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Abstract

We analyze parametric insurance in an asymmetric information setting. The

insurance payout is a function of a publicly observable parameter vector, while

the actual loss is private information of the policyholder. The parameter vector

yields a loss index, which is the best estimate of the loss, the basis risk being

the random difference between the actual loss and the loss index. We show that

the design of optimal parametric insurance depends on whether the loss index

and the basis risk are independently distributed or not, and we analyze how

insurance demand is affected by the size of the basis risk and by the attitude

toward risk of the policyholder.

∗CREST-Ecole Polytechnique.
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1 Introduction

Parametric insurance consists in conditioning the indemnity paid to the policyholder

not on the financial value of the losses incurred, but on publicly observable information

correlated with these losses. This information may be parametric stricto sensu, as for

instance in crop insurance when the payment to the farmer depends on average rainfall

in a specific area during a given period. It may also take the form of a modeled-loss

index reflecting the specific exposure of the policyholder. This is the case in property

insurance when the payout depends on an index corresponding to the potential dam-

ages of the policyholder, such as the expected loss calculated on the basis of the wind

speed of a hurricane measured at various points along its path, or according to the

magnitude and epicenter of an earthquake.

The main advantage of parametric insurance is to eliminate the moral hazard issue

and to avoid the claim-handling costs associated with the assessment of policyholders’

actual losses. The primary concern is the basis risk retained by the policyholder,

i.e. the fact that the parametric insurance trigger does not exactly match his actual

losses. Parametric insurance covers are offered by direct insurers and they are also

widely used as triggers in alternative risk transfer mechanisms, particularly catbonds.

They now play an important role in the coverage of agriculture climate-related risks

(particularly in developing countries) and of property catastrophic risks, and they now

tend to spread over a larger range of risk lines.1

It is in the area of agriculture risk management that parametric insurance has been

most widely studied. Without being exhaustive, this includes the analysis of area-yield

crop insurance by Miranda (1991) and Barnett and al. (2005), the interaction with

1For illustrative purposes, Power Protective Re Ltd, a parametric catbond sponsored by the Los

Angeles Department of Water and Power and launched in 2020, highlights this spreading of parametric

insurance to new areas, by being the first wildfire catastrophe bond issuance to benefit a municipal

utility. In a different area, the coverage of offshore wind farms in Taiwan (see Liao et al., 2021) also

illustrates the usefulness of parametric insurance for climate-related risks.
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the poverty issue in lower-income countries by Barnett and Mahul (2007), Chantarat

et al. (2007), Chantarat et al. (2013) and Skees (2008), the effect of insurance on

the adoption of new technologies by Mobarak and Rosenzweig (2013), Carter et al.

(2016), Biffi s and Chavez (2017) and Biffi s et al. (2022), and the statistical analysis

of the basis risk by Carter et al. (2017) and Kusuma et al. (2018). The design of

optimal parametric insurance in a microeconomic setting hitherto has received much

less attention. As we will see below, there is a logical link between this issue and the

insurance demand problem with background risk, as studied by Gollier (1996). Clarke

(2016) analyses parametric insurance in an expected utility setting, with the main

conclusion that the basis risk may make it unattractive for strongly risk-averse poli-

cyholders. Bryan (2019) considers the case where the policyholder may be ambiguity

averse. Using data from two RCTs conducted in Malawi and Kenya, he shows that the

income loss from ambiguity aversion may be substantial. Teh and Woolnough (2019)

analyze how parametric triggers can be compared, and they determine a partial order

ranking for any risk averse individual.

Our objective in what follows is to analyze parametric insurance by formulating it

as the optimal solution to a risk-sharing problem under asymmetric information: the

policyholder has private information on the loss incurred, while the insurance payout

depends on a publicly observable information that imperfectly reflects the actual loss.

This public information takes the form of a multi-dimensional parameter vector, and

the issue then is how it should be used to define the indemnity paid to the policyholder.

The basis risk is the difference between the loss incurred and the conditional expected

loss based on this public information, and it affects the quality of the parametric

insurance cover. While the context of imperfect information is often implicit in the

approach to parametric insurance, several important issues emerge when the problem is

stated in that way. Firstly, should the insurance payout be a function of the conditional

expected loss (i.e., the best estimate of the loss based on the parameter vector), or is it

optimal to condition this payout on the parameter vector itself. Secondly, how can we
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characterize the optimal parametric indemnity schedule? In particular, does it look like

commonly observed policies, such as index-based deductible contracts, or is it different?

Thirdly, under which conditions does a change in public information, inducing a change

in the basis risk, improve the effi ciency of the risk-sharing mechanism? Fourthly, does

the usual relationship between insurance demand and risk aversion extend to the case

of parametric insurance? As we will see, the answers to these questions depend heavily

on whether the parameter vector and the basis risk are independently distributed or

not, which in turn depends on the stochastic relationship between public and private

information.

The rest of the paper explores these issues and it is organized as follows. Section

2 presents our general setting, with private and public information, the latter taking

the form of a parameter vector that defines the set of feasible parametric insurance

contracts. We highlight the specificity of index-based insurance, i.e., the case where the

parametric cover depends on the best estimate of the loss (called the loss index), and

we define the basis risk. Section 3 focuses attention on the information structure based

on the parameter vector. We show that a finer (i.e. more precise) information structure

improves the quality of the parametric cover and also that it induces a lower basis risk

in the sense of Rothschild and Stiglitz (1970). Section 4 characterizes the optimal

parametric insurance, depending on whether the basis risk and the parameter vector

are independent or not, respectively, and we show that conclusions strongly differ in

both cases. We particularly focus attention on the shape of the indemnity schedule,

and on how it is affected by the policyholder’s attitude toward risk, characterized by

risk aversion and prudence. Section 5 concludes, and Section 6 includes the proofs.
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2 Setting

2.1 Model

Let (Ω,F ,P) be a probability space, with states of the world ω ∈ Ω. We consider a

risk-averse individual who incurs a state-contingent loss : his risk exposure is defined

by random variable X(.) : Ω → R+, with loss X(ω) in state ω. The state of the

world - and thus the loss X(ω) - is privately observed by the individual. However, in

each state ω, a signal Y (ω) ∈ S is publicly observed, where S ⊂ Rn is a measurable

space. The random variable Y (.) : Ω→ S defines a multi-dimensional state-dependent

public information Y (ω), that will be called the parameter vector in what follows.

Parametric insurance consists in conditioning the insurance payout on the parameter

vector Y (ω) ∈ S ⊂ Rn rather than on the loss X(ω). We note that {S, Y } defines

an information structure because observing signal y ∈ S implies ω ∈ O(y), with

O(y) = Y −1(y), and P ={O(y), y ∈ S} is a partition of Ω.

A parametric insurance contract is defined by an indemnity function I(.) : S → R+
that specifies the insurance payout I(y) as a function of parameter vector y ∈ S. When

the individual purchases such a parametric cover at price P (the insurance premium),

his random final wealth is

Wf = w0 −X + I(Y )− P,

where w0 is his initial wealth. The individual’s attitude toward risk is characterized

by a twice-differentiable von Neumann-Morgenstern utility function u(.), such that

u′ > 0, u′′ < 0, and his expected utility is written as

Eu(Wf ) = Eu(w0 −X + I(Y )− P ). (1)

The insurance premium is given by

P = (1 + σ)EI(Y ) (2)
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where σ is the loading factor, with σ ≥ 0. An optimal parametric insurance contract

maximizes Eu(Wf ) with respect to P and I(.) : S → R+ subject to the pricing rule

(2).

Let Y (Ω) ⊂ S be the set of possible parameter vectors. Let us define Z(.) : Y (Ω)→

R+ by

Z(y) = E[X(ω) | Y (ω) = y] for all y ∈ Y (Ω), (3)

In what follows, Z(y) is called the loss index associated with parameter vector y ∈

S. In words, the loss index Z(y) is the conditional expected value of the loss when

parameter vector y is observed, with E[X | Z = z] = z for all z ∈ R+.

We also define ε̃(.) : Ω→ R by

ε̃(ω) = X(ω)− Z(Y (ω)) for all ω ∈ Ω, (4)

with

E[̃ε(ω) | Y (ω) = y] = 0 for all y ∈ Y (Ω).

Thus, ε̃(ω) is the difference between the true loss X(ω) and the loss index Z(Y (ω))

in state ω, and it is called the basis risk. In words, the basis risk ε̃ is a zero-mean

random variable corresponding to the difference between the loss X and its conditional

expected value Z(Y ).

