x;Dl, U) and its associated retained loss func-
tion RIl(x) from Proposition 6(i). To illustrate Ir(x;Dr, U), replace Dl by x1−U , U +Dl by
x1, and x1 by Dr on the x-axis. To illustrate RIr , make the same replacements on the x-axis
and replace Dl by U and x1 − U by Dr − U on the y-axis.

Proposition 7. Under the one-against-all ambiguity structure, the solution to Problem (1)

is a straight deductible with the deductible level specified in Eq. (7) if one of the following

conditions holds:

(i) x1 ≤ xτ .

(ii) x1 ≤ ess infX2.

(iii) x1 ≥ ess supX2.

Appendix A.8 provides the proof. The point is that Gollier (2014) finds a deductible that

is V-shaped in the loss and jumps down to a lower level when the loss is x1. We restrict the

set of admissible indemnity schedules by imposing the no-sabotage condition, which rules out

indemnity schedules like the one found by Gollier (2014). Instead, we find an indemnity with

multiple layers to be optimal, which sometimes collapses to a straight deductible. So while

Gollier (2014) shows that a straight deductible is never optimal under the one-against-all

ambiguity structure in his model, it may well be optimal in our model.

5.4 Two-state ambiguity

Consider X1 = x1 and X2 = x2 in Eq. (8) with 0 ≤ x1 < x2. In this case, the distribution of

the loss X conditional on Θ = θ is given by

P(X ≤ x|Θ = θ) = (1− p)P(X̂ ≤ x) + p(1− θ)1{x1≤x} + pθ1{x2≤x} for x ≥ 0,

where we let the distribution of X̂ be independent of θ and assume P(X̂ ∈ {x1, x2}) = 0.

There is a (1− p) chance that the loss distribution is that of X̂ and a p chance that the loss

is either x1 and x2. Conditional on the loss being either x1 or x2, the probability of a loss of

x1 is (1− θ) and that of a loss of x2 is θ. So the two states x1 and x2 are ambiguous because

their probability of occurrence depends on the value of θ.
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The following special case shows that a straight deductible can be optimal under the

two-state ambiguity structure.

Corollary 3. Under the two-state ambiguity structure with x1 = 0 and x2 = ess sup X̂, the

solution to Problem (1) is a straight deductible with the deductible level specified in Eq. (7).

Proof. With x1 = 0 and x2 = ess sup X̂, the two-state ambiguity structure is a special case

of left-against-right ambiguity and condition (9) holds so that Proposition 5 applies.

In general, however, the solution will not be a straight deductible but will be of the

multi-layer form again. This is our next result.

Proposition 8. Under the two-state ambiguity structure, the solution to Problem (1) is a

multi-layer contract that takes the following form:

I∗(x) = min(max(x−Dl, 0), Ul) + min(max(x−Dm, 0), Um − Ul) + max(x−Dr, 0). (11)

The parameters Ul, Um, Dl, Dm and Dr are nonnegative and satisfy

Ul ≤ Um, Dl ≤ x1 ≤ Dm ≤ x2 ≤ Dr, Dl + Ul ≤ x1, Dm + Um − Ul ≤ x2. (12)

Appendix A.9 provides the proof. Indemnity schedule I∗ has three layers. It provides up

to Ul dollars of coverage for losses below Dm subject to a deductible of Dl. For losses between

Dm and Dr, indemnity schedule I∗ provides Ul dollars from the first layer and up to Um −Ul

in additional coverage for the portion of the loss in the second layer, x − Dm. For losses

between Dm+Um−Ul and Dr, the policyholder thus receives Ul+(Um−Ul) = Um dollars in

indemnification. The third layer starts at Dr and the policyholder receives Um dollars from

the first two layers and the entire portion of the loss that falls into the third layer, x−Dr.

In Gollier’s (2014) model, losses other than x1 and x2 are subject to the same deductible,

a loss of x1 is fully covered, and a loss of x2 is subject to a smaller deductible than all other

losses, see his Proposition 6. So the deductible starts at a positive level, jumps down to zero

at x1, is at the same positive level between x1 and x2, jumps down to a smaller positive level

at x2, and then returns to the initial positive level for losses in excess of x2. The no-sabotage

condition rules out indemnity schedules like the one found by Gollier (2014). As in the case of

one-against-all ambiguity, we obtain an indemnity of the multi-layer form and the additional

ambiguous state adds another layer to the indemnity schedule.

In our model, this argument can be extended to multi-state ambiguity structures with

more than two ambiguous states, with each extra state potentially adding another layer.

Despite this complexity, we draw the same general conclusion as in the case of one-against-all

ambiguity. A straight deductible is never optimal in Gollier’s (2014) model but arises as a

special case in our analysis, see Corollary 3. The specific ambiguity structures considered in

this section substantiate our conclusion that the no-sabotage condition leads to the optimality

of a straight deductible in a broader set of circumstances.
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6 Comparative statics

This section provides comparative statics. One of the main advantages of Klibanoff et al.’s

(2005) smooth ambiguity model is that it achieves a clean separation of tastes and beliefs.

We can vary the policyholder’s degree of ambiguity aversion while keeping the level of am-

biguity fixed, or we can vary the level of ambiguity while keeping the policyholder’s degree

of ambiguity aversion fixed. Gollier (2014) only looks at the effect of ambiguity aversion at

the extensive margin in one specific case. He compares the optimal deductible of a subjective

expected utility maximizer (i.e., ϕ′′ = 0) to the optimal deductible of an ambiguity-averse

policyholder (i.e., ϕ′′ < 0) when ambiguity is concentrated on losses below xτ . In this case

and under some additional stochastic ordering assumptions on the priors, ambiguity aversion

has the counterintuitive effect that it lowers the optimal demand for insurance because the

optimal deductible increases so that the policyholder retains more risk.

We first define an increase in the degree of ambiguity aversion. In the field and in labo-

ratory experiments researchers typically observe that the degree of ambiguity aversion varies

across people (e.g., Dimmock et al., 2015; Berger and Bosetti, 2020). The smooth ambigu-

ity model allows us to accommodate this observation, and we use the notion of comparative

ambiguity aversion from Klibanoff et al. (2005).

Definition 3. A policyholder is more ambiguity-averse than another policyholder if they

share the same vNM utility function, hold the same beliefs, and if the ambiguity function of

the first one, ϕ1, is more concave than the ambiguity function of the second one, ϕ2, in the

sense of Arrow-Pratt, that is, if

−ϕ′′
1(z)

ϕ′
1(z)

≥ −ϕ′′
2(z)

ϕ′
2(z)

for any z in the domain of ϕ1 and ϕ2.

We can then establish the following result.

Proposition 9. Let X be increasing in Θ by first-order stochastic dominance (X ↑fsd Θ)

and let Θ be increasing in X in the hazard rate order (Θ ↑hr X). Then, an increase in the

policyholder’s degree of ambiguity aversion lowers the optimal deductible.

Appendix A.10 provides the proof. The conditions X ↑fsd Θ and Θ ↑hr X are easy to

satisfy. They hold if the loss is increasing in Θ in the likelihood ratio order because increasing-

ness in the likelihood ratio order is symmetric, see Appendix B.4, and implies increasingness

in the hazard rate order. Section 5.2 shows that the left-against-right ambiguity structure

is a special case in which X ↑lr Θ holds. Another example is the one-against-all ambiguity

structure with x1 = 0. In this case, ambiguity is concentrated on the probability of the

no-loss state and the policyholder is certain about the loss distribution conditional on a loss

occurring. Alary et al. (2013) consider this knife-edge case and demonstrate the optimality of

a straight deductible (their Proposition 6) and that an increase in the policyholder’s degree

of ambiguity aversion lowers the optimal deductible (their Proposition 7).
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With the help of the no-sabotage condition, Proposition 9 establishes the intuitive result

in much more generality. While we do impose stochastic ordering assumptions on the loss

X and random variable Θ, we do not require the loss probability to be the only source of

ambiguity as Alary et al. (2013) do. Schlesinger (1981) shows that an increase in risk aversion

lowers the optimal deductible and thus increases insurance demand under expected utility. In

our setting, ambiguity aversion reinforces risk aversion and can thus explain a higher demand

for low deductibles compared to expected utility. Conventional models of risk aversion fail to

explain the strong preference for low deductibles that researchers have documented in the field

(Cohen and Einav, 2007; Sydnor, 2010) and in laboratory experiments (Shapira and Venezia,

2008; Jaspersen et al., 2022b), see also Jaspersen et al. (2022a). It is plausible that people

are uncertain about the loss distribution at the time they purchase insurance, and that this

ambiguity not only concerns the probability of loss but also its severity. Ambiguity aversion

may thus contribute to the well-documented propensity to overinsure modest risks.

