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Abstract

The utility premium of Friedman and Savage (1948) attracted renewed atten-
tion over the past years as a non monetary measure of risk aversion, in particular
when high order changes in risk are considered. In this paper, our motivation is to
complete the literature on the shape of utility premiums as a function of wealth by
considering high order changes in risk for additive and multiplicative risks. When
additive risks are addressed, the shape is well-defined and in accordance with intu-
ition. Our main contribution is however to address the case of multiplicative risks,
a class of risks frequently met in financial applications. In this case two wealth
components need to be considered: sure wealth and the wealth exposed to multi-
plicative risks. We analyse the shape of the utility premium with respect to these
two components and find that the well-defined and intuitive results hold only in
the sure wealth case. When the wealth exposed to multiplicative risks varies, the
shape of the multiplicative utility premium depends on benchmark values for the
relative or partial risk aversion coefficients. The special case of CRRA utility is also
considered.
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1 Introduction

In the theory of decision under risk and uncertainty, the term “premium” is generally
associated to the “risk premium”. The concept was originally introduced by Friedman and
Savage (1948) to measure risk aversion, but mainly developed by Arrow (1965) and Pratt
(1964), who addressed situations where a decision-maker (DM) faces a single exogenous
risk. It reflects the price that a risk averse DM is prepared to pay to avoid such a risk. The
risk premium as an analytical tool has become highly popular in the economic and financial
literature since these seminal contributions. It was also extended to endogenous and to
multiple risks, in order to increase the domain of its use. However, in the same seminal
article, Friedman and Savage (1948) proposed a different way to measure the same degree
of risk aversion. They introduced the “utility premium”, measuring the loss of welfare
faced by the same DM exposed to a single exogenous risk. The utility premium concept
met much less success than the risk premium in the economic and financial literature. The
main reason is that it is measured in utility units instead of being expressed in monetary
units, like the risk premium. The von Neumann-Morgenstern (1947) utility function
routinely used in this literature being “unique up to a linear positive transformation”,
this prevents direct interpersonal comparison of risk aversion degrees, in contrast to the
risk premium that spurred a large strand of recent literature focusing on “comparative
nth-degree risk aversion”: see Jindapon and Neilson (2007), Liu and Meyer (2013), Liu
and Neilson (2019), and Jindapon et al. (2021)1.

However, interest in the Friedman-Savage utility premium grew more recently, due to
the seminal work of Eeckhoudt and Schlesinger (2006) on risk attitudes defined as behavior
with respect to ”risk apportionment” at different orders2. In particular, the two authors
address the link between the shape of the utility premium and risk apportionment3. They
point out that the utility premium is decreasing in wealth under risk apportionment
of order three (prudence) and convex in wealth under risk apportionment of order four
(temperance). They also introduce a second-order measure of the utility premium − later
defined as the temperance utility premium by Courbage and Rey (2010) − and they show
that this measure is decreasing and convex under, respectively, risk apportionment of
orders five and six.

Starting from there, the utility premium concept has then proved highly useful to an-
alyze and predict behavior towards risk. First, Crainich and Eeckhoudt (2008) use the
utility premium concept to measure the loss of welfare due to misapportionment of a small

1See, however, Huang and Stapleton (2015) and Wong (2018) for comparative risk aversion and com-
parative prudence based on the utility premium. See also Li and Liu (2014) and Heinzel (2019).

2Risk apportionment holds when the DM prefers to spread the risks and sure losses over different
states of nature, instead of facing them grouped in one single state of nature. For instance, when exposed
to a zero-mean risk, the DM prefers to avoid facing this risk in a situation where she also faces a sure
loss of wealth.

3Actually, they use the negative of the utility premium as defined usually. See their equation (1). For
clarity, we translate their result into the usual definition
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risk ε̃ − a measure later defined as the prudence utility premium by Courbage and Rey
(2010). They show that this measure is tightly linked to their proposed monetary measure
of downside risk aversion (i.e., prudence). Then, Eeckhoudt and Schlesinger (2009) show
that the shape of the original Friedman-Savage (1948) utility premium is useful to under-
stand precautionary saving, in the additive risk case, as well as in the multiplicative risk
case. A demand for precautionary saving appears in both cases if the utility premium is
decreasing in wealth. Courbage and Rey (2010) clarify Eeckhoudt and Schlesinger (2006)
and Crainich and Eeckhoudt (2008) by extending the Friedman-Savage (2nd-order) utility
premium to the 3rd and 4th orders, explicitly defining the prudence utility premium and
the temperance utility premium. They show that the three premiums are vulnerable to a
sure loss and to a background risk. This implies that all these premiums are decreasing
in initial wealth and convex. In a later paper (Courbage and Rey, 2019), they consider
several independent risks, instead of one or two risks as in previous work. They show that,
contrary to intuition, temperance is sufficient to guarantee that spreading N risks over
N states of nature is preferred to facing the N risks in one state, or two states, or three
states, or n ≤ N − 1 states. This implies the N -superadditivity of the utility premium,
given temperance: the welfare loss measured by the utility premium is larger when N
risks are faced together than the sum of the welfare losses due to facing each of the N
risks individually. Ebert et al. (2017) and Courbage et al. (2018) consider high-order
changes in risks and their impact on the utility premium. In particular, Courbage et
al. (2018) extend Courbage and Rey (2010) by defining formally the nth-order utility
premium (see below). They show that welfare is reduced by merging high-order changes
in risk instead of facing them separately, e.g., in different corporate entities. Similarly,
Ebert et al. (2017) extend Eeckhoudt et al. (2009) by concluding that not only changes
in risk are mutually aggravating, but that more severe changes in risk lead to greater
mutual aggravation.

In this paper, we extend the results of Eeckhoudt and Schlesinger (2009) in different
dimensions. Firstly, we consider changes in risk at any order, instead of comparing a situ-
ation of risk with a situation of no risk. This is more representative of real-life situations.
Secondly, we do not restrict ourselves to the first derivative of the utility premium with
respect to wealth to check whether the utility premium is increasing or decreasing in
wealth but we also examine whether the second order derivative points toward a concave
or convex shape. This was also addressed by Eeckhoudt and Schlesinger (2006) and by
Courbage and Rey (2010), but only for low-order changes in risk. Thirdly, in the more
complex case of multiplicative risks, we consider a more general situation, instead of limit-
ing ourselves to the extreme case where all wealth is submitted to the multiplicative risk.
The last extension leads, in particular, to challenging results. As expected, it implies the
coefficient of partial relative risk aversion as a benchmark, but it also shows that assuming
the familiar constant relative risk aversion (CRRA) utility is not sufficient to obtain a
simple clear-cut result in all cases.