Frequently, under parametric insurance, the indemnity paid to the policyholder is a

function of the loss index Z(y) induced by parameter vector y ∈ S, and not a function

of the parameter vector y itself. This is at least to make interpretation easier, because

in that case the insurance payout is a function of what the policyholder is expected to

have lost, given the available information included in the parameter vector. We will

refer to such a case as index-based insurance. Hence, a parametric insurance contract

defined by P, I(.),S is index-based when there exists J(.) : R+ → R+, such that I(y) =

J(Z(y)) for all y ∈ S.

We have X ≡ Z + ε̃ (where, here and in what follows, "≡" means "equal in
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distribution"), which shows that an optimal index-based insurance contract maximizes

Eu(Wf ) = Eu(w0 − Z − ε̃+ J(Z)− P ), (5)

with respect to P and J(.) : R+ → R+, subject to

P = (1 + σ)EJ(Z). (6)

Interestingly, this is formally equivalent to searching for the optimal cover of an indi-

vidual with insurable risk exposure Z and non-insurable background risk ε̃ as studied

by Gollier (1996).

2.2 Independence between loss index and basis risk

As will be set out in detail below, the characterization of an optimal parametric insur-

ance contract strongly depends on whether or not the loss index Z and the basis risk

ε̃ are stochastically independent. The assumptions underlying these two cases become

particularly clear when the parameter vector Y (ω) observed in state ω is a publicly ob-

servable subvector of ω. Assume that Ω = Ω1×Ω2, with ω = (ω1, ω2), ω1 ∈ Ω1, ω2 ∈ Ω

and let (Ω1,F1,P1) and (Ω2,F2,P2) two probability spaces, with F = F1⊗F2. Assume

further that S = Ω1 and Y (ω) = ω1, meaning that the parameter vector coincides with

component ω1 of state vector ω.

When X(ω) depends additively on ω1 and ω2, i.e., X(ω) = X1(ω1) + X2(ω2), and

P = P1 × P2, i.e., (Ω,F ,P) is a product probability space combining (Ω1,F1,P1) and

(Ω2,F2,P2), we have

Z = X1 + EX2,

and

ε̃ = X − Z = X2 − EX2,

which does not depend on the observable parameter vector Y that only reveals ω1.

In that case, the loss index Z and the basis risk ε̃ are independently distributed.
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Conversely, if the observable and non-observable components of the state vector ω =

(ω1, ω2) affect the loss X(ω) either non-additively or in a non-independent way, then

generically Z and ε̃ are not independent.

2.3 Illustrative examples

We may illustrate the above through the cases of crop insurance and hurricane insur-

ance. In each case, we assume Ω = Ω1×Ω2, with ω = (ω1, ω2), ω1 ∈ Ω1, ω2 ∈ Ω2, with

S = Ω1 and Y (ω1) = ω1.

2.3.1 Crop insurance

Consider the case of a farmer facing uncertain meteorological circumstances and other

hazards affecting his crop. Here, w0 is the harvested crop value under optimal condi-

tions, and loss X is the decrease in this value due to adverse events. The parameter

vector corresponds to the intensity of daily precipitations from planting to harvesting,

publicly observed through satellite data. Hence, ω1 and ω2 correspond to information

about raining and to other farm-specific random events (e.g., pest attack, local flood or

hail storm), respectively. Assuming that there are 180 days from plantation to harvest

gives Ω1 = R180+ , and ω1 = (ω11, ..., ω
180
1 ) where ωi1 is the precipitation intensity on day

i = 1, ..., 180 with S = R180+ .

Crop growth simulation models show that effective rainfall (i.e., the difference

between rain water and evapotranspiration) is the primary source of soil moisture

under rainfed agriculture. Shortage of soil moisture creates crop water stress and

reduces growth, with heterogenous effects according to the crop type and to rainfall

characteristics, with non-linear effects of rainfall on crop growth. Hence, crop yield

depends on raining, but other hazards may also affect crop growth. In this example,

Z(y) is the expected decrease in crop yield beyond w0 when the raining trajectory

y = (y1, ..., y180) has been observed. An index-based crop insurance contract would
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specify the indemnity paid to the farmer, as a function of this expected decrease in

crop yield.2 In this example, Z and ε̃ are independent random variables if the rainfall

trajectory and other hazards affect the crop yield independently and additively.

2.3.2 Hurricane insurance

Consider an individual located in an area subject to hurricanes, with property at risk

w0. The track of a hurricane is characterized by the longitude and latitude coordinates

of its center, and by the speed and direction of wind. Assume that satellite imagery

provides this four-dimension information m times along the path of the hurricane.

We have ω1 = (ω11, ..., ω
m
1 ) ∈ Ω1 = R4m+ where ωi1 ∈ R4+ is the information provided

by satellite data, with i = 1, ...,m, and S = R4m. Furthermore, ω2 corresponds

to other factors that may affect damages from a hurricane, e.g., seasonal tidal range

favoring storm surge or torrential rains causing flooding and triggering landslides, when

a weakening hurricane interacts with inland weather features. A vulnerability model

then relates the data on the hurricane track (i.e., ω1) and the potential damages incured

in a given territory, thereby leading to the loss index Z(y).3 Here, if the hurricane track

and seasonal or local factors affect damages to property independently and additively,

then Z and ε̃ are independently distributed, and this is not the case otherwise.

2As a practical illustration of the construction of a yield index using rainfall data, see for instance

Omondi et al. (2021): they analyze how expected crop growth in Kenya depends on satellite weather

data, including onset days, rainfall depths, dry spells, and rainfall occurrence for four crop growth

stages.
3Typically, a hurricane model yields an equivalent local wind speed (i.e., wind speed over the

territory with property at risk) for each measurement point of the hurricane track. A usual assumption

consists in postulating that total damages due to wind depend on the maximum equivalent local wind

along the hurricane track. The modelling of damages associated with hurricanes shows that wind

produces damages when their speed exceeds a threshold that depends on the property at risk, and

over this threshold property damages may increase rapidly with wind speed. See Katz (2002), Pielke

(2007), Nordhaus (2010) and Emanuel (2011).
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3 Comparing information structures

As defined above, basis risk ε̃ = X −Z is the random difference between the true loss

incurred by the policyholder and the loss index, i.e., the parameter-based best estimate

of this loss. It is thus intuitive that a larger basis risk corresponds to a less effi cient

parametric insurance coverage. This section relates this intuition with the information

structure defined by the parameter vector. To do so, let us consider two information

structures (S1, Y1) and (S2, Y2) - i.e., two definitions of the parameter vector - with

Pi = {Oi(yi), yi ∈ Si} the partition of Ω generated by (Si, Yi), where Oi(yi) = Y −1i (yi)

for yi ∈ Si and i = 1, 2. The corresponding loss index and basis risk are denoted Zi

and ε̃i for i = 1, 2, respectively, with Eε̃i = 0, and

Z1 + ε̃1 ≡ Z2 + ε̃2 ≡ X. (7)

In what follows, we say that information structure (S1, Y1) weakly dominates informa-

tion structure (S2, Y2) if the optimal parametric-insurance contract based on (S1, Y1)

is weakly prefered to the optimal contract based based on (S2, Y2), for any increasing

concave utility function, and dominance is strong if, in addition, optimal expected

utility is stricly larger for at least one utility function. According to Definition 1,

information structure (S1, Y1) is finer than information structure (S2, Y2) if, whatever

the state of nature ω, observing parameter vector y1 = Y1(ω) ∈ S1 provides a more

precise information on ω than observing y2 = Y2(ω) ∈ S2, an equivalent characteriza-

tion being provided by Lemma 1. Proposition 1 states that, in such a case, (S1, Y1)

weakly dominates (S2, Y2), the dominance being strong when using (S1, Y1) allows

to increase (respect. decrease) the insurance payout in states where the loss is larger

(respect. lower), such a discrimination between states being impossible under informa-

tion structure (S2, Y2). Proposition 2 then shows that information structure dominance

takes the form of a lower basis risk with more risky loss index, risk comparison being
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in the sense of Rothschild-Stiglitz (1970).4

Definition 1 Information structure 1 is finer than information structure 2, when, for

all y2 ∈ S2, there exists a set K(y2) ⊂ S1 such that

O2(y2) = ∪y1∈K(y2)O1(y1),

with {K(y2), y2 ∈ S2} a partition of S1.