In a next step, we answer the dual question of the effect of greater ambiguity. Jewitt

and Mukerji (2017) define the relation “more ambiguous.” Their definition is technical and

hard to operationalize. To simplify the analysis, we use the three-piece ambiguity structure

in Eq. (8). With this specification, ambiguity arises from the uncertainty over the mixture

weight θ ∈ [0, 1]. The key simplification lies in the fact that, for any function g, the conditional

expectation E[g(X)|Θ] is then a linear function of Θ. We pose the following definition.

Definition 4. A policyholder perceives greater ambiguity if his second-order belief becomes

riskier in the sense of Rothschild and Stiglitz (1970), that is, if random variable Θ1 changes

to Θ2 with Θ2 ≥RS Θ1.

Snow (2010) introduces this definition of greater ambiguity to study the value of infor-

mation, Snow (2011) uses it in the context of self-insurance and self-protection, Hoy et al.

(2014) apply it to genetic testing decisions under ambiguity, and Peter (2019) utilizes it for

the comparative statics of precautionary saving. Under the three-piece ambiguity structure

specified in Eq. (8), this definition is consistent with Jewitt and Mukerji’s (2017) notion of

“more ambiguous (I)” because such a change in beliefs does not affect ambiguity-neutral pol-

icyholders but makes every ambiguity-averse policyholder worse off. To formulate our last

result, we introduce an intensity measure of the policyholder’s prudence in ambiguity.

Definition 5. A policyholder with ambiguity function ϕ is ambiguity-prudent if ϕ′′′ ≥ 0. His

relative ambiguity prudence is given by P(z) = −zϕ′′′(z)/ϕ′′(z).

The notion of ambiguity prudence mimics the concept of risk prudence in utility theory.

Kimball (1990) coins the term “prudence” for a positive third derivative of the utility function

and shows that it is necessary and sufficient for a precautionary savings motive in the dis-

counted expected utility model. Baillon (2017) introduces prudence with respect to ambiguity

and shows its equivalence to ϕ′′′ ≥ 0 in the smooth ambiguity model. Ambiguity prudence

matters for the survival of ambiguity-averse agents (Guerdjikova and Sciubba, 2015) and af-

fects precautionary saving (Berger, 2014) and prevention decision under ambiguity (Berger,
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2016). Evidence from the laboratory supports that the majority of individual decisions are

consistent with ambiguity prudence (Baillon et al., 2018).

We are now in a position to formulate our last result.

Proposition 10. Consider the three-piece ambiguity structure stated in Eq. (8), assume that

X1 ≤hr X̂ ≤hr X2, and let the policyholder be ambiguity-prudent with relative ambiguity

prudence below two. Then, greater ambiguity lowers the optimal deductible.

Appendix A.11 provides the proof. Under the stated conditions, we obtain the intuitive

result that an increase in the level of ambiguity raises insurance demand. The comparative

statics of ambiguity are different from the comparative statics of risk. For an increase in risk,

Eeckhoudt et al. (1991) show that the effects depend on the portion of the loss distribution

that becomes riskier. If only losses below the deductible are affected and the policyholder is

prudent, the optimal deductible increases resulting in lower insurance demand. If only losses

above the deductible are affected and the policyholder has decreasing absolute risk aversion,

the optimal deductible decreases.

Proposition 10 requires an assumption about the policyholder’s intensity of ambiguity pru-

dence. This assumption also arises in the context of portfolio choice under ambiguity (Huang

and Tzeng, 2018), precautionary saving (Peter, 2019), and insurance demand under nonper-

formance risk (Peter and Ying, 2020). The intuition behind this threshold condition comes

from the presence of two conflicting effects. Greater ambiguity has a positive substitution ef-

fect on insurance demand because the more comprehensively the policyholder is insured, the

less she is affected by risk and the associated uncertainty over the loss distribution. At the

same time, a policyholder who is ambiguity prudent has a precautionary motive to increase

expected final wealth and thereby raise expected utility. One way to increase final wealth is

to buy less insurance, which reduces the insurance premium. For those losses that are not too

large, the premium savings dominate the reduced indemnification.

One way to mute this precautionary motive is by assuming ϕ′′′ = 0, which seems unrealis-

tic. Alternatively, we can allow for ambiguity prudence but restrict its intensity. Berger and

Bosetti (2020) conduct an experimental test of ambiguity attitudes using model uncertainty.

They fit the ϕ-function of the smooth model and find that a power form fits better than an

expo-power form. Relative ambiguity aversion is 0.53 in their study with a standard error of

0.0261. This estimate implies relative ambiguity prudence of 1.53.6 As such, the results in

Berger and Bosetti (2020) support our assumption of P ≤ 2 for most, if not all subjects in

their data. Admittedly more research is needed on the intensity of ambiguity prudence, and

it would be helpful to have some evidence from the field.

6 If ϕ takes the power form, say ϕ(z) = (z1−γ − 1)/(1− γ) for γ > 0, then relative ambiguity aversion is given
by γ and relative ambiguity prudence by 1 + γ. An estimate of γ = 0.53 thus implies relative ambiguity
prudence of 1.53, which is less than 2.
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7 Conclusion

In this paper, we revisited the problem of optimal insurance design for ambiguity-averse poli-

cyholders under Klibanoff et al.’s (2005) smooth ambiguity model. Unlike previous literature,

we used a flexible ambiguity structure that is not restricted to a finite set of priors and im-

posed both the principle of indemnity and the no-sabotage condition on the set of admissible

indemnity schedules. We characterized the optimal indemnity schedule by showing that its

slope is either zero or one except at critical points. We also derived a sufficient condition

for a straight deductible to be optimal, thus extending Arrow’s cornerstone result to smooth

ambiguity aversion. This condition is satisfied when ambiguity does not affect large losses

(above xτ ), when the loss X and random variable Θ are increasing or decreasing in each other

in the FSD sense, or when the loss X is monotonic in Θ in the hazard rate order. Our char-

acterization is substantially more general than previous literature and shows that a straight

deductible is optimal in a broad set of circumstances.

We discussed several specific ambiguity structures to isolate the effect of the no-sabotage

condition. A straight deductible is optimal under left-against-right ambiguity and may be

optimal under one-against-all and two-state ambiguity. In the last two cases, the optimal

contract is of the multi-layer form, and the number of ambiguous states determines how

many layers are possible. Our model yields intuitive comparative statics. Previous research

either presupposes that ambiguity is absent conditional on the loss (Proposition 7 in Alary

et al., 2013) or finds counterintuitive effects (Proposition 9 in Gollier, 2014). Under some

simple stochastic ordering assumptions, greater ambiguity aversion always lowers the optimal

deductible and hence raises insurance demand. Ambiguity aversion can thus help explain the

overinsurance puzzle of modest risks (Sydnor, 2010). We also studied the comparative statics

of greater ambiguity and find that it raises insurance demand for ambiguity-prudent policy-

holders with relative ambiguity prudence less than two, which seems empirically plausible.