Compared to Courbage et al. (2018), we address a different question. After having
defined the nth-order (additive) utility premium (see below), Courbage et al. (2018)
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focus on specific properties of their measure in the case of a mixed risk averse DM facing
two risk changes. They show that the measure is superadditive, and the DM prefers to
face the risk changes one by one, instead of merging them. Generalizing Courbage and
Rey (2010), they also show that their nth-order utility premium is vulnerable to a high
order change in background risk. They do not address explicitly the shape of their nth-
order utility premium in reaction to a change in wealth − the motivation of this paper −
and they consider only additive risks whereas we extend their definition to multiplicative
risks in order to also investigate the shape of the nth-order multiplicative utility premium.

Multiplicative risks are implicitly addressed by Eeckhoudt and Schlesinger (2008) and
Wong (2019) as they focus on changes in interest rate risk and their impact on precau-
tionary saving. In particular Wong (2019), relying like us on the nth-order additive utility
premium defined by Courbage et al. (2018), uses a multiplicative utility premium very
similar to a measure defined in the current paper (see equation (3) below). But, these two
papers focus on a specific problem − precautionary saving − and none of them address
the main motivation of this paper, i.e., the shape of the utility premium.

Understanding this shape is of high importance in the current period of economic and
social turmoil brought about by pandemia and global warming. Firstly, the risk of facing
losses due to business interruption and layoffs has increased dramatically as a result of
emergency measures enacted by governments to slow down the pace of Covid infections.
This represents a severe blow to the economy and a loss of welfare for the population.
Governments try to compensate these welfare losses with generous subsidies (“Helicopter
money”). In terms of utility premium, the welfare losses reflect the worsening of an
additive risk. Compensating them with lump sum subsidies will be based on more solid
ground if the shape of the additive utility premium is known. If it is decreasing and
convex in wealth, it means that wealthier households should be compensated less for their
increased risk − but the reduction in compensation should be alleviated progressively
when climbing on the wealth ladder. If it is decreasing and concave, the reduction in
compensation would increase as wealthier and wealthier households are addressed, leading
to a zero subsidy at some stage. Therefore, it is important for public policy purposes to
understand the shape of the utility premium for additive risks, not only for low order
changes in risk, but also for any change in the risk profile. This paper completes the
literature at this level. Secondly, turning to the consequences of global warming, one notes
that governments and international organizations are advocating and/or imposing carbon
taxes in a desperate attempt to slow down the path of temperature increases. The extent
of these tax increases represents a multiplicative risk for firms and households unable to
stop abruply their consumption of fossil energy. This leads to welfare losses deserving
to be compensated by public authorities in order to ease the transition to a carbon-free
economy. In this case, this is the shape of the multiplicative utility premium which is at
stake. Will the proposed compensation scheme have to consider the beneficiaries’ wealth
or not? The answer depends on the shape of the multiplicative utility premium and on
whether all wealth is impacted by the risk, or only a share of it. These are the questions
hiding behind our mathematical developments in this paper.
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The paper is organized as follows. In the next section we start with the general nth-
order additive utility premium defined by Courbage et al. (2018) and we show explicitly
that it is decreasing and convex in wealth, confirming the intuition derived from results
in the latter paper. In section 3, we define the nth-order multiplicative utility premium in
the special case where all wealth is exposed to the multiplicative risk and in the general
case where only a fraction of wealth is at risk. This leads us to investigate the shape of
these premiums with respect to two kind of changes in wealth: a change in the non risky
wealth and a change in the wealth exposed to risk. In the first case, the results do not
differ from those obtained in the additive risk case. But in the second case, the results
are less clear-cut, in particular when the second-order effect is concerned. Turning to the
familiar case of a CRRA utility function in section 4, we obtain clear-cut results when all
wealth is at risk, but only partial results when a fraction of wealth is at risk. Section 5
concludes and summarizes our results.

2 The nth-order additive utility premium

Consider a decision-maker (DM) endowed with a deterministic wealth level w and also
facing an additive risk Y in the current period (t = 0). Her total wealth is w̃Y = w + Y .
It is partly at risk. The risk will deteriorate certainly in the next period (t = 1) and
become X. Using Expected Utility Theory (EUT), the DM’s loss of welfare writes as

E[u(w + Y )]− E[u(w +X)], (1)

where u is is the DM’s risk averse utility function: u′ ≥ 0 and u′′ ≤ 04.

If Y is a degenerated random variable equal to zero and X is a zero-mean random
variable, equation (1) refers to the preference for risk or for certainty defined by Friedman
and Savage (1948)5 : preference for risk if the result of equation (1) is negative, preference
for certainty if it is positive. In this particular case, equation (1) was labelled as the
“utility premium of Friedman and Savage” by Eeckhoudt and Schlesinger (2009) who also
examined some of its properties.

In the general case where Y and X are both risky, we can use stochastic dominance to
compare the risk levels between the two random variables. Let’s assume that Y dominates
X via nth-order stochastic dominance (X �SD−n Y )6. When the (n − 1) moments of Y
and X are equal, nth-order stochastic dominance coincides with Ekern’s (1980) concept

4We assume throughout this article that the support of Y (or X) is defined such that w̃Y (or w̃X

with w̃X = w + X) is in the domain of u. We also assume that u is n-times differentiable and that its
derivative of order k ≥ 1 has a constant sign, either positive or negative, in the domain of u.

5See in particular their footnote 25.
6The concept of nth-order stochastic dominance is defined as follows (see for example Jean (1980,

1984)) : Consider Y and X with F and G respectively their two cumulative distribution functions of
wealth, defined over a probability support contained within the interval [a, b]. Define F1 = F and
G1 = G. Now define Fk+1(z) =

∫ z

a
Fk(t)dt and Gk+1(z) =

∫ z

a
Gk(t)dt for k ≥ 1. The random variable
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of increase in nth-order risk (X �Ekern−n Y ). Ekern’s definition includes the well-known
case of mean-preserving increase in risk of Rothschild and Stiglitz (1970), as well as the
case of increase in downside risk defined by Menezes et al. (1980). These cases represent,
respectively, a second-degree and a third-degree increase in risk.

Given these premises, equation (1) corresponds to the (additive) nth-order utility pre-
mium ω(w;Y,X) defined in Courbage et al. (2018)7.

Definition 1 (Courbage et al. (2018)). Given two independent risks, Y and X such that
Y dominates X via nth-order stochastic dominance (X �SD−n Y ), the function ω defined
as ω(w;Y,X) = E[u(w+Y )]−E[u(w+X)] is named the “nth-order utility premium”. It
measures the degree of pain due to the aggravating nth-order stochastic dominance risk.

The nth-order additive utility premium ω(w;Y,X) is a non monetary measure of the
aggravation in terms of risk. It measures the loss of welfare caused by the switch from Y
to X when the DM’s non risky wealth is w.