Hence, when signal y2 is perceived under information structure (S2, Y2), then a

signal y1 is perceived in K(y2) ⊂ S1 under information structure (S1, Y1). Signal y2
provides information that ω ∈ O2(y2) and signal y1 ∈ K(y2) provides information that

ω ∈ O1(y1) with O1(y1) ⊂ O2(y2), hence a better information provided by (S1, Y1)

than by (S2, Y2). We may then express y2 as a function of y1 through a function

y2 = Φ(y1) such that K(y2) = Φ−1(y2). Lemma 1 shows that the existence of such a

function Φ(.) : S1 → S2 is equivalent to the fact that (S1, Y1) is finer than (S2, Y2).

Lemma 1 Information structure (S1, Y1) is finer than information structure (S2, Y2)

if and only if there exists a function Φ(.) : S1 → S2, such that

Y2(ω) = Φ(Y1(ω)) for all ω ∈ Ω.

As an illustration of Lemma 1, consider the case where Ω = {ω1, ω2, ω3},S1 =

{y11, y21, y31} and S2 = {y122 , y32}. Assume Y1(ωi) = yi1 for i ∈ {1, 2, 3} and Y2(ω1) =

Y2(ω
2) = y122 and Y2(ω3} = y32. Hence, signal Y1 perfectly reveals the state of nature

ω, while Y2 only reveals either ω ∈ {ω1, ω2} or ω = ω3. Hence (S1, Y1) is finer

than (S2, Y2), and parameter vector Y2 can be expressed as a function of Y1 through

function Φ(.) : S1 → S2 defined by Φ(y11) = Φ(y21) = y122 and Φ(y31) = y32. Equivalently,

K(.) = Φ−1(.), with K(y122 ) = {y11, y21} and K(y32) = {y31}. In words, knowing Y1 allows

us to know Y2, but it does not work the other way.

4In what follows, when lotteries are compared, the increasing-risk criterion is always in the sense

of Rothschild and Stiglitz (1970).
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Proposition 1 Assume that (S1, Y1) is finer than (S2, Y2). In that case, (S1, Y1)

weakly dominates (S2, Y2). Furthermore, assume that there exist positive-probability

sets A2 ⊂ S2, A11(y2),A21(y2) ⊂ K(y2) ⊂ S1 with A11(y2) ∩ A21(y2) = φ for all y2 ∈ A2,

such that (i): X(ω1) > X(ω2) if Y 1(ω1) ∈ A11(y2) and Y 1(ω2) ∈ A21(y2) for y2 ∈ A2,

and (ii): For some concave utility function u(.), we have I∗2 (y2) > 0 when y2 ∈ A2,

where I∗2 (.) : S2 → R+ is the optimal indemnity schedule under information structure

(S2, Y2).Then (S1, Y1) strongly dominates (S2, Y2).

Proposition 1 is cumbersome, but its intuition is simple. Obviously, when (S1, Y1) is

finer than (S2, Y2), then any indemnity schedule I2(Y2) based (S2, Y2) can be replicated

by another indemnity schedule I1(Y1) = I2(Φ(Y1)) based on (S1, Y1), hence the weak

dominance property. More specifically, in its second part, Proposition 1 postulates that

there exists a positive-probability set A2 ⊂ S2 such that any parameter vector y2 ∈ A2
is the image of subsets A11(y2) and A21(y2) ⊂ S1 by function Φ(.). Hence, information

structure (S1, Y1) separates the states ω leading toA11(y2) from those leading toA21(y2),

which cannot be done through (S2, Y2). Assume that the policyholder’s loss is larger in

the first case than in the second one, and start from the optimal parametric insurance

contract based on Y2. Increasing the insurance payout when y1 ∈ A11(y2) and decreasing

it when y1 ∈ A21(y2), while keeping the expected payment unchanged, increases the

risk-averse policyholder’s expected utility for an unchanged insurance premium. This

is possible when the utility function is such that the optimal parametric insurance

contract based on (S2, Y2) provides positive coverage when y2 ∈ A2.

Proposition 2 If (S1, Y1) is a finer information structure than (S2, Y2), then ε̃2 is

more risky than ε̃1, and Z1 is more risky than Z2.

Proposition 2 shows that finer information takes the form of smaller basis risk and

more risky loss index, the increasing-risk criterion being in the sense of Rothschild-

Stiglitz (1970), in both cases. A completely uniformative parameter vector would lead

to a constant loss index Z = EX equal to the unconditionnal expected loss, while the
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variations of an informative loss index reproduce the change in incurred losses more or

less precisely. When the information structure is finer, the parameter vector provides

a more precise information on the state, and the index reproduces more closely the

changes in the loss, with less residual uncertainty, hence a more variable (more risky)

loss index and a lower basis risk.

In Propositions 1 and 2, we have taken as our starting point the informational

background of the parametric insurance problem, i.e., a probability space with a loss

level in each state combined with an information structure, and we have analyzed the

consequences of a finer information structure. Such an improvement in the publicly-

available information allows the policyholder to reach a higher expected utility, the

parameter vector providing a more precise information on losses, with a smaller basis

risk. Since having access to a finer information may be costly, the design of an optimal

parametric-insurance cover may then be analyzed as the outcome of a cost-benefit

analysis, in which the expected-utility gain attributable to a finer information structure

with a lower basis risk has to be balanced against the corresponding cost. In other

words, the information structure itself may be a matter of choice.

One is also tempted to look at the reverse question: when we compare randomly-

distributed parameter vectors with associated loss indices, do a smaller basis risk and

a more risky loss index guarantee a higher optimal expected utility? Proposition 3

says that this is true, but only under very restrictive conditions.

Proposition 3 Consider loss index Zi and basis risk ε̃i induced by information

structures (S1, Y1) and (S2, Y2), respectively. Assume that Zi and ε̃i are independently

distributed for i = 1 and 2. Assume also that ε̃2 ≡ ε̃1 + η̃ with Eη̃ = 0 and Z2, η̃, ε̃1

pairwise independent. Then (S1, Y1) dominates (S2, Y2).

Proposition 3 considers the case of two information structures i = 1 and 2, each of

them inducing independently distributed loss index Zi and basis risk ε̃i. It is assumed

that ε̃2 is distributed as the sum of ε̃1 and of a zero-mean additive noise η̃ with
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Z2, η̃, ε̃1 pairwise independent. The fact that η̃ and ε̃1 are independent implies that ε̃2

is more risky than ε̃1. Using (7) gives Z1 − Z2 ≡ η̃, and the fact that η̃ and Z2 are

independent implies that Z1 is more risky than Z2. Finally, the independence of Z2

and ε̃1 conveys the assumption that the less precise loss index Z2 is not informative

about the residual risk associated with the more precise loss index Z1, with precision

in the sense of lower basis risk. In other words, there is no cross-effect through which

the less precise loss index would provide information on the basis risk of the more

precise loss index. Proposition 3 establishes that, under these assumptions, any risk-

averse policyholder will reach a higher expected utility when parametric insurance is

based on the information structure that sustains Z1 than on the one that leads to Z2.

Needless to say, these are strong assumptions. As will be illustrated below through

examples, under less restrictive assumptions, a larger basis risk is not synonymous of

a less effi cient parametric insurance coverage.

4 Comparative statics

4.1 Case where the parameter vector and the basis risk are

independently distributed

Let us define indirect utility v(w) by

v(w) ≡ Eε̃[u(w − ε̃)],

with v′ > 0, v′′ < 0. When parameter vector Y and basis risk ε̃ are independent

random variables, we may write

Eu(Wf ) = EY [Eε̃u(w0 − Z(Y ) + I(Y )− P − ε̃)]

= EY [v(w0 − Z(Y ) + I(Y )− P )],
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This is analogous to the standard approach to risk analysis under independent back-

ground risk: when facing a zero-mean independent background risk ε̃, the individual’s

attitude toward the risk affecting his insurable wealth is the same as if there were no

background risk and his utility function were v(.) instead of u(.). In other words, in that

case, the optimal parametric insurance contract maximises EY [v(w0−Z(Y )+I(Y )−P )]

with respect to I(.) : Y → R+ and P , subject to (2). This is very similar to a standard

optimal insurance problem, with random loss Z(Y ) and utility function v(w), the only

difference being that the insurance payout depends on the determinants of the loss

Y ∈ S rather than on the loss itself Z(Y ) ∈ R+. It is very intuitive and confirmed

by the proof of the following proposition that two parameter vectors y1, y2 ∈ Y such

that Z(y1) = Z(y2) should lead to the same indemnity. Thus the optimal contract is

index-based and it maximizes

Eu(Wf ) = Ev(w0 − Z + J(Z)− P ),

with respect to P and J(.) : R+ → R+, subject to (3). We know that the optimal

solution to such a problem is a straight deductible contract, unless there is no loading,

in which case full insurance would be optimal,5 and thus we have the following.