Gollier (2014) was the first to study optimal insurance design under smooth ambiguity

aversion and we only come second. We trade off a smaller contract space by imposing the

no-sabotage condition for a more flexible ambiguity structure that includes, for example,

the case of parameter uncertainty. While ambiguity and ambiguity aversion certainly affect

the optimal level of risk transfer, Arrow’s (1963) famous result that a straight deductible is

optimal holds broadly in our setting by virtue of the no-sabotage condition.
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A Proofs

A.1 Proof of Theorem 1

“Necessity.” Let I∗ be an optimal solution to Problem (1). For any I ∈ C and p ∈ [0, 1],

denote by Ĩp(x) = pI∗(x) + (1− p)I(x) the convex combination of I∗ and I for x ≥ 0. Then,

Ĩp ∈ C because I∗ and I are in C. Furthermore, we obtain

∂

∂p
E[u(WĨp

)|Θ]
∣∣∣
p=1

= E[u′(WI∗)(I
∗(X)− I(X)− (1 + τ)(E[I∗(X)]− E[I(X)]))|Θ]

=

∫ ∞

0
E[u′(WI∗)(1{X>x} − (1 + τ)SX(x))|Θ](I∗′(x)− I ′(x)) dx,

where 1A denotes the indicator function of event A. The first equality holds because Assump-

tion A4 allows us to exchange the operations of expectation and differentiation. The second

equality follows from the fundamental theorem of calculus because

I(x) = I(x)− I(0) =

∫ x

0
I ′(y) dy =

∫ ∞

0
I ′(y)1{x>y} dy,

and likewise for I∗. The optimality of I∗ implies

∂

∂p
E[ϕ(E[u(WĨp

)|Θ])]
∣∣∣
p=1

≥ 0,

which is equivalent to

0 ≤ E
[
ϕ′(E[u(WI∗)|Θ])

∂

∂p
E[u(WĨp

)|Θ]
∣∣∣
p=1

]
=

∫ ∞

0
E[ϕ′(E[u(WI∗)|Θ])E[u′(WI∗)(1{X>x} − (1 + τ)SX(x))|Θ]](I∗′(x)− I(x)) dx

=

∫ ∞

0
E[ϕ′(E[u(WI∗)|Θ])u′(WI∗)(1{X>x} − (1 + τ)SX(x))](I∗′(x)− I(x)) dx

= E[ϕ′(E[u(WI∗)|Θ])u′(WI∗)]

∫ M

0
SX(x)(VI∗(x)− (1 + τ))(I∗′(x)− I ′(x)) dx.

The first equality holds by substituting ∂
∂pE[u(WĨp

)|Θ]
∣∣∣
p=1

from above and by exchanging

the operations of expectation and integration, which is justified by Assumption A4. The

second equality holds by the law of total expectation. The third equality uses the definition

of auxiliary function VI∗(x) in Eq. (5). Since the above inequality holds for any I ∈ C,

property (6) in Theorem 1 must be satisfied.

“Sufficiency.”Assume that I∗ satisfies property (6). Since both ϕ and u are increasing and

concave, then, for any I ∈ C, it holds that

E[ϕ(E[u(WI∗)|Θ])]− E[ϕ(E[u(WI)|Θ])]
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≥ E[ϕ′(E[u(WI∗)|Θ])(E[u(WI∗)|Θ]− E[u(WI)|Θ])]

≥ E[ϕ′(E[u(WI∗)|Θ])E[u′(WI∗)(WI∗ −WI)|Θ]]

=

∫ ∞

0
E[ϕ′(E[u(WI∗)|Θ])u′(WI∗)(1{X>x} − (1 + τ)SX(x))](I∗′(x)− I ′(x)) dx.

Consequently, if I∗ satisfies (6), then E[ϕ(E[u(WI∗)|Θ])] ≥ E[ϕ(E[u(WI)|Θ])] for all I ∈ C,

which makes I∗ an optimal solution to Problem (1).

A.2 Proof of Theorem 2

We proceed in two steps and first show the result in case of D∗ = ∞ and then for D∗ < ∞.

If D∗ = ∞, the set {D ≥ xτ : VID(D) ≥ 1 + τ} is empty and hence VID(D) < 1 + τ for

all D ∈ [xτ ,M). We assume VID(x) to be increasing in x on [xτ ,M) for a given D ≥ xτ .

Therefore, it holds that

VID(x) ≤ VID(D) < 1 + τ for any D ≥ x.

Consequently, we have

VIM(x) = lim
D→M

VID(x) ≤ 1 + τ for any x ∈ [xτ ,M).

For x ∈ [0, xτ ), we have SX(x) > 1/(1 + τ) and therefore

VIM(x) =
E[ϕ′(E[u(WIM)|Θ])u′(WIM)|X > x]

E[ϕ′(E[u(WIM)|Θ])u′(WIM)]

=
1

SX(x)
·
E[ϕ′(E[u(WIM)|Θ])u′(WIM)] · 1{X>x}

E[ϕ′(E[u(WIM)|Θ])u′(WIM)]
< 1 + τ.

As a result, VIM ≤ 1 + τ holds for all x ∈ [0,M), and IM is thus the solution to Problem (1)

according to Theorem 1. Indemnity schedule IM represents the no-insurance strategy, or

equivalently, the straight deductible contract with deductible level of D = ∞. This proves

the desired conclusion in case of D∗ = ∞.

Now assume D∗ ∈ [xτ ,M). We then have VID(D) < 1 + τ for any D ∈ [xτ , D
∗), and thus

limD↑D∗ VID(D) ≤ 1 + τ . Furthermore, we have VID∗ (D
∗) ≥ 1 + τ due to the right continuity

of VID(D) in D, see Lemma 4(iv) in Appendix B.1. Consider the function VID∗ (x), which is

assumed to be increasing in x ∈ [xτ ,M). We then have

VID∗ (x) ≥ VID∗ (D
∗) ≥ 1 + τ for any x ≥ D∗,

and

VID∗ (x) = lim
D↑D∗
D>x

VID(x) ≤ lim
D↑D∗
D>x

VID(D) ≤ 1 + τ for any x ∈ [xτ , D
∗).
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The equality is due to the continuity of VID(x) in D and the first inequality is due to the

increasingness of VID(x) in x.

We are now in a position to apply Theorem 1. We have shown that VID∗ (x) > 1 + τ

can only occur for x ≥ D∗. But for x ∈ (D∗,M), we obtain I ′D∗(x) = 1. Furthermore,

VID∗ (x) < 1 + τ can only occur for x ≤ D∗. But for x ∈ [0, D∗), we have I ′D∗(x) = 0.

Property (6) is thus satisfied, which makes the straight deductible contract with indemnity

schedule ID∗ the optimal solution to Problem (1)

A.3 Proof of Proposition 3

According to Theorem 2, it suffices to show that VID(x) is increasing in x ∈ [xτ ,M) for any

D ≥ xτ under each of the conditions (i) to (iii).

Assume that condition (i) holds and let I ∈ C. Then, for any x ≥ xτ , we obtain

E[u′(WI)1{X>x}|Θ]

P(X > xτ |Θ)
=

E[u′(WI)1{X>x}]

P(X > xτ )
(13)

because P(X > x|Θ = θ)/P(X > xτ |Θ = θ) is independent of θ. Rewrite auxiliary function

VI(x) as follows:

VI(x) =
E[ϕ′(E[u(WI)|Θ])u′(WI)|X > x]

E[ϕ′(E[u(WI)|Θ])u′(WI)]
=

E[ϕ′(E[u(WI)|Θ]) · E[u′(WI)1{X>x}|Θ]]

P(X > x) · E[ϕ′(E[u(WI)|Θ])u′(WI)]
.

Substituting Eq. (13) into the expression for VI(x) yields

VI(x) =
E[ϕ′(E[u(WI)|Θ]) · P(X > xτ |Θ)]

P(X > xτ ) · E[ϕ′(E[u(WI)|Θ])u′(WI)]
·
E[u′(WI)1{X>x}]

P(X > x)
.

The first factor does not depend on x. The second factor simplifies to E[u′(WI)|X > x)], which

is an increasing function of x. Indeed, the larger the realization of X, the smaller the value

of WI because the policyholder’s retained loss function is increasing due to the no-sabotage

condition A2. Marginal utility is decreasing due to risk aversion, which then makes u′(WI)

increasing in X. Therefore, VI(x) is increasing in x ∈ [xτ ,M) for any I ∈ C. It follows that

VID(x) is increasing in x ∈ [xτ ,M) for any D ≥ xτ , and Theorem 2 applies.

Assume that condition (ii) holds. Then, WID = w−X+max(0, X−D)− (1+τ)E[ID(X)]

is a decreasing function of X because ID satisfies the no-sabotage condition. When X ↑fsd Θ,

we have that E[u(WID)|Θ] is a decreasing function of Θ because utility function u is increasing.

The ambiguity function ϕ is concave due to ambiguity aversion, which makes ϕ′ decreasing.