Using stochastic dominance properties, first observe that w(w;Y,X) ≥ 0 ∀w for all
utility functions u such that (−1)k+1u(k) ≥ 0 ∀k = 1, . . . , n. Note that (−1)k+1u(k) ≥ 0
∀k = 1, . . . , n means that all odd derivatives of u are positive and all even derivatives are
negative. Following Brockett and Golden (1987) and according to Caballé and Pomansky
(1996), an individual with such a utility function is said to be mixed risk averse (MRA).
Hence, for all n, the nth-order utility premium of a MRA agent is always positive. In
other words, such an individual always incurs a pain when facing the passage from risk Y
to a more detrimental risk X dominated by nth-order stochastic dominance. If the utility
function verifies (−1)k+1u(k) ≥ 0 ∀k = 1, . . . , n we will label u as MRA from order 1 to n.

Now, assume that the government wants to compensate the pain due to the risk aggra-
vation by allocating an additional certain revenue ∆ at t = 0 and t = 1. We make the
three following assumptions: (i) all agents whom the government wants to help have the
same preferences, represented by the utility function u; (ii) all agents face the same risk
aggravation, from Y to X; (iii) but all agents do not have the same sure wealth w. The
government has then to consider two questions before deciding on the monetary amount
∆:

• 1. Is the utility loss due to the aggravating nth-order stochastic dominance risk
identical for all agents, whatever their sure wealth w? Or is it bigger or smaller
for wealthier DMs? More formally, is the nth-order utility premium an increasing,
decreasing or constant function of w?

• 2. What is the sensitivity of this variation to the wealth level? Let’s assume that
the utility premium decreases with w, as suggested by intuition. For higher w, does

Y dominates X via nth-order stochastic dominance (X �SD−n Y ) if Fn(z) ≤ Gn(z) for all z, and if
Fk(b) ≤ Gk(b) for k = 1, 2, .., n.

7See also Courbage and Rey (2010).
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the reduction decrease at a lower, constant or bigger rate? Consider, for instance,
two low wealth levels w1 and w2 (w1 < w2) and two higher wealth levels w3 and
w4 (w3 < w4), with w4 − w3 = w2 − w1. Is ω(w1;Y,X) − ω(w2;Y,X) bigger than,
equal to, or smaller than ω(w3;Y,X)−ω(w4;Y,X)? More formally, is the nth-order
utility premium a convex, linear or concave function of w?

We obtain the following answers to these two questions (see proofs in Appendix 1).

Proposition 1.

(a) The nth-order utility premium ω(w;Y,X) is decreasing in w for all DMs who are
MRA from order 1 to n+ 1.

(b) The nth-order utility premium ω(w;Y,X) is a convex function of w for all DMs who
are MRA from order 1 to n+ 2.

In the particular case where stochastic dominance at order n is replaced by Ekern’s
(1980) increase in risk at order n, we get the following corollary.

Corollary 1.

(a) In the case where X �Ekern−n Y , the nth-order utility premium, ω(w;Y,X) is decreas-
ing in w for all DMs with a utility function u verifying (−1)nu(n+1) ≥ 0.

(b) In the case where X �Ekern−n Y , the nth-order utility premium, ω(w;Y,X) is a convex
function of w for all DMs with a utility function u verifying (−1)n+1u(n+2) ≥ 0.

These two properties are intuitive. When the DM becomes richer, the pain due to the
switch towards the nth-order stochastically dominated risk decreases, and the reduction
of this pain decreases as he gets richer and richer. They simply extend to any order n
the properties already uncovered by Eeckhoudt and Schlesinger (2006) at orders two and
four, and by Courbage and Rey (2010) at orders two, three and four. Note that they are
also already implicit in Courbage et al. (2018). These authors show that the nth-order
additive utility premium is vulnerable to a sure loss and to a background risk − see also
Ebert et al. (2017) − as stated in their equations (18) and (19), where l > 0 and E(ε̃) = 0:

ω(w − l;Y,X)− ω(w;Y,X) ≥ 0⇔ (−1)k+1u(k) ≥ 0 ∀k = 1, . . . , n+ 1,

ω(w + ε̃;Y,X)− ω(w;Y,X) ≥ 0⇔ (−1)k+1u(k) ≥ 0 ∀k = 1, . . . , n+ 2.

The first expression reflects item (a) of our Proposition 1 above: the nth-order additive
utility premium increases with the introduction of a sure loss reducing wealth. The second
expression means that the utility premium is vulnerable to the introduction of a zero-mean
background risk, implying that it is convex in wealth, by Jensen’s inequality, as stated in
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item (b) above.

Let us illustrate these results with a few particular cases. First, consider the case used
by Friedman and Savage (1948): Y = 0 and X is a zero-mean random variable i.e.,
X �Ekern−2 Y . Item (a) of Corollary 1 means that the 2nd-order utility premium is a
decreasing function of wealth for all prudent DMs (u′′′ ≥ 0), or − using the terminology
introduced by Eeckhoudt and Schlesinger (2006) and Eeckhoudt et al. (2009) − for all
utility functions verifying risk apportionment of order 3.8 Item (b) of Corollary 1 means
that the 2nd-order utility premium is a convex function of w for all temperant DMs
(u(4) ≤ 0), i.e., for all utility functions verifying risk apportionment of order 4.9

This is not unexpected. In this additive risk context, the risk faced by the DM is
independent of her wealth level w. Now, we know from the theory of risk aversion that
the Arrow-Debreu risk premium (i) decreases when the agent gets richer, reflecting DARA
(Decreasing Absolute Risk Aversion) and thus prudence; and (ii) increases when the agent
becomes exposed to an actuarially neutral background risk, reflecting risk vulnerability
and thus temperance. Applying these properties to a utility premium context means:

(i) ω(w − l; 0, X) ≥ ω(w; 0, X) ∀l > 0,

(ii) ω(w + ε̃; 0, X) ≥ ω(w; 0, X) ∀ε̃ such as E(ε̃) = 0.

Eeckhoudt and Schlesinger (2006) interpret prudence as the preferred apportionment of
risk X and a second harm represented by a sure loss l, and temperance as the preferred
apportionment of risk X and a second harm represented by an actuarially neutral risk ε̃,
both in a context of equiprobable lotteries. Prudence and temperance reflect a preference
for risk disaggregation. It is easy to see that (i) and (ii) above reflect also such preference
as they derive respectively from the lottery preferences

(i′) [w − l, w +X; 1
2
, 1
2
] � [w,w − l +X; 1

2
, 1
2
],

(ii′) [w + ε̃, w +X; 1
2
, 1
2
] � [w,w + ε̃+X; 1

2
, 1
2
].

In Eeckhoudt et al. (2009b)’s interpretation this means: combining good with bad in
the two proposed states of nature is preferred to facing no bad (only good) in one state
of nature and a cluster of bads in the other state of nature, bad being a risk for a risk
averse DM.

It is expected that these intuitions apply to higher orders. For instance, in the particular
case where X �Ekern−3 Y featuring a downside risk (X = [0,−l + ε̃; 1

2
, 1
2
] and Y =

8Note that this result was already obtained by Hanson and Menezes (1971) in one of the early papers
using the Friedman-Savage utility premium.