Proposition 4 If Y and ε̃ are independently distributed, then the optimal paramet-

ric insurance contract is index-based. The insurance payout J(Z) is equal to the

conditional expected loss Z if σ = 0, and it z0 > 0 if σ > 0. In other words

J(Z) = max{Z − z0, 0}, with z0 = 0 if σ = 0 and z0 > 0 if σ > 0.

The analogy with the optimal insurance problem under an independent background

risk allows us to answer the simple but controversial following question: considering two

individuals with the same risk exposureX and the same publicly observable parameter

vector Y , does the more risk averse one purchase more parametric insurance? Put

differently, does the standard result according to which more risk aversion means more

insurance demand, also applies in the case of parametric insurance?
5See Gollier (1996).
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To answer this question, consider two individuals indexed by h = 1, 2, with utility

functions u1(w) and u2(w), indirect utility functions v1(w) and v2(w), and optimal

deductibles z01 and z02, respectively. According to standard results in the theory of

insurance demand, the larger the index of absolute risk aversion, the larger the demand

for insurance, and thus, under constant loading, the lower the deductible. Let us denote

Au(w) = −u′′(w)/u′(w) and Av(w) = −v′′(w)/v′(w) the Arrow-Pratt index of absolute

risk aversion, for direct and indirect utility function u(.) and v(.), respectively. The

question we are asking is whether Au2(w) > Au1(w) for all w implies z02 < z01. Since

the optimal deductible maximizes the policyholder’s expected indirect utility, we know

that z02 < z01 if Av2(w) > Av1(w) for all w. Consequently, the larger the degree of

risk aversion (for utility function u), the larger the demand for parametric insurance

if Au2(w) > Au1(w) implies Av2(w) > Av1(w).

When this last property holds, we say that the background risk preserves compar-

ative risk aversion in the sense of Arrow-Pratt. It has been shown in the literature on

background risks that additional assumptions are required for this to be true. This

is the case, in particular, when h = 1 and/or h = 2 displays decreasing risk aver-

sion. This is also true if one reinforces the comparison of risk aversion by following

the approach of Ross (1981).6 Hence, either by postulating decreasing absolute risk

aversion, or by comparing risk aversion in the manner of Ross, we may conclude that

the existence of an independent background risk preserves comparative risk aversion.

When at least one of these two assumptions hold, we say that risk aversion is strongly

comparable. The following Proposition states that, in such a setting, the more risk

6h = 2 is said to be more risk averse than h = 1 in the sense of Ross (1981), if there exists a

positive scalar λ and a decreasing and concave function g such that u2(w) = λu1(w)+ g(w) for all w.

It can be shown that comparative risk aversion in the sense of Ross (1981) implies comparative risk

aversion in the sense of Arrow-Pratt, i.e., Au2(w) > Au1(w), but the reverse is not true. When h = 2

is more risk averse than than h = 1 in the sense of Ross, then Av2(w) > Av1(w). See Propositions 24

and 25 in Gollier (2004).
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averse the individual, the larger his demand for parametric (index-based) insurance.7

Proposition 5 When risk aversion is strongly comparable, the optimal index-based

insurance coverage J(Z) = max{Z − z0, 0} is increasing in risk aversion (i.e., the

larger the risk aversion, the lower the deductible z0) if σ > 0, and it is equal to the

conditional expected loss J(Z) = Z independently from risk aversion when σ = 0.

4.2 Case where the parameter vector and the basis risk are

not independently distributed

4.2.1 Optimal indemnity schedule

When Y and ε̃ are not independent, the optimal parametric insurance contract maxi-

mizes

Eu = EY {Eε̃[u(w0 − Z(y)− ε̃+ I(y)− P ) | Y = y},

with respect to I(.) : S → R+ and P , subject to (2). Proposition 5 characterizes the

optimal solution to this problem when u′′′ > 0, i.e., when the individual is downside

risk averse (or prudent).

Proposition 6 When u′′′ > 0, the optimal parametric-insurance indemnity schedule

is written as I(Y ) = max{0, Ẑ(Y ) − ẑ0}, where the trigger is the adjusted risk Ẑ(Y )

such that Ẑ(Y ) > Z(Y ) and the deductible ẑ0 is such that ẑ0 = 0 if σ = 0 and ẑ0 > 0

if σ > 0. For any y1, y2 ∈ S such that I(y1), I(y2) > 0, if the conditional probability

distribution of ε̃ corresponds to a larger risk when Y = y2 than when Y = y1, then

Ẑ(y2)− Z(y2) > Ẑ(y1)− Z(y1).

7Proposition 4 seems to contradict the results of Clarke (2016) about the non-monotonicity of

parametric insurance demand as a function of risk aversion. However, Clarke (2016) restricts attention

to a single-value loss, with a two-value random parameter Y , a case contemplated below, in which Y

and ε̃ are not independently distributed.
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Corollary 1 Assume that the conditional distribution of ε̃ given Y = y only depends

on Z(y). Then, when u′′′ > 0 the optimal parametric insurance is index-based and it

is written as I(Y ) = max{ξ(Z(Y ))− ẑ0, 0}, with ξ′ > 1 (respect. ξ′ > 1) if an increase

in Z(Y ) makes the conditional distribution of ε̃ more risky (respect. less risky).

The first part of Proposition 6 states that the optimal parametric cover of the

prudent policyholder is written as a straight deductible contract, in which the trigger

is an adjusted random loss Ẑ(Y ) larger than the expected loss Z(Y ). The proof of the

proposition shows that the parametric indemnity I(Y ) = max{0, Ẑ(Y )− ẑ0} coincides

with the coverage that would be optimal if the true loss exposure were Ẑ(Y ) without

basis risk ε̃, with unchanged utility function u(.).In other words, taking into account the

basis risk ε̃ = X − Z(Y ) is equivalent to considering a traditional insurance problem

without residual component ε̃, where the policyholder would face an insurable loss

exposure Ẑ(Y ) larger than the conditional expected loss Z(Y ). Further characterizing

the indemnity schedule I(Y ) thus requires to be more specific about the relationship

between the loss adjustment Ẑ(Y ) − Z(Y ) and the parameter vector Y . The second

part of the proposition shows that Ẑ(Y )− Z(Y ) is related to the relation between Y

and the size of the basis risk. Considering two parameter vectors y1 and y2 in S, if the

conditional distribution of the basis risk is more risky when Y = y2 than when Y = y1,

then the loss adjustment is larger in the first case than in the second. In that sense,

and perhaps paradoxically, the existence of the basis risk stimulates the demand for

parametric insurance.8 Corollary 1 states a direct consequence of this second part of

Proposition 6. If the conditional distribution of the basis risk is more risky when the

expected loss is larger, then the increase in the insurance payout is larger than the
8Note however that we cannot conclude that for all Y the optimal parametric insurance contract

provides a larger indemnity than what would be optimal under risk exposure Z(Y ) without basis

risk, because the increase of risk exposure from Z(Y ) to Ẑ(Y ) simultaneously affects the optimal

deductible. See Eeckhoudt et al. (1991) on the effect of an increase in risk on optimal insurance with

deductible.
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increase in expected loss, which corresponds to a vanishing deductible, as established

by Gollier (1996) in his study of optimal indemnity insurance with basis risk. In the

opposite case, the indemnity schedule entails an increasing deductible.9

Assuming that the basis risk only depends on expected loss is very restrictive and,

in general, the optimal parametric indemnity schedule I(Y ) cannot be written as a

function of Z(Y ). In other words, in general the optimal parametric insurance contract

is not index-based and, in that case, characterizing this indemnity schedule requires

additional assumptions about the informational content of the parameter vector. To do

so, we may consider the case where parameter vector Y is splitted in two components,

one affecting the expected loss and the other being related with the basis risk. Let

us write Y = (Ya, Yb), with Ya ∈ Sa ⊂ Rna , Yb ∈ Sb ⊂ Rnb , na + nb = n and S =

Sa × Sb. We assume that component Ya is a suffi cient statistic for the expected loss

Z(Y ), while only component Yb may be correlated with the basis risk ε̃. Proposition 7

considers this case and shows how the two components of the parameter vector should

be combined in order to provide the optimal coverage.

Proposition 7 If Z(ya) = E[X | Y = (ya, yb)] for all ya ∈ Sa, yb ∈ Sb and Ya

and ε̃ are independently distributed, then the optimal parametric insurance is written

as I(Y ) = max{0, Z(Ya) − z0(Yb)}, where payout I(Y ) is equal to the excess of the

expected loss Z(Ya) above a deductible z0(Yb) that depends on component Yb of the

parameter vector. Furthermore, when u′′′ > 0, if ε̃1 and ε̃2 are random variables

distributed as ε̃ given ỹb = yb1 and yb2, respectively, and if ε̃2 is more risky than ε̃1,

then z0(yb2) < z0(yb1).