Therefore, ϕ′(E[u(WID)|Θ]) is an increasing function of Θ. When coupled with Θ ↑fsd X, this

yields that E[ϕ′(E[u(WID)|Θ])|X] is an increasing function of X. Risk aversion is represented

by a concave utility function so that u′ is decreasing. This makes u′(WID) an increasing
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function of X. Hence, assuming X ↑fsd Θ and Θ ↑fsd X ensures that

VID(x) =
E[ϕ′(E[u(WID)|Θ])u′(WID)|X > x]

E[ϕ′(E[u(WID)|Θ])u′(WID)]
=

E[E[ϕ′(E[u(WID)|Θ])|X]u′(WID)|X > x]

E[ϕ′(E[u(WID)|Θ])u′(WID)]

is increasing in x, and Theorem 2 applies. When X ↓fsd Θ instead, then E[u(WID)|Θ] is an

increasing function of Θ and ϕ′(E[u(WID)|Θ]) is a decreasing function of Θ. Coupled with

Θ ↓fsd X, we have that E[ϕ′(E[u(WID)|Θ])|X] is an increasing function of X, and the rest of

the argument is identical.

Assume that condition (iii) holds and let X ↑hr Θ. Increasingness in the hazard rate order

implies increasingness in the FSD order, X ↑fsd Θ. Then we know from the proof of (ii) that

u′(WID) is an increasing function of X, that E[u(WID)|Θ] is a decreasing function of Θ, and

that ϕ′(E[u(WID)|Θ]) is an increasing function of Θ. Both u′(WID) and ϕ′(E[u(WID)|Θ]) are

positive. Since X ↑hr Θ, Lemma 5(i) in Appendix B.2 implies that [Θ|X > x] increases in x

in the likelihood ratio order, and thus also in the FSD order. Lemma 6 in Appendix B.3 then

implies that VID(x) is increasing in x, which completes the proof.

A.4 Proof of Proposition 4

We prove that I ′D∗
0
satisfies criterion (6) in Theorem 1 under the assumptions made. The

criterion involves auxiliary function VID∗
0
(x). When ambiguity is concentrated on losses above

D∗
0, the distribution of WID∗

0
= w − min(X,D∗

0) − (1 + τ)E[ID∗
0
(X)] conditional on Θ is

independent of Θ. Therefore, E[u(WID∗
0
)|Θ] is a deterministic quantity. We then obtain

VID∗
0
(x) =

E[ϕ′(E[u(WID∗
0
)|Θ])u′(WID∗

0
)|X > x]

E[ϕ′(E[u(WID∗
0
)|Θ])u′(WID∗

0
)]

=
ϕ′(E[u(WID∗

0
)]) · E[u′(WID∗

0
)|X > x]

ϕ′(E[u(WID∗
0
)]) · E[u′(WID∗

0
)]

=
E[u′(WID∗

0
)|X > x]

E[u′(WID∗
0
)]

.

Since ID∗
0
is a solution to Problem (2), which is the special case of Problem (1) for ϕ(x) = x,

it follows that

I ′D∗
0
(x) =

 1, for VID∗
0
(x) > 1 + τ ;

0, for VID∗
0
(x) < 1 + τ.

Therefore, Theorem 1 establishes that ID∗
0
is already the solution to Problem (1) for any

increasing and concave ϕ-function.

A.5 Proof of Lemma 2

To prove X ↑lr Θ, we need to show that [X|Θ = θ1] ≤lr [X|Θ = θ2] for any θ1 ≤ θ2. Let

Y1 and Y2 be independent random variables with the same distribution as [X|Θ = θ1] and
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[X|Θ = θ2]. According to Shanthikumar and Yao’s (1991) bivariate functional characteriza-

tion of the likelihood ratio order in their Theorem 2.3, we obtain Y1 ≤lr Y2 if and only if

E[g(Y1, Y2)] ≥ E[g(Y2, Y1)] for any arrangement-increasing function g(x, y), where a function

is called arrangement-increasing if g(x, y) ≥ g(y, x) for any x ≤ y.

Let (X̂⊥, X⊥
1 , X⊥

2 ) be an independent copy of (X̂,X1, X2). Due to Eq. (8), we can repre-

sent Y1 as a mixture of X̂,X1 and X2 with probability weights (1− p), p(1− θ1) and pθ1, and

Y2 as a mixture of X̂⊥, X⊥
1 and X⊥

2 with probability weights (1 − p), p(1 − θ2) and pθ2. By

direct computation, we obtain

E[g(Y1, Y2)] = (1− p)2E[g(X̂, X̂⊥)] + (1− p)p(1− θ2)E[g(X̂,X⊥
1 )] + (1− p)pθ2E[g(X̂,X⊥

2 )]

+(1− p)p(1− θ1)E[g(X1, X̂
⊥)] + p2(1− θ1)(1− θ2)E[g(X1, X

⊥
1 )]

+p2(1− θ1)θ2E[g(X1, X
⊥
2 )] + (1− p)pθ1E[g(X2, X̂

⊥)]

+p2(1− θ2)θ1E[g(X2, X
⊥
1 )] + p2θ1θ2E[g(X2, X

⊥
2 )],

and similarly,

E[g(Y2, Y1)] = (1− p)2E[g(X̂⊥, X̂)] + (1− p)p(1− θ1)E[g(X̂⊥, X1)] + (1− p)pθ1E[g(X̂⊥, X2)]

+(1− p)p(1− θ2)E[g(X⊥
1 , X̂)] + p2(1− θ2)(1− θ1)E[g(X⊥

1 , X1)]

+p2(1− θ2)θ1E[g(X⊥
1 , X2)] + (1− p)pθ2E[g(X⊥

2 , X̂)]

+p2(1− θ1)θ2E[g(X⊥
2 , X1)] + p2θ2θ1E[g(X⊥

2 , X2)].

We have E[g(X̂, X̂⊥)] = E[g(X̂⊥, X̂)] because X̂⊥ is an independent copy of X̂. Furthermore,

ess supX1 ≤ ess inf X̂ implies X1 ≤lr X̂ so that

E[g(X1, X̂
⊥)]− E[g(X̂⊥, X1)] = E[g(X⊥

1 , X̂)]− E[g(X̂,X⊥
1 )] ≥ 0.

The equality holds because X⊥
1 and X̂⊥ are independent copies of X1 and X̂. The inequality

follows from X⊥
1 ≤lr X̂ and Shanthikumar and Yao’s (1991) Theorem 2.3. Since θ1 ≤ θ2, we

have (1− p)p(1− θ2) ≤ (1− p)p(1− θ1), and thus

(1− p)p(1− θ2)E[g(X̂,X⊥
1 )] + (1− p)p(1− θ1)E[g(X1, X̂

⊥)]

≥ (1− p)p(1− θ1)E[g(X̂⊥, X1)] + (1− p)p(1− θ2)E[g(X⊥
1 , X̂)].

Similarly we find

(1− p)pθ2E[g(X̂,X⊥
2 )] + (1− p)pθ1E[g(X2, X̂

⊥)]

≥ (1− p)pθ1E[g(X̂⊥, X2)] + (1− p)pθ2E[g(X⊥
2 , X̂)]
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because ess supX ≤ ess infX2 implies X ≤lr X2, and

p2(1− θ1)θ2E[g(X1, X
⊥
2 )] + p2(1− θ2)θ1E[g(X2, X

⊥
1 )]

≥ p2(1− θ2)θ1E[g(X⊥
1 , X2)] + p2(1− θ1)θ2E[g(X⊥

2 , X1)].

because ess supX1 ≤ ess infX2 implies X1 ≤lr X2. Finally, E[g(Xi, X
⊥
i )] = E[g(X⊥

i , Xi)] for

i = 1, 2 because X⊥
i is an independent copy of Xi. Combining inequalities accordingly shows

that E[g(Y1, Y2)] ≥ E[g(Y2, Y1)] for any arrangement-increasing function g(x, y), and therefore

Y1 ≤lr Y2 as desired.

A.6 Proof of Lemma 3

Denote the survival functions of X1, X̂ and X2 by S1, Ŝ and S2, respectively. The conditional

survival function of X in Eq. (8) given Θ = θ is then given by

S(x|θ) = (1− p)Ŝ(x) + pS1(x) + pθ(S2(x)− S1(x)).