9In the case where X �SD−2 Y , note that regularity conditions (u defined over R+, non-satiation
and bounded marginal utility) imply that item (a) of Proposition 1 holds when the DM is only prudent
without requiring risk aversion and item (b) of Proposition 1 holds when the DM is only temperant
without requiring risk aversion and prudence (see Menegatti 2014, Propositions 2 and 3). Indeed, under
these conditions, Menegatti (2014) shows that prudence implies risk aversion and that temperance implies
prudence. Thus the MRA assumption is not needed in this case.
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[−l, ε̃; 1
2
, 1
2
] with l > 0 and E(ε̃) = 0), Corollary 1 means that the 3rd-order utility premium

is a decreasing function of w for all temperant DMs and a convex function of w for all
edgy DMs (u(5) ≥ 0), i.e., for all utility functions displaying risk apportionment of order
5. Generalizing these intuitions leads to Proposition 1 and Corollary 1 above.

Our objective, in the rest of this paper, is to check whether the intuitive results of
Proposition 1 still apply when risks Y and X interact multiplicatively with wealth.

3 The nth-order multiplicative utility premium

The previous section analyzes the pain generated by the aggravation of an additive risk.
However, many real-world problems in economics and finance deal with multiplicative
risks. This occurs, for instance, when interest rates, fiscal rates or foreign exchange
rates play a role. In the rest of this paper, we consider such a context. The DM faces a
multiplicative risk Y in the current period, and the risk will deteriorate surely and become
X in the next period. We assume that random variables Y and X are non negative. We
denote by W the deterministic DM’s wealth level. Two cases may be considered. In the
first case, all wealth W is subject to the multiplicative risk. In this case, using EUT as
above, the DM’s loss of welfare is

E[u(WY )]− E[u(WX)]. (2)

In the second case, only an amount x with x > 0, a share of total wealth, is subject to
the multiplicative risk. The rest of wealth is not at risk. We label this certain wealth w,
as in the previous section10. Then, using EUT, the DM’s loss of welfare writes

E[u(w + xY )]− E[u(w + xX)]. (3)

We proceed by taking equation (3) as the general case11, keeping equation (2) as a
special case.

Definition 2. Given two independent non negative risks, Y and X such that Y domi-
nates X via nth-order stochastic dominance (X �n−SD Y ), the function ωM defined as
ωM(w, x;Y,X) = E[u(w+xY )]−E[u(w+xX)] is named the “nth-order multiplicative util-
ity premium”. It measures the degree of pain due to the aggravating nth-order stochastic
dominance multiplicative risk.

10We have W = w + x
11The same formulation was used in Wong (2019), as he also extends to multiplicative risks the definition

of the high-order additive utility premium proposed in Courbage et al. (2018). His paper focuses on
precautionary saving in the context of an extended definition of stochastic dominance: (m,n)th-order
stochastic dominance.
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Note that that the particular case of the 2nd-order multiplicative risk premium assuming
w = 0, Y = 1 (a degenerated random variable) and X such that E(X) = 1 is analyzed in
Eeckhoudt and Schlesinger (2009). Hence, in their approach, all wealth becomes exposed
to a multiplicative risk, a special case of equation (3) above. They show that their 2nd-

order multiplicative risk premium is decreasing in wealth if relative prudence −z u
′′′(z)
u′′(z)

exceeds 2 (with z the argument of the utility function). Their result is generalized below
(Corollary 3a).

Properties of u that guarantee the positive sign of ωM(w, x;Y,X) are the same as
the ones that guarantee the positive sign of ω(w;Y,X): ωM(w, x;Y,X) ≥ 0 ∀(w, x) for
all utility function u such that (−1)k+1u(k) ≥ 0 ∀k = 1, . . . , n. This result is easily
understood since we can define xX = X̂ and xY = Ŷ and then − given x > 0 − rewrite12

ωM(w, x;Y,X) = E[u(w + Ŷ )]− E[u(w + X̂)] = ω(w; Ŷ , X̂) with X̂ �SD−n Ŷ .

Two questions then arise: (1) Is ωM(w, x;Y,X) decreasing and convex in w? (2) Is
ωM(w, x;Y,X) decreasing and convex in x?

For the first question, we readily obtain the following proposition and corollary.

Proposition 2.

(a) The nth-order multiplicative utility premium ωM(w, x;Y,X) is a decreasing function
of w for all DMs who are MRA from order 1 to n+ 1.

(b) The nth-order multiplicative utility premium ωM(w, x;Y,X) is a convex function of w
for all DMs who are MRA from order 1 to n+ 2.

Corollary 2.

(a) In the case where X �Ekern−n Y , the nth-order multiplicative utility premium ωM(w, x;Y,X)
is a decreasing function of w for all DMs with a utility function u such as (−1)nu(n+1) ≥ 0.

(b) In the case where X �Ekern−n Y , the nth-order multiplicative utility premium, ωM(w, x;Y,X)
is a convex function of w for all DMs with a utility function u such as (−1)n+1u(n+2) ≥ 0.

We note that the study of the relationship between the multiplicative utility premium
and riskless wealth w gives the same results as the study of the relationship between
the additive utility premium and w for the same reason explaining the positive sign of
ωM(w, x;Y,X) (see above).

Turning to question (2) above we first note that the answer is not obvious at all, es-
pecially for the second element in the question, convexity. To understand the difficulty,
we begin with the special case of the 2nd-order multiplicative utility premium, assum-

12See proposition 3-11 in Denuit et al. (1998)
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ing w = 0, Y = 1 (a degenerate random variable) and X such that E(X) = 1, i.e.,
ωM(0, x; 1, X) = u(x) − E[u(xX)]. Considering that the risk is now multiplicative, not
additive, and thus proportional to wealth x, what is the intuition for the shape of the mul-
tiplicative utility premium as a function of x. Decreasing or increasing ? And convex or
concave ? Applying the logic used in the previous section suggests: (j) the multiplicative
utility premium is vulnerable to a sure proportional loss; and (jj) the multiplicative util-
ity premium is vulnerable to an independent proportional risk. Item (j) can be rewritten
formally as

(j′) ωM(0, x(1− l); 1, X) ≥ ωM(0, x; 1, X), where 0 < l < 1,

that rewrites equivalently as

(j′′) u(x(1− l))− E[u(x(1− l)X)] > u(x)− E[u(xX)], where 0 < l < 1.

The last expression is the same as the one used by Eeckhoudt et al. (2009a) to reflect
the preference for risk disaggregation of a DM facing a sure proportional loss (1− l) and a
proportional risk X as defined in the above paragraph. This is their relationship A3 � B3

− see also Wang and Li (2010). The authors show that (j′′) holds if relative prudence

exceeds two: −xu′′′(x)
u′′(x)

> 2. As shown by Eeckhoudt and Schlesinger (2009), this implies

that the multiplicative utility premium ωM(0, x; 1, X) is decreasing in x.