Proposition 6 provides conditions under which the optimal parametric insurance

contract takes the form of a conditional deductible. There is full coverage of condi-

tional expected losses above a deductible that depends on the basis risk, and the larger
9When the basis risk and the parameter vector are independently distributed, we are at the

frontier between these two cases, with full coverage of expected loss above a deductible, as shown in

Proposition 3.
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the basis risk, the lower the deductible. The intuition of this result is clear if one keeps

in mind the fact that the policyholder’s risk exposure X is made up of two additive

components: the expected loss Z(Y ) and the basis risk ε̃. Under the assumptions of

Proposition 6, these components can be expressed as functions of subvectors Ya and Yb

extracted from Y : the conditional expected loss depends on Z(Ya), while only Yb affects

the conditional probability distribution of ε̃. In that case, conditionally on Yb = yb, the

basis risk ε̃ and the expected loss Z(Ya) are independently distributed and, as in Propo-

sition 3, the optimal cover entails full coverage of the expected loss above a deductible.

This deductible depends on Yb and is written as z0(Yb). Under downside risk aversion,

when Yb = yb, the larger the conditional basis risk ε̃|yb , the lower the deductible z0(yb),

and thus the larger the coverage of expected losses Z(Ya). Interestingly, this is remi-

niscent of the precautionary motive of the prudent insured highlighted by Schlesinger

(2013), whose intuition was provided by Eeckhoudt & Schlesinger (2006), and which

states that uncertainty about uninsurable losses exacerbates insurance demand.

Example 1 For illustrative purposes, let us consider the case of a risk-averse firm

facing a double risk of property loss and price uncertainty. To be concrete, assume that

the firm is an electrical energy supplier with normal output q in kWh per year, sold at

unit price p. We consider that q and p have been determined and specified in long-term

contracts with customers.10 Accidents due to meteorological uncertainty may induce

repair costs, as for example when electricity pylons are blown over or offshore windmills

are damaged when a hurricane hits power plants. For simplicity, it is assumed that

these property damages do not affect the firm’s yearly output (i.e., repair does not entail

significant production delay) and we denote ˜̀the repair costs, with ˜̀= `(Ya)+η̃a where

Ya ∈ Sa is a random vector of publicly observable meteorological data and η̃a is a zero-
10It is presumed that the sales contract with fixed values for price and quantity reflects purchasers’

risk-aversion. Another version of this example would consists in assuming that electricity output is

sold at spot price, the electricity supplier being able to hedge its price risk at actuarial price through

forward exchange contracts.
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mean random variable, Ya and η̃a being independently distributed. The actual output is

q(1 + η̃b) where η̃b is a zero-mean random variable, pair-wise independent from Ya and

η̃a. The difference qη̃b between actual and normal outputs results from all factors that

may affect electricity production for privately observed reasons, such as technological

failures, delivery delays by subcontractors or wind speed outside accident risk, in the

case of a wind farm. It is sold or purchased in a centralized spot market, at publicly

observable price Yb ∈ Sb = R+ , Yb and η̃b being also independent, with zero-mean net

proceeds qη̃bYb. Production costs (apart from repair costs) are fixed and denoted C.

With these notations, the firm’s profit is written as

q(p+ η̃bYb)− `(Ya)− η̃a − C,

which may be reformulated with previous notations by denoting w0 = qp−C and X =

`(Ya) + η̃a − qη̃bYb. In other words, initial wealth w0 is the difference between normal

turnover and fixed cost, while losses X is the sum of repair cost and net purchases in

the spot market. We have E[η̃bYb] = 0 because η̃b and Yb are independently distributed

with Eη̃b = 0, which gives E[X | Ya, Yb] = `(Ya) = Z(Ya) and ε̃ = X − Z(Ya) =

η̃a + qη̃bYb. By applying Proposition 7, we deduce that the optimal parametric cover

is a straight deductible contract, where the trigger is the expected repair cost `(Ya)

under meteorological data Ya and the deductible depends on the electricity spot price

Yb. Furthermore, ε̃|Yb=yb2 is more risky than ε̃|Yb=yb1 if yb2 is larger than yb1. Hence, if

the electricity supplier is prudent, the larger the spot price, the lower the deductible.

4.2.2 Case where utility is CARA and basis risk is normal

For illustrative purpose, consider the case where the policyholder displays constant

absolute risk aversion with a normally distributed basis risk. We denote u(w) =

− exp(−γw) and ε̃(y) 7→ N (0, σε(y)2) for all y ∈ S, where ε̃(y) is the basis risk

conditionally distributed on Y = y, with standard deviation σε(y). In that case,
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simple calculations allow us to write the adjusted risk as11

Ẑ(y) = Z(y) +
γσε(y)2

2
for all y ∈ S, (8)

When Y and ε̃ are independent, we have σε(y) = σε for all y, and Proposition 5 is

equivalent to Proposition 3 with

ẑ0 = z0 +
γσε

2

2
,

which is the case where the optimal contract is index-based, with indemnity equal to

the excess of the expected loss Z(y) over deductible z0.

When Y and ε̃ are not independent, (8) shows that the risk adjustment Ẑ(y)−Z(y)

is proportional to the conditional variance σε(y)2. In the case of the normal law, a

larger risk in the sense of Rothschild-Stiglitz (1970) corresponds to a larger variance,

which illustrates the second part of Proposition 6.

When the distribution of ε̃(y) only depends on Z(y), there exists a function σε(.) :

R+ → R+ such that σε(y) = σε(Z(y)) for all y. In this case, the optimal contract is

index-based and, with the notation of Corollary 1, we may write

ξ(Z(y)) = Z(y) +
γσε(Z(y))2

2
,

with ξ′ > 1 if σ′ε > 0 and ξ′ < 1 if σ′ε < 0 : there is a vanishing deductible in the first

case, and an increasing deductible in the second..

Finally, under the assumptions and notations of Proposition 6, we may write Z(y) =

Z(ya) and σε(y) = σε(yb) for all y = (ya, yb) and

I(ya, yb) = max{0, Z(ya)− z0(yb)},

with

z0(yb) = k − γσε(yb)
2

2
.

Hence the optimal insurance payout is the excess of the expected loss over a conditional

deductible z0(yb) that depends linearly and decreasingly on the variance of the basis

risk.
11See the appendix for details.
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4.2.3 Binary model

As Clarke (2016), we may also consider the case where the possible loss is single-valued

X ∈ {0, L} with S = {0, 1}, and joint probabilities as follows:

X/Y 0 1

0 π00 π01

L π10 π11

with probability of loss L equal to π10 + π11, and conditional probability

P[X = L | Y = 1] =
π11

π01 + π11
,

P[X = L | Y = 0] =
π10

π00 + π10
.

We express the fact that Y = 1 is an informative signal about the realization of the

loss X = L, by assuming

P[X = L | Y = 1] > P[X = L | Y = 0],

which holds if
π11
π01

>
π10
π00

. (9)

The index insurance provides a payout I when y = 1. Clarke (2016) considers the

CARA and CRRA classes of utility functions. When σ > 0, the optimal indemnity

I∗(γ)may be non-monotonic with respect to γ, which denotes the coeffi cient of absolute

(CARA case) or relative (CRRA) risk aversion. More precisely, he shows that either

I∗(γ) = 0 for all γ ∈ (0,∞), or I∗(γ) = 0 for all γ < γ1, I
∗(γ) is strictly increasing

for all γ1 < γ < γ2 and I
∗(γ) and strictly decreasing for all γ2 < γ < ∞ for some

γ1 < γ2 < ∞. In words, the optimal coverage is increasing and then decreasing with

risk aversion, so the most risk averse individual does not necessarily purchase more

insurance.
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We may write

Z(0) = L
π10

π10 + π00
Z(1) = L

π11
π11 + π01

,

with Z(1) > Z(0) from (4), and

ε̃|Y=0 =

 −L π10
π10+π00

with probability π00
π10+π00

L π00
π10+π00

with probability π10
π10+π00

,

and

ε̃|Y=1 =

 −L π11
π11+π01

with probability π01
π11+π01

L π01
π11+π01

with probability π11
π11+π01

.

By construction, we have E(ε̃|Y = y) = 0 for y = 0 and 1, but the distribution of ε̃

differs according to whether Y = 0 or Y = 1: hence Y and ε̃ are not independent.12

Because of that, Proposition 4 is not valid, and the optimal insurance payout may not

be increasing with respect to risk aversion because of the interaction with prudence.