According to Definition 1(ii), we need to show that S(x|θ2)/S(x|θ1) is increasing in x for any

θ1 ≤ θ2. Introduce

m(x) =
S2(x)− S1(x)

(1− p)Ŝ(x) + pS1(x)

so that S(x|θ) =
(
(1− p)Ŝ(x) + pS1(x)

)
(1 + pθm(x)). We then obtain

S(x|θ2)
S(x|θ1)

=
1 + pθ2m(x)

1 + pθ1m(x)
=

θ2
θ1

− θ2/θ1 − 1

1 + pθ1m(x)
. (14)

Now X1 ≤hr X̂ ≤hr X2 implies that both Ŝ(x)/S1(x) and S2(x)/Ŝ(x) are increasing in x.

This implies that m(x) is also increasing in x, which we can see by rewriting it as follows:

m(x) =
S2(x)/Ŝ(x)

(1− p) + pS1(x)/Ŝ(x)
− 1

(1− p)Ŝ(x)/S1(x) + p
.

It then follows from Eq. (14) that S(x|θ2)/S(x|θ1) is increasing in x since θ2 ≥ θ1. This

demonstrates X ↑hr Θ.

A.7 Proof of Proposition 6

For any given indemnity I ∈ C, the policyholder retains R = x1 − I(x1) when a loss of x1

occurs. Indemnity schedules in C satisfy the principle of indemnity so the amount of retention

is nonnegative, R ≥ 0. Let IR(x) = max(x − R, 0) = max(x − x1 + I(x1), 0) be the straight

deductible that uses this amount of retention as the deductible level. Assume that E[I(X2)] ≥
E[IR(X2)]; then, there exists a Dl ∈ [0, R] such that E[I(X2)] = E[Il(X2;Dl, I(x1))], with Il

as defined in Proposition 6(i). For brevity, we write Il(x) as shorthand for Il(x;Dl, I(x1)).
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There is some x0 ∈ [Dl, Dl + I(x1)] so that indemnity schedule Il(x) up-crosses indemnity

schedule I(x) at x0, that is, Il(x) ≥ I(x) for any x > x0 and Il(x) ≤ I(x) for any x < x0. In

particular, we have Il(x1) = I(x1). According to Ohlin’s (1969) Lemma 3, we then obtain

Il(X2) ≥RS I(X2) and X2 − Il(X2) ≤RS X2 − I(X2).

Under the one-against-all ambiguity structure (10), E[I(X2)] = E[Il(X2;Dl, I(x1))] ensures

E[I(X)] = I(x1)E[1−Θ] + E[Θ]E[I(X2)] = Il(x1)E[1−Θ] + E[Θ]E[Il(X2)] = E[Il(X)].

Hence, the premiums for I and Il are equal. Coupled with X2 − Il(X2) being less risky than

X2− I(X2) in the sense of Rothschild and Stiglitz (1970), this implies that, for any increasing

and concave utility function u, we have

E[u(w −X2 + Il(X2)− (1 + τ)E[Il(X)])] ≥ E[u(w −X2 + I(X2)− (1 + τ)E[I(X)])].

Consequently, we find

E[u(WIl)|Θ] = (1−Θ)u(w − x1 + Il(x1)− (1 + τ)E[Il(X)])

+ΘE[u(w −X2 + Il(X2)− (1 + τ)E[Il(X)])]

≥a.s. (1−Θ)u(w − x1 + I(x1)− (1 + τ)E[I(X)])

+ΘE[u(w −X2 + I(X2)− (1 + τ)E[I(X)])] = E[u(WI)|Θ],

which implies

J(Il) = E[ϕ(E[u(WIl)|Θ])] ≥ E[ϕ(E[u(WI)|Θ])] = J(f)

because ϕ is increasing. As a result, indemnity schedule I is dominated by indemnity schedule

Il, which is of the form stated in Proposition 6(i).

If E[I(X2)] ≥ E[IR(X2)] does not hold, we must have E[I(X2)] < E[IR(X2)] instead. In

this case, we can show with a similar argument that indemnity schedule I is dominated by

an indemnity schedule of the form stated in Proposition 6(ii). Indemnity I was arbitrarily

chosen so for any indemnity schedule in C, we can find an indemnity schedule either of the

form in Proposition 6(i) or (ii) that increases the policyholder’s ex-ante welfare. The optimal

solution to Problem (1) under the one-against-all ambiguity structure must therefore be either

of the form Il(x;Dl, U) or of the form Ir(x;Dr, U).

A.8 Proof of Proposition 7

For (i), observe that P(X > x|Θ = θ)/P(X > xτ |Θ = θ) is independent of θ for any x > xτ

in case of x1 ≤ xτ . It then follows from Proposition 3(i) that a straight deductible is optimal

with the deductible level specified in Eq. (7).
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To show (ii), note that the one-against-all ambiguity structure (10) reduces to a special

case of the left-against-right ambiguity structure when x1 ≤ ess infX2. The optimality of a

straight deductible with deductible level specified in Eq. (7) then follows from Proposition 5.

Similarly, if x1 ≥ ess supX2, the one-against-all ambiguity structure (10) reduces to a

special case of the left-against-right ambiguity structure with the positions of x1 and X2

switched. The optimality of a straight deductible with deductible level specified in Eq. (7)

then follows from the discussion after Lemma 2 and Proposition 5.

A.9 Proof of Proposition 8

For any given indemnity I ∈ C, set Ul = I(x1) and Um = I(x2). We can then find Dl, Dm

and Dr satisfying (12) such that

E
[
I(X̂) · 1{0≤X̂<x1}

]
= E

[
I∗(X̂) · 1{0≤X̂<x1}

]
,

E
[
I(X̂) · 1{x1≤X̂<x2}

]
= E

[
I∗(X̂) · 1{x1≤X̂<x2}

]
,

E
[
I(X̂) · 1{X̂≥x2}

]
= E

[
I∗(X̂) · 1{X̂≥x2}

]
.

Due to the crossing positions between I(x) and I∗(x), we conclude that

I(X̂) ≤RS I∗(X̂) and X̂ − I∗(X̂) ≤RS X̂ − I(X̂).

By construction we obtain that I∗(x1) = I(x1) and I∗(x2) = I(x2). Using a similar argument

as in the proof of Proposition 6 in Appendix A.7, we conclude that J(I) ≤ J(I∗). The optimal

indemnity schedule must therefore be of the form specified in Eq. (11).

A.10 Proof of Proposition 9

Let policyholder 1 be more ambiguity-averse than policyholder 2. For I ∈ C, auxiliary function

VI(x) defined in (5) depends on the policyholder’s ambiguity function. To make this clear,

we write V ϕ1

I (x) and V ϕ2

I (x) to distinguish between the two policyholders. We have that

Θ ↑hr X implies Θ ↑fsd X. Together with X ↑fsd Θ, we then know from Proposition 3(ii)

that a straight deductible is optimal for each policyholder. Let D∗
1 and D∗

2 denote their

deductible levels, which are determined by

D∗
1 = inf

{
D ≥ xτ : V ϕ1

ID
(D) ≥ 1 + τ

}
and D∗

2 = inf
{
D ≥ xτ : V ϕ2

ID
(D) ≥ 1 + τ

}
.

If D∗
2 = ∞, then D∗

1 ≤ D∗
2 follows immediately. Otherwise, if D∗

2 < ∞, we can show D∗
1 ≤ D∗

2

by showing V ϕ1

ID∗
2

(D∗
2) ≥ V ϕ2

ID∗
2

(D∗
2).

Let ξ = E[−u(WID∗
2
)|Θ]. Then, ξ is an increasing transformation of Θ since X ↑fsd Θ.

According to Lemma 5(ii) in Appendix B.2, Θ ↑hr X then implies ξ ↑hr X. In other words,

[ξ|X = x1] ≤hr [ξ|X = x2] for any x1 ≤ x2. If ϕ1 is more concave than ϕ2 in the sense of Arrow-
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Pratt, then ϕ′
1(−z)/ϕ′

2(−z) is increasing in z.7 Both ϕ′
1(−z) and ϕ′

2(−z) are nonnegative and

increasing in z. Lemma 5(iii) in Appendix B.2 then implies that

E[ϕ′
1(−ξ)|X = x1]

E[ϕ′
2(−ξ)|X = x1]

≤ E[ϕ′
1(−ξ)|X = x2]

E[ϕ′
2(−ξ)|X = x2]

(15)

for any x1 ≤ x2. The ratio E[ϕ′
1(−ξ)|X = x]/E[ϕ′

2(−ξ)|X = x] is thus increasing in x.