We now turn to (jj) to explore whether the same 2nd-order multiplicative utility pre-
mium is vulnerable to an independent background risk. Formally, (jj) can be rewritten
as

(jj′) ωM(0, xε̃; 1, X) ≥ ωM(0, x; 1, X), where E(ε̃) = 1 with ε̃ a non negative random
variable,

that rewrites equivalently as

(jj′′) E[u(xε̃)] − E[u(xε̃X)] > u(x) − E[u(xX)], where E(ε̃) = 1 with ε̃ a non negative
random variable.

We remark that this expression means that the multiplicative utility premium ωM(0, x; 1, X)
is convex. Indeed, let g(y) = u(y) − E[u(yX)] for a given risk X and any y. The
convexity of g is defined by E[g(θ̃)] > g(E(θ̃)) ∀θ̃. Using the definition of g, this
rewrites as E[u(θ̃)] − E[u(θ̃X)] > u(E(θ̃)) − E[u(E(θ̃)X)], ∀θ̃. Let θ̃ = xε̃. We ob-
tain E(θ̃) = x since E(ε̃) = 1. Thus, the last expression rewrites equivalently as
E[u(xε̃) − E[u(xε̃X)] > u(x) − E[u(xX)], i.e., (jj′′). In their paper, Eeckhoudt et al.
(2009a) do not consider (jj′′), i.e., the preference for disaggregation of two “harms” ε̃ and
X. They limit their analysis to the disaggregation of (1 − l) and X. Indeed, contrary

to intuition, it is not sufficient that the DMs preferences statisfy −xu′′′′(x)
u′′′(x)

> 3 to yield

(jj′′). The analysis is more complex: see Wang and Li (2010), Chiu et al. (2012), and
Denuit and Rey (2013). Although dealing with multiplicative risks, these papers do not
address this question. Hence, the question remains: Under which conditions do we observe
convexity of the multiplicative utility premium ? Equivalently, under which conditions
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do we observe vulnerability of the multiplicative utility premium to the addition of an
independent backgound risk ε̃ ? These are the questions we address below.

Remark that the risk is now proportional to wealth x. For this reason, it is possible
that the DM would prefer aggregate the harms (1 − l) and X, and ε̃ and X, instead
of disaggregating them according to risk apportionment. In this case, the multiplicative
utility premium would be increasing and concave. This possibility is included in the
results below.

Before turning to the general relationship between the multiplicative utility premium
and the amount of wealth exposed to risk, x, let us recall the definition of the partial
risk aversion coefficient introduced by Menezes and Hanson (1970) and Zeckhauser and
Keeler (1970):

rp(y;w) = −yu
′′(w + y)

u′(w + y)
.

Generalizing this first-order definition to any order k leads to the partial kth-degree risk
aversion coefficient used in Chiu et al. (2012)13:

r(k)p (y;w) = −yu
(k+1)(w + y)

u(k)(w + y)
.

Using this definition, we obtain the following proposition (see proof in Appendix 2).

Proposition 3.

(a) The nth-order multiplicative utility premium ωM(w, x;Y,X) is a decreasing function

of x for all MRA DMs from order 1 to n+1 if the utility function u verifies r
(k)
p (xε;w) ≥ k

∀(x,w) ∀ε > 0 ∀k = 1, . . . , n. The nth-order multiplicative utility premium ωM(w, x;Y,X)
is an increasing function of x for all MRA DMs from order 1 to n+1 if the utility function
u verifies r

(k)
p (xε;w) ≤ k ∀(x,w) ∀ε > 0 ∀k = 1, . . . , n.

(b) The nth-order multiplicative utility premium ωM(w, x;Y,X) is a convex (concave)
function of x for all MRA DMs from order 1 to n + 2 if the function c defined as
c(ε) = ε2u′′(w + xε) ∀ε > 0 verifies (−1)k+1c(k)(ε) ≥ 0 (≤ 0) ∀ε > 0 ∀k = 1, . . . , n.

Corollary 3.

(a) In the case where X �Ekern−n Y , the nth-order multiplicative utility premium ωM(w, x;Y,X)
is a decreasing (increasing) function of x for all DMs with a utility function u verifying

(−1)k+1u(k) ≥ 0 for all k = n, n+ 1 and r
(n)
p (xε;w) ≥ n (≤ n) ∀(x,w) ∀ε > 0.

13Note that the relative risk aversion coefficient of degre k corresponds to the special case of the

partial kth-degree risk aversion coefficient where w = 0 and all wealth is at risk: r
(k)
p (y; 0) = r

(k)
r (y) =

−y u(k+1)(y)
u(k)(y)

.
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(b) In the case where X �Ekern−n Y , the nth-order multiplicative utility premium ωM(w, x;Y,X)
is a convex (concave) function of x for all DMs with a utility function u verifying (−1)k+1u(k) ≥
0 for all k = n, n+ 1, n+ 2 and (−1)n+1c(n)(ε) ≥ 0 (≤ 0) ∀ε > 0, where the function c is
defined in Proposition 3(b).

Comparing Proposition 3(a) and Corollary 3(a) with Proposition 1(a) and Corollary
1(a), we observe that the multiplicative utility premium behaves, with respect to x, the
same way as the additive utility premium, with respect to w (it is decreasing), if the kth-
order partial relative risk aversion coefficient exceeds the kth threshold. This reminds
of several results in the literature where a similar result is obtained when dealing with
multiplicative risks: see Eeckhoudt et al. (2009a), Wang and Li (2010), Chiu et al. (2012)
and Denuit and Rey (2013).

The case of the second-order shape (convexity) addressed in part (b) is however more
complex as it involves a new function, c(ε).

The first derivative of the function c, c(1), writes as c(1) = 2εu′′(w+xε)+(ε)2xu′′′(w+xε).

Then c(1) ≥ 0 is equivalent to r
(2)
p (xε;w) ≥ 2. The kth-order derivative of the function c,

c(k), for all k ≥ 2, writes as (see proof in Appendix 3):

c(k)(ε) = k(k − 1)xk−2u(k)(w + xε) + 2kε(x)k−1u(k+1)(w + xε) + ε2xku(k+2)(w + xε). (4)

Using partial relative index coefficients, we obtain, for k ≥ 2 (see proof in Appendix 4):

Sgn{c(k)(ε)} = (−1)k+1Sgn{k(k − 1) + r(k)p (xε;w)(−2k + r(k+1)
p (xε;w))}. (5)

We are now in a position to illustrate these results. Consider first the case where X �SD−1
Y : X = a and Y = b with 0 < a < b. The multiplicative utility premium of order 1 writes
as ωM(w, x;Y,X) = u(w + xb) − u(w + xa). Following Proposition 3, dωM (w,x;Y,X)

dx
≤ 0

for all utility function u such as u′ ≥ 0 and u′′ ≤ 0 if r
(1)
p ≥ 1, i.e if −y u

′′(w+y)
u′(w+y)

≥ 1.