Some intuition of how risk aversion and prudence interact may be obtained as follows.

Conditionally on X = 0, the net expected transfer from the insurer to the policyholder

is

T 0 =
π01

π00 + π01
I − P,

and the actual net transfer is

T̃0 =

{
I − P with prob. π01

π00+π01

−P with prob. π00
π00+π01

,

with P = (1 + σ)(π01 + π11). Similarly, in state X = L, the net expected and actual

transfers to the policyholder are

T 1 =
π11

π10 + π11
I − P,

and

T̃1 =

{
I − P with prob. π11

π10+π11

−P with prob. π10
π10+π11

,

12This is an intrinsic property of the binary model, since this dependence follows from Assumption

(5) which reflects the fact that signal Y = 1 is informative about the occurence of the loss X = L.
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respectively. We have T 1 > T 0 because of inequality (5), meaning that, on average,

the payment received by the policyholder is larger when X = L that when X = 0.

Because of this first effect, as in a standard insurance demand problem, the larger the

degree of risk-aversion, the larger the optimal average indemnity, obtained through

an increase in I. However, the actual transfer T̃0 or T̃1(conditionally on X = 0 or L,

respectively) is uncertain, and we have Var(T̃1) > Var(T̃0). Because this uncertainty

on the conditional payment (as measured by its variance) is larger in the loss state

than in the no-loss state, downside risk-aversion creates a countervailing effect that

reduces insurance demand. Under CARA and CRRA preferences, when parameter γ

increases, the coeffi cient of absolute prudence also increases. The countervailing effect

reflecting prudence becomes stronger and it may dominate the risk aversion effect,

hence a possible decrease in insurance demand.

This interaction between risk aversion and prudence may be further illustrated

through simple examples. The optimal parametric insurance contract maximizes

Eu = π00u(w0 − P ) + π01u(w0 − P + I) + π10u(w0 − P − L) + π11u(w0 − P − L+ I),

with respect to I, P , subject to P = (1 +σ)(π01 +π11)I. Consider first the case where

u is quadratic

u(w) = w − bw2,

where b < 1/2w parametrizes risk aversion. In that case, u′′′ = 0, so the policyholder

does not display downside risk aversion. Straightforward calculations show that the

optimal level of coverage is

I∗ =
2bL[π11 − (1 + σ)πp]− σπ(1− 2bw0)

2bw0[1− (1− σ2)π0]
,

where p = π10 + π11 is the probability of loss and π = π01 + π11 is the probability that

the index triggers the indemnity payment. In the quadratic case, the optimal coverage

I∗ is therefore always increasing in b. The non-monotonicity of insurance coverage
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with respect to risk aversion does not arise in this case because the decision maker

does not display dowside risk aversion.

Figure 1 represents the optimal parametric insurance I∗ on the vertical axis, as a

function of risk-aversion parameter γ on the horizontal axis, for several values of the

loading factor σ, when

u(w) = − 1

α
exp (−αw)− γw,

where α = −u′′′(w)/u′′(w) is the coeffi cient of absolute prudence.13 The index of

absolute risk aversion

A(w) =
α exp (−αw)

exp (−αw)− γ
is increasing in γ. Increasing γ therefore increases risk aversion at all wealth levels

without modifying the prudence of the agent. When σ > 0, the standard risk aversion

comparative statics applies : at a given level of absolute prudence α, an increase in

the risk aversion parameter γ results in an increased coverage I∗. An increase in σ

shifts the curve downward, and insurance is not affected by risk aversion when σ = 0.

Remark 1 It is tempting to draw a parallel between the parametric insurance problem

in the binary model and Jewitt’s (1988) analysis of portfolio choices. He considers a

standard portfolio problem with one risky asset and an additive background risk affect-

ing wealth, in which the returns of the risky asset and of the background wealth are

affi liated random variables. He shows that the usual relationship between absolute risk

aversion and portfolio choices still holds, under the additional assumption of decreas-

ing absolute risk aversion. More precisely, if two investors display DARA preferences,

the one with the larger absolute risk aversion has the smaller demand for the risky as-

set.14 When the insurance payout is assumed to be a fraction of the expected loss (i.e.,

I(Y ) = αZ(Y ), with α > 0) - which is not a loss of generality in the binary model

13Figure 1 corresponds to π00 = 0.55, π01 = 0.1, π10 = 0.1 = 0.25, w0 = 2, 000, L = 1, 000, α =

0.0005, σ ∈ {0, 0.1, 0.2, 0.3} with γ ∈ [0.001, 0.025], with u′ > 0 for all relevant value of final wealth.
14See Proposition 26 in Gollier (2004).
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-, then choosing coeffi cient α, is formally equivalent to the standard portfolio problem.

In that case, if the loss Z(Y ) and the background risk ε̃ are affi liated, and if two in-

dividuals have DARA preferences, then the more risk-averse has a higher demand for

insurance, meaning that his optimal coinsurance coeffi cient α is larger. However, one

can check that ε̃ and Z(Y ) are not affi liated in the binary model, which explains why

the static comparative analysis of Jewitt (1988) does not apply in that case.

5 Conclusion

Reframing the parametric insurance problem in an asymmetric information setting

brings about new insights on the design of optimal coverage. When the actual loss

incurred by the policyholder is his private information, the insurance indemnity de-

pends only on the publicly-observed parameter vector. The information structure is

finer when this vector provides a more accurate information on the loss incurred, and

in that case the policyholder reaches a higher expected utility and the basis risk is

lower. The most important conclusion that emerge in this context is the fact that

optimal parametric insurance depends on the stochastic relationship between the loss

index and the basis risk, i.e. between the parameter-based best estimate of the loss on

one side, and the residual unobserved risk on the other. If these two components of

the risk exposure are independently distributed, with some caveats such as the strong

comparability criterion used in Proposition 4, important results of insurance demand

theory extend to the parametric insurance setting. As we have seen, this follows from

the similarity with the insurance demand problem under independent background risk.

Under constant loading, a straight deductible contract triggered by the loss index is

optimal. Furthermore, the amount of insurance demand of two individuals who face

the same risk exposure depend on their respective degrees of risk aversion.

Conclusions are far less simple when the parameter vector and the basis risk are

not independently distributed, a case that may be more relevant in many concrete
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situations. The reason is simple: if two parameter vectors leading to the same loss

index correspond to different distributions of the basis risk, then they provide different

information on the loss, and this should be reflected in the optimal insurance coverage.

In that case, the optimal parametric insurance is not index-based. In other words,

the insurance payout should depend on the parameter vector itself, and not only on

the best estimate of the loss that can be infered from this information. Once said

that, this raises questions about, at least, two issues: the structure of the optimal

indemnity schedule and the relationship between the attitude toward risk and the

demand for insurance. With respect to the first question, we have shown that the

optimal indemnity schedule corresponds to a straight deductible contract applied to

an adjusted expected loss exposure. Under downward risk aversion, the larger the basis

risk conditionally on the parameter vector, the larger the risk adjustment. In other

words, if the conditional basis risk increases when we move from a parameter vector

to another one, then the risk adjustment should be larger in the second case than in

the first one. This adjustment takes a more simple form when the parameter vector

can be splitted in two independently distributed subvectors, affecting the expected

loss and the conditional basis risk, respectively. In that case, the optimal indemnity

schedule takes the form of a conditional deductible, and the larger the conditional

basis risk, the lower the conditional deductible. Concerning the relationship between

the attitude toward risk and the demand for parametric insurance, risk aversion and

prudence codetermine the demand for parametric insurance, and, contrary to the case

where the basis risk and the loss index are independtly distributed, a lower degree of

risk aversion does not necessarily means a lower demand for insurance with a lower

premium, if this risk aversion effect is more than compensated by a larger degree of

prudence. In other words, risk aversion and downside risk aversion may go in opposite

direction, which invalidates the usual comparative static analysis of insurance choices.
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Figure 1: Optimal insurance demand I∗ as a function of absolute risk-aversion

parameter γ for given absolute prudence α and various values of the loading factor σ.
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6 Proofs

6.1 Proof of Lemma 1

Assume Y2(ω) = Φ(Y1(ω)) for all ω. Let y2 ∈ S2. We have

O2(y2) = {ω ∈ Ω s.t. Y2(ω) = y2}

= {ω ∈ Ω s.t. Φ(Y1(ω)) = y2}

= {ω ∈ Ω s.t. Y1(ω) ∈ Φ−1(y2)}

=
⋃

y1∈K(y2)

O1(y1),

with K(y2) = {y1 ∈ S1 s.t. y2 = Φ(y1)} = Φ−1(y2). We also have K(y2) ∩ K(y′2) = φ if

y2 6= y′2 and ⋃
y2∈S2

K(y2) =
⋃
y2∈S2

{y1 ∈ Y1 s.t. y2 = Φ(y1)} = Y1.