Denote by

hi(x) = E[ϕ′
i(E[u(WID∗

2
)|Θ])u′(WID∗

2
)|X = x], for i = 1, 2,

the expected marginal welfare of policyholders 1 and 2 under the straight deductible D∗
2

conditional on a loss of x. On {X = x}, the quantity u(WID∗
2
) is deterministic so that

h1(x)

h2(x)
=

E[ϕ′
1(−ξ)u′(WID∗

2
)|X = x]

E[ϕ′
2(−ξ)u′(WID∗

2
)|X = x]

=
E[ϕ′

1(−ξ)|X = x]

E[ϕ′
2(−ξ)|X = x]

.

Therefore, the ratio h1(x)/h2(x) is increasing in x, see (15) above. According to Lemma A.3

in Chi and Wei (2018), we then obtain

E[h1(X) · 1{X>D∗
2}]

E[h1(X) · 1{X≤D∗
2}]

≥
E[h2(X) · 1{X>D∗

2}]

E[h2(X) · 1{X≤D∗
2}]

,

which in turn implies

E[h1(X) · 1{X>D∗
2}]

E[h1(X)]
≥

E[h2(X) · 1{X>D∗
2}]

E[h2(X)]
.

Using the definition of h1 and h2, this demonstrates

V ϕ1

ID∗
2

(D∗
2) =

E
[
ϕ′
1(E[u(WID∗

2
)|Θ])u′(WID∗

2
)
∣∣X > D∗

2

]
E
[
ϕ′
1(E[u(WID∗

2
)|Θ])u′(WID∗

2
)
]

≥
E
[
ϕ′
2(E[u(WID∗

2
)|Θ])u′(WID∗

2
)
∣∣X > D∗

2

]
E
[
ϕ′
2(E[u(WID∗

2
)|Θ])u′(WID∗

2
)
] = V ϕ2

ID∗
2

(D∗
2),

Therefore, D∗
1 ≤ D∗

2 as desired.

7 By direct computation, we find

d

dz

ϕ′
1(−z)

ϕ′
2(−z)

=
ϕ′
1(−z)

ϕ′
2(−z)

·
[
−ϕ′′

1 (−z)

ϕ′
1(−z)

−
(
−ϕ′′

2 (−z)

ϕ′
2(−z)

)]
≥ 0.
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A.11 Proof of Proposition 10

According to Proposition 5, the optimal insurance contract is a straight deductible for both

second-order beliefs Θ1 and Θ2. Let XΘ1 and XΘ2 denote the loss random variables under

the two second-order beliefs. As stated in Definition 1(iv), Θ2 ≥RS Θ1 entails E[Θ1] = E[Θ2].

Therefore, XΘ1 and XΘ2 have the same unconditional distributions because it only depends

on E[Θ] under the three-piece ambiguity structure (8). Let

V Θi
ID

(D) =
E
[
ϕ′(E[u(WΘi

ID
)
∣∣Θi])u

′(WΘi
ID

)|XΘi > D
]

E
[
ϕ′(E[u(WΘi

ID
)|Θi])u′(W

Θi
ID

)
] for i ∈ {1, 2},

denote auxiliary function (5) under Θ1 and Θ2. As in Appendix A.10, it suffices to show that

V Θ1
ID

(D) ≤ V Θ2
ID

(D). When XΘi > D, then u′(WΘi
ID

) = u′(w −D − (1 + τ)E[ID(XΘi)]), which

is a deterministic quantity because E[ID(XΘ1)] = E[ID(XΘ2)]. Therefore, V
Θ1
ID

(D) ≤ V Θ2
ID

(D)

is equivalent to

E
[
ϕ′(E[u(WΘ1

ID
)|Θ1])

∣∣XΘ1 > D
]

E
[
ϕ′(E[u(WΘ1

ID
)|Θ1])u′(W

Θ1
ID

)
] ≤

E
[
ϕ′(E[u(WΘ2

ID
)|Θ2])

∣∣XΘ2 > D
]

E
[
ϕ′(E[u(WΘ2

ID
)|Θ2])u′(W

Θ2
ID

)
] . (16)

To show this, we first derive the posterior distribution of Θi conditional on XΘi > D. For

ease of exposition, we assume that Θ1 and Θ2 have probability density functions π1(θ) and

π2(θ). The posterior density function of Θi conditional on XΘi > D is then given by

πi|D =
πi(θ) · P(XΘi > D|Θi = θ)

P(XΘi > D)
=

πi(θ) · (mDθ + bD)

P(XΘi > D)
,

where mD = p(P(X2 > D)− P(X1 > D)) and bD = (1− p)P(X̂ > D) + pP(X1 > D).

Under the three-piece ambiguity structure (8), E[u(WΘi
ID

)|Θi] and E[u′(WΘi
ID

)|Θi] are both

linear functions in Θi. Denote

E[u(WΘi
ID

)|Θi] = muΘi + bu and E[u′(WΘi
ID

)|Θi] = mu′Θi + bu′

with

mu = p(E[u(WID(X2))]− E[u(WID(X1))]), bu = (1− p)E[u(WID(X̂))] + pE[u(WID(X1))],

mu′ = p(E[u′(WID(X2))]− E[u′(WID(X1))]), bu′ = (1− p)E[u′(WID(X̂))] + pE[u′(WID(X1))].

We use the notationWID(X1) as shorthand for w−X1+ID(X1)−(1+τ)E[ID(X)], and likewise

for X̂ and X2. We assume X1 ≤hr X̂ ≤hr X2 in Proposition 10, which implies X1 ≤fsd X2.

Final wealth WID(x) is decreasing in x, u is increasing, and u′ is decreasing. We then have

mu ≤ 0 and mu′ ≥ 0 from X1 ≤fsd X2.
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With the help of these notations, we can now derive expressions for the quantities in

inequality (16). For the numerators, we obtain

E
[
ϕ′(E[u(WΘi

ID
)|Θi])

∣∣XΘi > D
]
= E[ϕ′(muΘi + bu)|XΘi > D]

=

∫ 1

0
ϕ′(muθ + bu) · πi|D(θ) dθ =

∫ 1

0
ϕ′(muθ + bu) ·

πi(θ)(mDθ + bD)

P(XΘi > D)
dθ

=
1

P(XΘi > D)
· E[ϕ′(muΘi + bu)(mDΘi + bD)].

For the denominators, we apply the double expectation theorem to obtain

E
[
ϕ′(E[u(WΘi

ID
)|Θi])u

′(WΘi
ID

)
]
= E

[
ϕ′(muΘi + bu)u

′(WΘi
ID

)
]

= E
[
ϕ′(muΘi + bu)E[u′(WΘi

ID
)|Θi]

]
= E

[
ϕ′(muΘi + bu)(mu′Θi + bu′)

]
.

Combining the expressions for the numerators and the denominators, condition (16) is equiv-

alent to

E[ϕ′(muΘ1 + bu)(mDΘ1 + bD)]

E [ϕ′(muΘ1 + bu)(mu′Θ1 + bu′)]
≥ E[ϕ′(muΘ2 + bu)(mDΘ2 + bD)]

E [ϕ′(muΘ2 + bu)(mu′Θ2 + bu′)]
.

Denote g(x) = ϕ′(mux+bu)(mDx+bD) and h(x) = ϕ′(mux+bu)(mu′x+bu′). We can assume

without loss of generality that Θ1 and Θ2 are independent, in which case condition (16) is

further equivalent to

E[g(Θ1)h(Θ2)] ≤ E[g(Θ2)h(Θ1)].

Since Θ1 ≤RS Θ2, we can use the bivariate characterization of the convex order in Theorem

3.A.6 in Shaked and Shanthikumar (2007). A sufficient condition for the above inequality to

hold is that g(x)h(y)− g(y)h(x) is convex in x for all y. By direct computation, we obtain

g(x)h(y)− g(y)h(x) = (mDbu′ −mu′bD)ϕ
′(muy + bu)ϕ

′(mux+ bu)(x− y).

We complete the proof by showing that γ(x) = ϕ′(mux + bu)(x − y) is convex in x for all y

and that mDbu′ −mu′bD ≥ 0.

We obtain

γ′′(x) = m2
uϕ

′′′(mux+ bu)(x− y) + 2muϕ
′′′(mux+ bu)

= mu︸︷︷︸
≤0

ϕ′′(mux+ bu)︸ ︷︷ ︸
≤0

· [2− Pϕ(mux+ bu)]︸ ︷︷ ︸
≥0

− mu︸︷︷︸
≤0

(muy + bu)︸ ︷︷ ︸
≥0

ϕ′′′(mux+ bu)︸ ︷︷ ︸
≥0

.