Item (b) of Proposition 3 means that d2ωM (w,x;Y,X)
dx2

≥ 0 for all u such as u′ ≥ 0, u′′ ≤ 0

and u′′′ ≥ 0 if c(1) ≥ 0 that is equivalent to r
(2)
p ≥ 2. Consider now the case where

X �Ekern−2 Y : Y = 1 and X such that E(X) = 1. The 2nd-order multiplicative utility
premium writes as ωM(w, x;Y,X) = u(w + x) − E[u(w + xX)]. Following Corollary 3,
dωM (w,x;Y,X)

dx
≤ 0 if u verifies u′′ ≤ 0 and u′′′ ≥ 0 and if r

(2)
p ≥ 2. Item (b) of Corollary

3 means that d2ωM (w,x;Y,X)
dx2

≥ 0 for all u such as u′′ ≤ 0, u′′′ ≥ 0 and u(4) ≤ 0 if c
′′ ≤ 0,

with c
′′

= 2u′′(w + xε) + 4εxu
′′′

(w + xε) + ε2x2u(4)(w + xε). The expression of c
′′

can be
rewritten using partial relative risk aversion coefficients. We obtain

Sgn{c′′} = Sgn{−2 + r(2)p (xε;w)[4− r(3)p (xε;w)]} (6)

We immadiately observe that, without additional assumptions, c
′′ ≤ 0 is not necessarily

verified. So the convexity of the 2nd-order multiplicative utility premium is not a trivial
property.
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Note, however, that if r
(3)
p is sufficiently high (more precisely if r

(3)
p ≥ 4), Sgn{c′′(ε)}

is negative (convexity is obtained). More generally, considering Eq. (5), condition

r
(k+1)
p ≥ 2k ∀k = 1, . . . , n is a sufficient condition to obtain (−1)k+1c(k)(ε) ≥ 0 ∀ε > 0
∀k = 1, . . . , n, i.e., to obtain the convexity of the nth-order multiplicative utility premium
as a function of the amount exposed to risk. This leads to the following corollary.

Corollary 4.

A sufficient condition for the convexity of the nth-order multiplicative utility premium
ωM(w, x;Y,X) as a function of x for all MRA DMs from order 1 to n+ 2 is r

(k+1)
p ≥ 2k

∀k = 1, . . . , n.

The condition r
(k+1)
p ≥ 2k appears to be new in the literature where r

(k)
p is usually

compared to k as in our Proposition 3a above14.

The next section examines the case of a specific utility function.

4 Case of the CRRA utility function

Trying to provide more substance to the results of the previous section, we now turn
towards the special case of a familar utility function. The Constant Relative Risk Aversion
(CRRA) utility function writes as u(z) = 1

1−γ z
1−γ with γ > 0 and γ 6= 1. This function is

MRA since (−1)1+ku(k) > 0 for all k ≥ 1. With this function, the coefficient of relative risk
aversion rr(z) is constant and equal to γ and the kth degree of this coefficient is constant

and equal to r
(k)
r (z) = γ + k − 1. However, the partial risk aversion coefficient is not

constant. For total wealth w+ y, with y the wealth exposed to risk, it is rp(y;w) = y
w+y

γ.
It varies with the share of wealth exposed to risk. At order k, it is

r(k)p (y;w) =
y

w + y
(γ + k − 1). (7)

To analyze the shape of the multiplicative utility premium in this case, we proceed in
two steps: (1) All wealth is subject to a mutiplicative risk; (2) Only a part of wealth is
subject to this risk.

14Note that in a context of correlated risks, Denuit and Rey (2014) already introduced a new benchmark

comparing r
(k)
p to k − 1 to capture the sensitivity of the marginal expected utility to a correlation

parameter. This second-order condition (r
(2)
p compared to 1) appeared also later in a paper by Gollier

(2015) addressing the impact of inequalities and econonomic convergence on the efficient discount rate
(defined as a ratio of marginal expected utilities).
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4.1 All wealth is at risk

This case corresponds to the multiplicative utility premium defined in equation (2), or to
the more general multiplicative utility premium defined in equation (3), assuming w = 0.
In this case, with a CRRA utility function, the kth-degree partial relative risk aversion
coefficient is reduced to the kth-degree relative risk aversion coefficient (see above). The

conditions of Proposition 3a, r
(k)
p ≥ k (≤ k) become r

(k)
r ≥ k (≤ k). As r

(k)
r = γ + k − 1

and as γ 6= 1, this means γ > 1 (< 1), i.e., a relative risk aversion coefficient larger
(smaller) than one. Concerning the condition of Proposition 3b, we obtain in this case
that equation (5) rewrites as

Sgn{c(k)} = (−1)k+1Sgn{γ(γ − 1)}. (8)

If γ > 1, this means that the sign of c(k) is the same as the sign of u(k) positive when k
is odd and negative if k is even and thus (−1)k+1c(k) ≥ 0 for all k ≥ 1. When γ < 1, the
opposite result obtains. If all wealth is at risk, we obtain thus the following proposition:

Proposition 4.

If all wealth is at risk and if u is CRRA with relative risk aversion γ, the nth-order
multiplicative utility premium ωM(w, x;Y,X) is a decreasing and convex function of x
when γ > 1; it is an increasing and concave function of x when γ < 115.

The result is quite clear, given that only relative risk aversion is at stake in this case,
and it is constant. Note, in addition, that the shape of the multiplicative utility premium
as a function of the amount at risk x mirrors its shape as a function of riskless wealth w
(if any) only if risk aversion is relatively high (greater than one).

This corresponds to the case of a DM who prefers to disaggregate risks. In contrast,
if risk aversion is lower (γ < 1), meaning that the DM prefers to aggregate risks, the
multiplicative utility premium is in this case increasing and concave. The result derives
from the fact that relative risk aversion is here constant for any k and reads r

(k)
r = γ+k−1.

Thus, comparing r
(k)
r to k means comparing γ to 1 (see Loubergé et al. (2020)). In

addition, signing c(k) means also comparing γ to 1 (see equation (8) above).

Matters are not so simple, from a mathematical point of view, when total wealth is split
in two parts: a risky part and a non risky part. The non constant partial risk aversion
featured in equation (7) re-enters the scene in this case.

15Note that Eeckhoudt and Schlesinger (2009) already obtained the result for the direction of the
movement (decreasing when γ > 1, increasing when γ < 1) in the specific case Y = 1 and E(X) = 1.
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4.2 Only a fraction of wealth is at risk

Still using a CRRA utility function, but leaving aside the assumption that all wealth is
at risk, brings us back to the comparison between: on one hand, the partial risk aversion
coefficient (7) - approppriately adjusted to take multiplicative risks into account - and
on the other hand, the values of k or n, depending on whether stochastic dominance is
used (Proposition 3), or whether Ekern’s increases in risk are used (Corollary 3). For
instance, considering Proposition 3a, we have ∂ωM

∂x
≤ 0 for all MRA DMs from order 1

to n + 1 if r
(k)
p (xε;w) ≥ k ∀(x,w) ∀ε > 0 ∀k = 1, . . . , n. Using a CRRA utility function,

the condition is written xε
w+xε

(γ + k − 1) ≥ k. Defining h = xε
w+xε

, h < 1, the condition
becomes : h(γ + k − 1) ≥ k. It depends on h, the share of total wealth exposed to
the multiplicative risk, and not only on γ, relative risk aversion. This is a source of
indetermination. Consider the simplest possible case, first-order stochastic dominance,
where k = n = 1, X = a, Y = b with 0 < a < b. Using Corollary 3, we get the following
results:

ωM is decreasing in x if r
(1)
p ≥ 1, i.e, h ≥ 1

γ
; it is increasing in x if r

(1)
p ≤ 1, i.e, h ≤ 1

γ
.