Hence {K(y2), y2 ∈ S2} is a partition of S1, and thus (S1, Y1) is finer than (S2, Y2).

Conversely, assume that (S1, Y1) is finer than (S2, Y2), i.e.

O2(y2) =
⋃

y1∈Z(y2)

O1(y1),

with {K(y2), y2 ∈ Y2} a partition of Y1. Let Φ(.) : S1 → S2 defined by Φ(y1) = y2 if

y1 ∈ Z(y2) with y2 ∈ Y2. For all ω there exists y1 ∈ Y1 such that Y1(ω) = y1, i.e.

ω ∈ O1(y1). We have O1(y1) ⊂ O2(y2) with y1 ∈ Z(y2), and thus O1(y1) ⊂ O2(Φ(y1))

from the definition of Φ(.), which implies Y2(ω) = Φ(y1) = Φ(Y1(ω)).

6.2 Proof of Proposition 1

Under information structure (Si, Yi), for i = 1 or 2, the optimal contract {P ∗i , I∗i (.)}

maximizes

Eu(w0 −X + Ii(Yi)− Pi),
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with respect to Pi and Ii(.) : Si → R+ subject to

Pi = (1 + σ)EIi(Yi),

with optimal expected utility

u∗i = Eu(w0 −X + I∗i (Yi)− P ∗i ).

Consider the indemnity schedule I1(.) : S1 → R+ defined by I1(y1) = I∗2 (Φ(y1)) for

all y1 ∈ S1. In any state of nature ω, the insurance payout is the same for I1(.) and

I∗2 (.). Hence, the contract {P ∗2 , I1(.)} is feasible under information structure (S1, Y1)

with expected utility u1 = u∗2, and thus we have u
∗
1 ≥ u∗2.

Consider the indemnity schedule I1(.) = I∗2 (Φ(.)) : S1 → R+ which is feasible under

information structure (S1, Y1). Replacing (S2, Y2) by (S1, Y1) allows us to increase the

insurance indemnity I1(y1) above I∗2 (Φ(y1)) when y1 ∈ A11(y2) and simultaneously to

decrease I1(y1) under I∗2 (Φ(y1)) when y1 ∈ A21(y2). This can be done for all y2 ∈ A2 in

such a way that the expected insurance payout is unchanged when Y 1(ω) ∈ A11(y2) ∪

A11(y2). Furthermore I1(y1) is kept equal to I∗2 (Φ(y1)) if y1 /∈ {A11(y2) ∪ A11(y2),y2 ∈

A2}.This change increases the insurance payout in states with higher losses and reduces

this payout in states with lower losses, starting from an initial solution I1(.) where these

payouts are equal, and the insurance premium is unchanged. Because of the concavity

of the utility function, this induces an increase in expected utility, hence the dominance

of (S1, Y1).

6.3 Proof of Proposition 2

Assume that (S1, Y1) is finer than (S2, Y2). We have

ε̃2(ω) = X(ω)− Z2(Y2(ω))

= ε̃1(ω) + η̃ε(ω), (10)

for all ω ∈ Ω, where

η̃ε(ω) = Z1(Y1(ω))− Z2(Y2(ω)).
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Using Lemma 1 yields

Z2(Y2(ω)) = E[Z1(y1) | y1 ∈ K(Y2(ω))] for all ω ∈ Ω,

which gives

E[η̃(ω) | ε̃1(ω) = ε1] = E[Z1(Y1(ω)) | ε̃1(ω) = ε1]

−E[Z1(y1) | y1 ∈ Z(Y2(ω))], ε̃1(ω) = ε1]. (11)

Let F1(y1 | y2, ε1) be the distribution function of y1 ∈ S1 conditionally on Y2 =

y2 ∈ S2 and ε̃1 = ε1, and let

Z1(y2, ε1) =

∫
y1∈K(y2)

Z1(y1)dF1(y1 | y2, ε1) = 1.

Let F2(y2 | ε1) be the distribution function of y2 ∈ Y2 conditionally on ε̃1 = ε1. Using

(7) gives

E[η̃ε | ε̃1 = ε1] =

∫
y2∈Y2

{∫
y1∈K(y2)

[Z1(y1)− Z1(y2, ε1)]dF1(y1 | y2, ε1)
}
dF2(y2 | ε1)

= 0,

for all ε1, which shows that ε̃2 is more risky than ε̃1.

Furthermore, we have

Z2(y2) = E[X | Y2 = y2]

= E[X | Y1 ∈ K(y2)]

= E[E[X | Y1] | Y1 ∈ K(y2)]

= E[Z1(Y1) | Y1 ∈ K(y2)]

for all y2 ∈ im(Y2) ⊂ S2. Consequently,

z2 =

∫
y1∈K(Z−12 (z2))

Z1(y1)dF1(y1 | Y1 ∈ K(Z−12 (z2))), (12)
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for all z2 ∈ im(Z2), where F1(y1 | Y1 ∈ K(Z−12 (z2))) is the distribution function of Y1

conditionally on Y1 ∈ K(Z−12 (z2)). We have

Y1 ∈ K(Z−12 (z2)))⇔ Z2(Φ(Y1) = z2.

Using Y2 = Φ(Y1) and (9) yields

E[Z1 | Z2 = z2] = z2 for all z2,

Equivalently,

Z1 = Z2 + η̃Z ,

with

E[η̃Z | Z2 = z2] = 0 for all z2 ∈ im(Z2)

which shows that Z1 is more risky than Z2.

6.4 Proof of Proposition 3

Consider random variables Z1, Z2, ε̃1, ε̃2 and X such that

Z1 + ε̃1 ≡ Z2 + ε̃2 ≡ X, (13)

with ε̃1, Z1 and Z2, ε̃2 pairwise independent. Define random variable η̃ by

ε̃2 ≡ ε̃1 + η̃,

and thus with

Z1 ≡ Z2 + η̃.

Assume that random variables Z2, η̃ and ε̃1 are pairwise independent. Consider prob-

ability space (Ω,F ,P) where Ω includes all three-dimension states ωz = (ω1z, ω
2
z, ω

3
z)

such that z ∈ R+, ω1z ∈ supp (Z2), ω
2
z ∈ supp(η̃), ω3z ∈ supp(ε̃1). Define random
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variable ω̃(.) : Ω → R3 by ω̃(ωz) = ωz for all z ∈ R+ and choose (F ,P) such that

ω̃ ≡ (Z2, η̃, ε̃1). Define loss function and information structures by

X(ωz) = ω1z + ω2z + ω3z,

S1 = R3 and Y1(ωz) = (ω1z, ω
2
z),

S2 = R and Y2(ωz) = ω1z.

for all z ∈ R+. We have Y2(ωz) = Φ(Y1(ωz)) with Φ(ω1z, ω
2
z) = ω1z and thus (S1, Y1) is

finer than (S2, Y2).

Using Eε̃1 = 0 and the fact that Z2, η̃ and ε̃1 are pairwise independent yields

E[X(ωz) | Y1 = (ω1z, ω
2
z)] = ω1z + ω2z + E[ω̃3z | ω1z, ω2z]

= ω1z + ω2z + E[̃ε1 | Z2 = ω1z, η̃ = ω2z]

= ω1z + ω2z + Eε̃1

= ω1z + ω2z

We also have

E[X(ωz) | Y2 = ω1z] = ω1z + E[ω̃2z + ω̃3z | ω1z]

= ω1z + E[η̃ + ε̃1 | Z2 = ω1z]

= ω1z.

This gives Z1(ωz) = ω1z + ω2z and Z2(ωz) = ω1z. Hence, if probability space (Ω,F ,P)

is defined as above, then loss index Zi and basis risk ε̃i are induced by information

structure (Si, Yi) for i = 1 and 2. Since (S1, Y1) is finer than (S2, Y2) we deduce

from Proposition 1 that, for any risk-averse individual, the optimal expected utility is

(weakly or strongly) larger under (S1, Y1) than under (S2, Y2). When the loss index

and the basis risk are independently distributed (which is the case here), the optimal

expected utility only depends on their probability distribution, independently from the

underlying probability distribution of the parameter vector.15 Hence, the fact that the
15This is intuitive but formally established in the proof of Proposition 4 below.
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optimal expected utility is higher for Z1, ε̃1 than for Z2, ε̃2 holds for any probability

space and information structure that sustains random variables Z1, Z2, ε̃1, ε̃2 and X.