By definition, muy+bu = E[u(WID(X))|Θ = y] ≥ 0 so that γ′′(x) ≥ 0 under our assumptions.

To show that mDbu′ − mu′bD ≥ 0, let X̃i follow a mixture distribution of X̂ and Xi with
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weights (1 − p) and p, that is, P(X̃i ≤ x) = (1 − p)P(X̂ ≤ x) + pP(Xi ≤ x) for i = 1, 2.

According to Theorem 1.B.8 in Shaked and Shanthikumar (2007), the hazard rate order is

preserved under mixture. Since X1 ≤hr X̂ ≤hr X2, we then have X̃1 ≤hr X̃2.

We express the coefficients mD, bu′ , mu′ , and bD in terms of X̃1 and X̃2 as follows:

mD = P(X̃2 > D)− P(X̃1 > D), bD = P(X̃1 > D),

mu′ = E[u′(WID(X̃2))]− E[u′(WID(X̃1))], bu′ = E[u′(WID(X̃1))].

The desired inequality mDbu′ −mu′bD ≥ 0 is then equivalent to

E[u′(WID(X̃1))] · P(X̃2 > D) ≥ E[u′(WID(X̃2))] · P(X̃1 > D). (17)

For i = 1, 2, we rewrite

E[u′(WID(X̃i))]) = E
[
u′(WID(X̃i)) · 1{X̃i≤D}

]
+ E

[
u′(WID(X̃i)) · 1{X̃i>D}

]
= E

[
u′(WID(X̃i)) · 1{X̃i≤D}

]
+ u′(WID(D))P(X̃i > D).

Letting X̃1 and X̃2 be independent, which we can assume without loss of generality, condi-

tion (17) is further equivalent to

E
[
u′(WID(X̃1)) · 1{X̃1≤D}

]
· P(X̃2 > D) ≥ E

[
u′(WID(X̃2)) · 1{X̃2≤D}

]
· P(X̃1 > D),

which is in turn equivalent to

E
[
u′(WID(X̃1)) · 1{X̃1≤D,X̃2>D}

]
≥ E

[
u′(WID(X̃2)) · 1{X̃2≤D,X̃1>D}

]
.

Recalling that X̃1 ≤hr X̃2, we can use the bivariate characterization of the hazard rate order

in Theorem 1.B.10 of Shaked and Shanthikumar (2007). The inequality above holds if

u′(WID(x)) · 1{x≤D,y>D} − u′(WID(y)) · 1{y≤D,x>D}

increases in y on {y ≥ x}. This is the case because 1{y≤D,x>D} = 0 when y ≥ x and

1{x≤D,y>D} increases in y.

Together with the convexity of γ(x), this proves that g(x)h(y) − g(y)h(x) is convex in x

for all y, which completes the proof.
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B Auxiliary results

B.1 Properties of function VID(x)

For I ∈ C, the function VI(x) is defined in Eq. (5). For D ≥ 0, indemnity schedule ID denotes

the straight deductible ID(x) = max(0, x − D), and function VID(x) is defined accordingly.

The following lemma summarizes useful properties of VID(x) that we use in various proofs.

Lemma 4. The function VID(x) has the following properties.

(i) VID(x) is right continuous in x with left limit for any fixed D.

(ii) VID(x) is continuous in D for any fixed x.

Furthermore, if VID(x) is increasing in x on [xτ ,M) for any D ≥ xτ , the following holds.

(iii) For x0 ∈ [xτ ,M), the double limits lim(D,x)→(x0,x0−) VID(x) and lim(D,x)→(x0,x0+) VID(x)

both exist.8

(iv) As a univariate function, VID(D) is right continuous in D ∈ [xτ ,M) with left limit.

Proof. Result (i) follows from the dominated convergence theorem because E
[
g(X)1{X>x}

]
is right continuous in x for any function g such that E [|g(X)|] < ∞. Therefore,

VID(x) =
E[ϕ′(E[u(WID)|Θ])u′(WID)|X > x]

E[ϕ′(E[u(WID)|Θ])u′(WID)]
=

E
[
ϕ′(E[u(WID)|Θ])u′(WID) · 1{X>x}

]
SX(x) · E[ϕ′(E[u(WID)|Θ])u′(WID)]

is right continuous in x. Left limits exist due to the monotone convergence theorem.

Result (ii) is also due to the dominated convergence theorem.

To show (iii), letD ≥ xτ and select a sequence {xn}∞n=1 ⊂ [xτ , x0) such that xn ↑ x0. Since

VID(x) is increasing in x, VID(xn) monotonically converges to VID(x0−). Both {VID(xn)}
∞
n=1

and VID(x0−) are continuous functions of D. According to Dini’s theorem, VID(xn) then

converges uniformly to VID(x0−) over D ∈ [xτ ,M). Therefore, for any ε > 0, there exists

N ≥ 1 such that

|VID(xn)− VID(x0−)| < ε for any n ≥ N and D ∈ [xτ ,M).

Then, for any x ∈ [xN , x0), it holds that

|VID(x)− VID(x0−)| ≤ |VID(xN )− VID(x0−)| < ε for any D ∈ [xτ ,M).

This implies the uniform convergence of VID(x) to VID(x0−) over D ∈ [xτ ,M) as x ap-

proaches x0 from the left. The double limit lim(D,x)→(x0,x0−) VID(x) then exists due to the

8 The notation (D,x) → (x0, x0−) (resp., (D,x) → (x0, x0+)) means that (D,x) approaches (x0, x0) with the
constraint x < x0 (resp., x > x0).
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Moore-Osgood theorem. A similar argument proves the existence of the other double limit

lim(D,x)→(x0,x0+) VID(x).

To show result (iv), note that the existence of lim(D,x)→(x0,x0+) VID(x) for any x0 ∈ [xτ ,M)

implies that VID(x) reaches the same limit as (D,x) approaches (x0, x0) from different direc-

tions in the half plane {(D,x) : x > x0}. Therefore,

lim
D↓x0

VID(D) = lim
(D,x)→(x0,x0)

VID(x) = lim
D↓x

lim
x↓x0

VID(x) = lim
D↓x0

VID(x0) = VIx0
(x0),

where the last two equalities are due to the right continuity of VID(x) in x and the continuity

of VID(x0) in D, respectively. This proves the right continuity of VID(D) in D. The left limit

of VID(D) in D exists due to

lim
D↑x0

VID(D) = lim
(D,x)→(x0,x0−)

VID(x) = lim
x↑x0

lim
D↑x0

VID(x) = lim
x↑x0

VIx0
(x).

The left limit of VIx0
(x) in x exists because of result (i).

B.2 Three useful properties of the hazard rate order

Property (i) is used in the proof of Proposition 3(iii) in Appendix A.3, properties (ii) and

(iii) are used in the proof of Proposition 9 in Appendix A.10.

Lemma 5. The hazard rate order possesses the following properties.

(i) If X ↑hr Θ, then [Θ|X > x] increases in x in the likelihood ratio order.

(ii) If X ≤hr Y , then g(X) ≤hr g(Y ) for any increasing function g.

(iii) If X ≤hr Y , then E[f(X)]
E[g(X)] ≤

E[f(Y )]
E[g(Y )] for any pair of functions f and g such that g(x) is

nonnegative and increasing, and f(x)
g(x) is increasing in x.

Proof. To show (i), assume for ease of exposition that Θ has a probability density function

π(θ). We denote the conditional density function of Θ given X > x by π(θ|X > x). We then

obtain P(X > x|Θ = θ) = π(θ|X > x)P(X > x)/π(θ) from Bayes’ theorem. Now X ↑hr Θ

implies that P(X > x|Θ = θ2)/P(X > x|Θ = θ1) increases in x for any θ1 ≤ θ2. Therefore,

for any x1 ≤ x2 and θ1 ≤ θ2 we obtain the following equivalences:

P(X > x2|Θ = θ2)

P(X > x2|Θ = θ1)
≥ P(X > x1|Θ = θ2)

P(X > x1|Θ = θ1)

⇐⇒ π(θ2|X > x2)P(X > x2)/π(θ2)

π(θ1|X > x2)P(X > x2)/π(θ1)
≥ π(θ2|X > x1)P(X > x1)/π(θ2)

π(θ1|X > x1)P(X > x1)/π(θ1)

⇐⇒ π(θ2|X > x2)

π(θ1|X > x2)
≥ π(θ2|X > x1)

π(θ1|X > x1)
⇐⇒ π(θ2|X > x2)

π(θ2|X > x1)
≥ π(θ1|X > x2)

π(θ1|X > x1)
.
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The last inequality states that π(θ|X > x2)/π(θ|X > x1) increases in θ for any x1 ≤ x2, that

is, that [Θ|X > x] increases in x in the sense of the likelihood ratio order.