ωM is convex in x if r
(2)
p ≥ 2, i.e, h ≥ 2

γ+1
; it is concave in x if r

(2)
p ≤ 2, i.e, h ≤ 2

γ+1
.

Hence two values play a role in this case: 1
γ

and 2
γ+1

. Note that:

• γ < 1 ⇒ 1 < 2
γ+1

< 1
γ
. As h < 1, this means that ωM is increasing and concave in

this case.

• γ > 1 ⇒ 1
γ
< 2

γ+1
< 1. With h < 1, several sub-cases are then possible:

– ωM is an increasing and concave function of x when h ∈ [0, 1
γ
],

– ωM is a decreasing and concave function of x when h ∈ [ 1
γ
, 2
γ+1

],

– ωM is a decreasing and convex function of x when h ∈ [ 2
γ+1

, 1].

We observe that these results comply with Proposition 4, where h = 1. Illustrating the
general cases proves still more difficult, especially for the second-order conditions. It is
possible, however, to determine the first-order impact of x on the multiplicative utility
premium as follows, if γ < 1.

Proposition 5.

If a share h < 1 of total wealth is exposed to a multiplicative risk and if u is CRRA with
relative risk aversion γ, the nth-order multiplicative utility premium ωM(w, x;Y,X) is an
increasing function of x when γ < 1.
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Proof:

Define α(k) = k
γ+k−1 . Using CRRA utility with relative risk aversion γ, Proposition 3a

indicates that

ωM(w, x;Y,X) decreases with x if r
(k)
p ≥ k, i.e, if h ≥ α(k), where h is defined above,

h ≤ 1.

ωM(w, x;Y,X) increases with x if r
(k)
p ≤ k, i.e., if h ≤ α(k).

Note, in addition, that:

γ < 1 ⇒ α(k) > 1 and α′(k) < 0 ∀k ≥ 1,

γ > 1 ⇒ α(k) < 1 and α′(k) > 0 ∀k ≥ 1.

Hence, ωM(w, x;Y,X) increases with x if γ < 1, all k ≥ 1. QED

Note that we recover in this case (γ < 1), the first-order relationship between the mul-
tiplicative utility premium and the amount x exposed to risk observed in Proposition 4:
it is positive. If γ > 1, as both h and α(k) are less than 1, and as α′(k) > 0, the result
depends on three parameters: h, γ and n. For instance, if X �Ekern−3 Y (third-order
increase in risk) and γ = 2, we get α(n) = 0.75. Thus the multiplicative utility premium
ωM(w, x;Y,X) increases with x if the share of wealth exposed to multiplicative risk h is
less than 0.75, and it decreases if h ≥ 0.75. A larger aversion to risk, for instance γ = 2.5,
will reduce this threshold ratio to 0.66. A fourth-order increase in risk (n = 4) will drive
it to a higher h = 0.80. Unfortunately, it appears impossible to provide a clear result
leading to a simple proposition.

5 Conclusion

Our objective in this paper is to improve our knowledge about the shape of the utility
premium introduced informally by Friedman and Savage (1948) and defined more formally
by Eeckhoudt and Schlesinger (2009). This premium measures the loss of welfare in an
expected utility framework when a risk averse DM faces an aggravation of risk. It was
extended by Courbage et al. (2018) to risk deteriorations at any order n, using stochastic
dominance or Ekern’s (1980) definitions for increases in risk. All this literature focusses
on additive risks. Starting from there, we first show that the nth-order additive utility
premium is a decreasing and convex function of non-risky wealth (Proposition and Corol-
lary 1). But our main motivation is to investigate whether this clear and intuitive shape
is preserved when the aggravation bears on multiplicative risks. Addressing multiplicative
risks yields a first complication. One need make a distinction between risk-free wealth
and the amount of wealth exposed to multiplicative risks. We observe that the shape
of the nth order mutiplicative utility premium as a function of risk-free wealth does not
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deviate from the relationship observed when the additive utility premium is the object
of study: it is decreasing and convex (Proposition and Corollary 2). However, different
shapes are possible when we focus on the relationship between the mutiplicative utility
premium and the amount of wealth exposed to risk. Depending on conditions where the
coefficient of partial relative risk aversion plays a leading role, the multiplicative utility
premium at any order n may be decreasing or increasing, and convex or concave (Propo-
sition 3 and Corollary 3). Trying to lend more substance to our results, we finally turn
towards a familiar special case, the case of a CRRA utility function. Unfortunately, the
loss of generality is not rewarded with more clear-cut results. Results are complete and
quite clear only when all wealth is exposed to risk. Depending on whether the CRRA
coefficient is larger or smaller than unity, the nth order multiplicative utility premium is
then decreasing and convex, or increasing and concave (Proposition 4). If only a share of
wealth is exposed to multiplicative risks, the results are partial and limited to the case
where the CCRA coefficient is less than one (Proposition 5).
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Appendix 1

w(x;Y,X) = E[u(x+ Y )]− E[u(x+X)].

dw(x;Y,X)
dx

= E[u′(x+ Y )]− E[u′(x+X)].

Let’s define the function a as follows: a(ε) = u′(x + ε) ∀ε for a given x. The previous
expression rewrites as

dw(x;Y,X)
dx

= E[a(Y )] − E[a(X)]. Using SD properties, we obtain dw(x;Y,X)
dx

≤ 0 if the
function a verifies (−1)k+1a(k) ≤ 0 ∀k = 1, . . . , n since X �SD−n Y .

a′(ε) = u′′(x+ ε),

a′′(ε) = u′′′(x+ ε),

a′′′(ε) = u(4)(x+ ε),

. . .

a(k)(ε) = u(k+1)(x+ ε).

We obtain (−1)k+1a(k) ≤ 0 ∀k = 1, . . . , n for all DMs who are MRA from 1 to n+ 1.

d2w(x;Y,X)
dx2

= E[u′′(x+ Y )]− E[u′′(x+X)].

Let’s define the function b as follows: b(ε) = u′′(x + ε) ∀ε for a given x. The previous
expression rewrites as

d2w(x;Y,X)
dx2

= E[b(Y )] − E[b(X)]. Using SD properties, we obtain d2w(x;Y,X)
dx2

≥ 0 if the
function b verifies (−1)k+1b(k) ≥ 0 ∀k = 1, . . . , n since X �SD−n Y .

b′(ε) = u′′′(x+ ε),

b′′(ε) = u(4)(x+ ε),

b′′′(ε) = u(5)(x+ ε),

. . .

b(k)(ε) = u(k+2)(x+ ε).