6.5 Proof of Proposition 4

Let I∗(.) : S →R+, P ∗ the optimal indemnity schedule and premium, with optimal

expected utility

u∗ = EY [v(w0 − Z(Y ) + I∗(Y )− P ∗)].

Define J(.) : Z(Y (Ω))→ R+ by

J(z) = EY [I∗(Y ) | Z(Y ) = z].

Using u′′ < 0 allows us to write

u∗ = EZ [EY [v(w0 − Z + I∗(Y )− P ∗) | Z = z]]

≤ EZ [v(w0 − Z + EY [I∗(Y ) | Z = z]− P ∗] | Z = z]

= E[v(w0 − Z + J(Z)− P ∗] | Z = z]

= u,

with strict inequality if I∗(.) is not index-based in a positive probability event. Fur-

thermore, we have

EJ(Z) = EZ [EY [I∗(Y ) | Z(Y ) = z]] = EI∗(Y ),

and

P ∗ = (1 + σ)EI∗(Y ) = (1 + σ)EJ(Z).

Thus, the index-based contract J(.), P ∗ is feasible, with higher expected utility than

I∗(.), P ∗, hence a contradiction.

The rest of the proof results from the optimality of a straight deductible contract

with loss Z, under constant loading and utility function v(.).
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6.6 Proof of Proposition 5

The Proposition directly follows from the analysis of comparative risk aversion when

there is an independent background risk: see Proposition 24 and 25 in Gollier (2004).

6.7 Proof of Proposition 6

Let λ be a Lagrange multiplier associated with constraint (2). The first-order optimal-

ity conditions are written as

E[u′(w0 − Z(y)− ε̃+ I(y)− P ) | Y = y]− λ(1 + σ)

{
≤ 0 for all y ∈ S
= 0 if I(y) > 0

, (14)

E[u′(w0 − Z(Y )− ε̃+ I(Y )− P )] = λ. (15)

Using E[̃ε | Y = y] = 0 for all y ∈ S and u′′′ > 0 yields

E[u′(w0 − Z(y)− ε̃+ I(y)− P ) | Y = y] > u′(w0 − Z(y) + I(y)− P ).

Let Ẑ(y) be defined for all y ∈ Y by

E[u′(w0 − Z(y)− ε̃+ I(y)− P ) | Y = y] = u′(w0 − Ẑ(y) + I(y)− P )

with Ẑ(y) > Z(y) from u′′ < 0. Hence, the optimality conditions may be rewritten as

u′(w0 − Ẑ(y) + I(y)− P )− λ(1 + σ)

{
≤ 0 for all y ∈ S
= 0 if I(y) > 0

,

E[u′(w0 − Ẑ(Y ) + I(Y )− P )] = λ.

These are the first-order optimality conditions of the optimization problem for an

individual with risk exposure Ẑ(Y ), in which the expected utility

E[u(w0 − Ẑ(Y ) + I(Y )− P )

is maximized with respect to I(.) : S → R+ and P , subject to constraint (2). We

know that such conditions implies that there exists ẑ0 ≥ 0 such that

I(y) = max{Ẑ(y)− ẑ0, 0] for all y ∈ S
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with ẑ0 = 0 if σ = 0 and ẑ0 > 0 if σ > 0.

Let y1, y2 ∈ S with I(y1), I(y2) > 0. Denote ∆Z1 = Ẑ(y1) − Z(y1) > 0 and

∆Z2 = Ẑ(y2) − Z(y2) > 0. Assume that the conditional distribution of ε̃ is more

risky in when Y = y2 than when Y = y1, and suppose ∆Z2 ≤ ∆Z1. The optimality

conditions give

u′(w0 − Ẑ(y1) + I(y1)− P ) = u′(w0 − Ẑ(y2) + I(y2)− P ) = λ(1 + σ),

or, equivalently

E[u′(w0−Z(y1)− ε̃+I(y1)−P ) | Y = y1] = E[u′(w0−Z(y2)− ε̃+I(y2)−P ) | Y = y2].

In this first case, we have I(y1) = Ẑ(y1)−ẑ0 = Z(y1)−ẑ0+∆Z1 and I(y2) = Ẑ(y2)−ẑ0 =

Z(y2)− ẑ0 + ∆Z2. Hence, the last equation may be rewritten as

E[u′(w0 + ∆Z1 − ẑ0 − ε̃− P ) | Y = y1] = E[u′(w0 + ∆Z2 − ẑ0 − ε̃2 − P ) | Y = y2],

or

E[u′(w + ∆Z1 −∆Z2 − ε̃) | Y = y1] = E[u′(w − ε̃) | Y = y2],

where w = w0 + ∆Z2 − ẑ0 − P . However, we have

E[u′(w + ∆Z1 −∆Z2 − ε̃) | Y = y1] ≤ E[u′(w − ε̃) | Y = y1]

< E[u′(w − ε̃) | Y = y2],

where the first inequality comes from ∆Z1 ≥ ∆Z2 and u′′ < 0, and the second from

the fact that ε̃|Y=y2 is more risky than ε̃|Y=y1 and u
′′′ > 0. This is a contradiction.

6.8 Proof of Proposition 7

The first-order optimality conditions are

E[u′(w0 − Z(ya)− ε̃+ I(y)− P ) | Yb = yb]− λ(1 + σ)

{
≤ 0 for all y ∈ S,
= 0 if I(y) > 0,

,

E[u′(w0 − Z(Ya)− ε̃+ I(Y )− P )] = λ.
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where y = (ya, yb). Let us define

U(w, yb) ≡ Eε̃[u(w − ε̃) | Yb = yb],

with U ′w > 0,U ′′w2 < 0. This allows us to rewrite the optimality conditions as

U ′w(w0 − Z(ya) + I(y)− P, yb)− λ(1 + σ)

{
≤ 0 for all y ∈ Y
= 0 if I(y) > 0

E[U ′w(w0 − Z(Ya) + I(Y )− P ), Yb] = λ.

When I(y) > 0, we have

I(y) = Z(ya)− z0(yb),

where z0(yb) is defined by

U ′w(w0 − z0(yb)− P, yb) = λ(1 + σ).

Furthermore, when I(y) = 0 we have Z(ya) < z0(yb). Patching up these two cases

yields

I(y) = max{0, Z(ya)− z0(yb)} for all y = (ya, yb).

Let ε̃1 and ε̃2 be random variables distributed as ε̃ given ỹb = yb1 and yb2, respec-

tively, and assume that ε̃2 is more risky than ε̃1. We have

U ′w(w0 − z0(yb1)− P, yb1) = λ(1 + σ),

U ′w(w0 − z0(yb2)− P, yb2) = λ(1 + σ).

The last equality may be rewritten as

Eu′(w0 − z0(yb2)− ε̃2 − P ) = λ(1 + σ).

Since ε̃2 is more risky than ε̃1, we may write

ε̃2 ≡ ε̃1 + η̃,
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where random variable η̃ is such that E[η̃ | ε̃1 = ε1] = 0 for all ε1. When u′′′ > 0, we

have

Eu′(w0 − z0(yb2)− ε̃2 − P ) = Eε̃1 [Eη̃[u′(w0 − z0(yb2)− ε1 − η̃ − P ) | ε̃1 = ε1]]

> Eε̃1u′(w0 − z0(yb2)− ε̃1 − P )

= U ′w(w0 − z0(yb2)− P, yb1).

We deduce

U ′w(w0 − z0(yb2)− P, yb1) < U ′w(w0 − z0(yb1)− P, yb1),

and using U ′′w2 < 0 gives z0(yb2) < z0(yb1).

6.9 Proof of results when utility is CARA and basis risk is

normally distributed.

When u(w) = − exp(−γw), optimality condition (14) yields

E[exp(γ(Z(y)− I(y) + ε̃(y)] =
λ(1 + σ) exp(γ(w0 − P ))

γ

if I(y) > 0, and thus

I(y) = Z(y) +
1

γ
ln {E[exp(γε̃(y)]} − k,

if I(y) > 0, where

k = w0 − P +
1

γ
ln

[
λ(1 + σ)

γ

]
.

When ε̃(y) 7→ N (0, σε(y)2), we have

E[exp(γε̃(y)] = exp

(
γ2σε(y)2

2

)
,

which gives

I(y) = Z(y) +
γσε(y)2

2
− k,

for all y such that I(y) > 0. This gives I(y) = max{Ẑ(y)− ẑ0, 0} with ẑ0 = k, and

Ẑ(y) = Z(y) +
γσε(y)2

2
.
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