Property (ii) is taken from Theorem 1.B.2 of Shaked and Shanthikumar (2007).

For (iii), let y2 ≥ y1 ≥ x so that

(f(y2)g(x)− f(x)g(y2))− (f(y1)g(x)− f(x)g(y1))

= g(x)g(y2)

(
f(y2)

g(y2)
− f(y1)

g(y1)

)
+ g(x)(g(y2)− g(y1))

(
f(y1)

g(y1)
− f(x)

g(x)

)
≥ 0.

Without loss of generality, let X and Y be independent and let (X⊥, Y ⊥) be an independent

copy of (X,Y ). According to Theorem 1.B.10 of Shaked and Shanthikumar (2007), we obtain

E[f(Y )]E[g(X)] = E[f(Y ⊥)g(X⊥)] ≥ E[f(X⊥)g(Y ⊥)] = E[g(Y )]E[f(X)],

which implies the desired inequality.

B.3 Two properties of the conditional expectation

The following two properties of the conditional expectation are used in the proof of Proposi-

tion 3(iii) in Appendix A.3.

Lemma 6. Let X and Y be two random variables.

(i) E[X|Y > y] increases in y if and only if E[X|Y > y] ≥ E[X|Y = y] for any y.

(ii) If [X|Y > y] increases in y in the FSD sense, then E[g(X)h(Y )|Y > y] is increasing in

y for any nonnegative and increasing functions g and h.

Proof. To show (i), we assume for simplicity that Y has a probability density function fY (y).

In this case,
d

dy
E[X|Y > y] =

fY (y)

P(Y > y)
· (E[X|Y > y]− E[X|Y = y]) ,

and the assertion follows immediately.

For (ii), if g is an increasing function and [X|Y > y] increases in y in the FSD sense, then

E[g(X)|Y > y] increases in y. According to result (i), this is equivalent to E[g(X)|Y ≥ y] ≥
E[g(X)|Y = y] for any y. We obtain

E[g(X)h(Y )|Y > y] ≥ E[g(X)h(y)|Y > y] ≥ E[g(X)h(y)|Y = y] = E[g(X)h(Y )|Y = y]

for any y. The first inequality holds because h is increasing and g is nonnegative, and the

second inequality holds because h is nonnegative. According to result (i), E[g(X)h(Y )|Y > y]

is then increasing in y as claimed.
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B.4 Symmetry of the likelihood ratio order

Corollary 2 follows easily from Proposition 3(iii) because X ↑lr Θ implies X ↑hr Θ, see

Shaked and Shanthikumar (2007). It also follows from Proposition 3(ii) because X ↑lr Θ

implies X ↑fsd Θ and because the likelihood ratio order is symmetric. To see the symmetry,

assume that (X,Θ) has a positive joint density function to simplify the exposition. The

general case can be shown in a similar way but is notationally more cumbersome. Denote by

π(θ) the probability density function (p.d.f.) of Θ, by f(x) the p.d.f. of X, and by f(x|θ)
the conditional p.d.f. of X given Θ = θ. Then, the joint p.d.f. is f(x, θ) = f(x|θ)π(θ), and
the conditional p.d.f. of Θ given X = x is π(θ|x) = f(x|θ)π(θ)/f(x) by Bayes’ theorem. Now

X ↑lr Θ implies that, for any θ2 ≥ θ1, the likelihood ratio f(x|θ2)/f(x|θ1) is increasing in x.

Then, for any x2 ≥ x1, we obtain the following chain of implications:

f(x2|θ2)
f(x2|θ1)

≥ f(x1|θ2)
f(x1|θ1)

=⇒ f(x2|θ2)
f(x1|θ2)

≥ f(x2|θ1)
f(x1|θ1)

=⇒ f(x2, θ2)/π(θ2)

f(x1, θ2)/π(θ2)
≥ f(x2, θ1)/π(θ1)

f(x1, θ1)/π(θ1)
=⇒ f(x2, θ2)/f(x2)

f(x1, θ2)/f(x1)
≥ f(x2, θ1)/f(x2)

f(x1, θ1)/f(x1)

=⇒ π(θ2|x2)
π(θ2|x1)

≥ π(θ1|x2)
π(θ1|x1)

.

Therefore, for any x2 ≥ x1, the likelihood ratio π(θ|x2)/π(θ|x1) is increasing in θ, which is

the definition of Θ ↑lr X. The fact that X ↓lr Θ implies Θ ↓lr X can be shown similarly.

C Improving a suboptimal indemnity schedule with Theorem 1

The approach for improving a suboptimal indemnity schedule is similar to the idea in Chi

and Wei (2020). Let I ∈ C be an indemnity schedule that does not solve Problem (1). Let

A = {x : I ′(x) > 0, VI(x) < 1 + τ} and B = {x : I ′(x) < 1, VI(x) > 1 + τ}

be the violation areas where I does not satisfy property (6). If I were optimal, both A and B
would be empty. Indemnity schedule I satisfies condition (6) on the complement of A∪B. To
improve indemnity schedule I for the policyholder, we can increase the marginal indemnity

at points in B and reduce the marginal indemnity at points in A. To accomplish this, we

introduce the following new indemnity schedule:

Îp(x) = I(x) + p

∫ x

0

{
(1− I ′(t))1B − I ′(t)1A

}
dt, for p ∈ [0, 1].

Clearly, Îp ∈ C for all p ∈ [0, 1], and Îp = I for p = 0. The policyholder can be made better

off by moving from indemnity schedule I into the direction of the new indemnity schedule.
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Proposition 11. There exists a p∗ ∈ (0, 1] such that E[ϕ(E[u(WI)|Θ])] < E[ϕ(E[u(WÎp∗
)|Θ])].

Proof. Consider the policyholder’s welfare under indemnity schedule Îp, that is, J(Îp) =

E[ϕ(E[u(WÎp
)|Θ])]. Take the derivative of J(Îp) with respect to p and evaluate it at p = 0:

∂

∂p
J(Îp)

∣∣∣∣
p=0

= E[ϕ(E[u(WI)|Θ])u′(WI)]

·
(∫

A
((1 + τ)− VI(x))I

′(x)SX(x) dx+

∫
B
(VI(x)− (1 + τ))(1− I ′(x))SX(x) dx

)
.

This is obtained along the lines of Appendix A.1. We then find that ∂
∂pJ(Îp)

∣∣∣
p=0

≥ 0 because

ϕ and u are strictly increasing and because the large round bracket is nonnegative. For x ∈ A
we have ((1+τ)−VI(x))I

′(x) > 0, and for x ∈ B we have (VI(x)−(1+τ))(1−I ′(x)) > 0 from

the definition of the sets A and B. Furthermore, ∂
∂pJ(Îp)

∣∣∣
p=0

= 0 if and only if the Lebesgue

measure of (A ∪ B) ∩ [0,M) is zero. If this were the case, I would already be an optimal

solution to Problem (1) because I satisfies property (6) in Theorem 1 on the complement of

A ∪ B. As we assumed I to be suboptimal, the Lebesgue measure of (A ∪ B) ∩ [0,M) must

be strictly positive so that ∂
∂pJ(Îp)

∣∣∣
p=0

> 0. In this case, a marginal increase of p above zero

raises the policyholder’s welfare and we can find a p∗ ∈ (0, 1] such that J(WÎp∗
) > J(WI).

It follows from the concavity of u and ϕ that the policyholder’s welfare with indemnity

schedule Îp is a concave function in p. In principal, it is thus possible to find the maximizer

p∗ = argmaxp∈[0,1] J(Îp), which yields the best improvement of I under the scheme above. Of

course, Îp∗ may not necessarily be the optimal indemnity schedule.
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