We obtain (−1)k+1b(k) ≥ 0 ∀k = 1, . . . , n for all DMs who are MRA from 1 to n+ 2. �

Appendix 2

wM(w, x;Y,X) = E[u(w + xY )]− E[u(w + xX)].

dwM (w,x;Y,X)
dx

= E[Y u′(w + xY )]− E[Xu′(w + xX)].

Let’s define the function A as follows: A(ε) = εu′(w+xε) ∀ε > 0 for given w and x > 0.
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Using this notation, the previous expression rewrites as

dwM (w,x;Y,X)
dx

= E[A(Y )]− E[A(X)]. Using SD properties, we obtain dwM (w,x;Y,X)
dx

≤ 0 if
the function A verifies (−1)k+1A(k) ≤ 0 ∀k = 1, . . . , n since X �SD−n Y .

A′(ε) = u′(x+ ε) + xεu′′(x+ ε),

A′′(ε) = 2xu′′(x+ ε) + x2εu′′′(x+ ε),

A′′′(ε) = 3x2u′′′(x+ ε) + x3εu(4)(x+ ε),

. . .

A(k)(ε) = kxk−1u(k)(x+ ε) + xkεu(k+1)(x+ ε).

Assuming u such as (−1)k+1u(k) ≥ 0 ∀k = 1, . . . , n + 1, (−1)k+1A(k) ≤ 0 ∀k = 1, . . . , n

is equivalent to r
(k)
p (xε;w)) ≥ k ∀k = 1, . . . , n.

We obtain then dwM (w,x;Y,X)
dx

≤ 0(≥ 0) if r
(k)
p (xε;w)) ≥ k(≤ k) ∀k = 1, . . . , n.

d2wM (w,x;Y,X)
dx2

= E[Y 2u′′(w + xY )]− E[X2u′′(w + xX)].

Let’s define the function c as follows: c(ε) = ε2u′′(w+xε) ∀ε > 0 for given w and x > 0.
Using this notation, the previous expression rewrites as

d2wM (w,x;Y,X)
dx2

= E[c(Y )]− E[c(X)].

Using SD properties, we obtain d2wM (w,x;Y,X)
dx2

≥ 0(≤ 0) if the function c verifies (−1)k+1c(k) ≥
0(≤ 0) ∀ε > 0, ∀k = 1, . . . , n since X �SD−n Y . �

Appendix 3

c(ε) = ε2u′′(w + xε)

c′(ε) = 2εu′′(w + xε) + ε2xu′′′(w + xε)

c′′(ε) = 2u′′(w + xε) + 4εxu′′′(w + xε) + ε2x2u(4)(w + xε)

c′′′(ε) = 6xu′′′(w + xε) + 6εx2u(4)(w + xε) + ε2x3u(5)(w + xε)

c(4)(ε) = 12x2u(4)(w + xε) + 8εx3u(5)(w + xε) + ε2x4u(6)(w + xε)

. . .

c(k)(ε) = αkx
k−2u(k)(w + xε) + βkεx

k−1u(k+1)(w + xε) + ε2xku(k+2)(w + xε) ∀k ≥ 2 (a)

We must determine the value of parameters αk and βk. Derivating c(k), we obtain the
expression of c(k+1) ∀k ≥ 2 that is (in that follows, we denote by (.) the argument (w+xε)
in order to simplify mathematical expressions):

c(k+1)(ε) = (αk + βk)x
k−1u(k+1)(.) + (βk + 2)εxku(k+2)(.) + ε2xk+1u(k+3)(.) (b)

22



Rewriting now Eq. (a) at the order k + 1, we obtain, ∀k ≥ 2:

c(k+1)(ε) = αk+1x
k−1u(k+1)(.) + βk+1εx

ku(k+2)(.) + ε2xk+1u(k+3)(.) (c)

Using (b) and (c), we obtain:

αk+1 = αk + βk ∀k ≥ 2 (d)

βk+1 = βk + 2 ∀k ≥ 2 (e)

Let’s begin to determine the value of βk ∀k ≥ 2.

Using the expression of c(2), we read β2 = 4, and using (e), we obtain:

β3 = β2 + 2 = 4 + 2

β4 = β3 + 2 = (4 + 2) + 2

β5 = β4 + 2 = (4 + 2 + 2) + 2

β6 = β5 + 2 = (4 + 2 + 2 + 2) + 2

. . .

βk = βk−1 + 2 = 4 + 2(k − 2) = 2k

Using the expression of c(2), we read α2 = 2, and using (d), we obtain:

α3 = α2 + β2 = 2 + β2

α4 = α3 + β3 = (2 + β2) + β3

α5 = α4 + β4 = (2 + β2 + β3) + β4

α6 = α5 + β5 = (2 + β2 + β3 + β4) + β5

. . .

αk = 2 +
∑k−1

j=2 βj = 2 + 2
∑k−1

j=2 j = 2 + 2 (k−2)(k+1)
2

= k(k − 1).

Using expressions of αk and βk, (a) becomes:

c(k)(ε) = k(k−1)xk−2u(k)(w+xε)+2kεxk−1u(k+1)(w+xε)+ε2xku(k+2)(w+xε) ∀k ≥ 2. �

Appendix 4

In that follows, we denote by (.) the argument (w+xε) in order to simplify mathematical
expressions.

c(k)(ε) = k(k − 1)xk−2u(k)(.) + 2kεxk−1u(k+1)(.) + ε2xku(k+2)(.) ∀k ≥ 2.

For all MRA DMs and for all k odd, we have u(k) ≥ 0, u(k+1) ≤ 0 and u(k+2) ≥ 0. We
obtain then, for all k ≥ 2 and k odd,
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Sgn{c(k)(ε)} = Sgn{k(k−1)u(k)(.)+2kεxu(k+1)(.)+ε2x2u(k+2)(.)} (since xk−2 > 0) that
is equivalent to

Sgn{c(k)(ε)} = Sgn{k(k − 1)− 2k
(
−εxu(k+1)

u(k)

)
+
(
−εxu(k+2)

u(k+1)

)(
−εxu(k+1)

u(k)

)
}

= Sgn{k(k − 1) + r
(k)
p (xε;w)(−2k + r

(k+1)
p (xε;w))}.

Similarly, for all MRA DMs and for all k even, we have u(k) ≤ 0, u(k+1) ≥ 0 and
u(k+2) ≤ 0. We obtain then, for all k ≥ 2 and k even,

Sgn{c(k)(ε)} = −Sgn{k(k − 1) + r
(k)
p (xε;w)(−2k + r

(k+1)
p (xε;w))}.

We conclude then, for all k ≥ 2:

Sgn{c(k)(ε)} = (−1)(k+1)Sgn{k(k − 1) + r
(k)
p (xε;w)(−2k + r

(k+1)
p (xε;w))}. �
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