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ABSTRACT: 

On-demand insurance contracts are crucial for the sharing economy. These contracts make use of 

a simple mechanism in a practical way: People differ in their frequency of exposure as well as the 

probability of loss; the extra dimension of heterogeneity can be used to screen the insured which 

leads to welfare improvements (the utility possibility frontier shifts outward). The conditioning on 

time periods relaxes the incentive compatibility constraint, since high frequency types are risking 

being uncovered for some time by choosing a different contract. We provide sufficient conditions 

when a full coverage equilibrium is reached. We also analyze various types of on-demand contracts 

which are used in practice, both in a Rothschild-Stiglitz and in a Wilson-Miyasaki-Spence 

framework.
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On-Demand Insurance 

 

On-demand insurance is one of several innovations that the InsurTech sector recently 

brought to the insurance industry (see Braun and Schreiber, 2017). It allows individuals to flexibly 

secure coverage for episodic risks whenever needed. Individuals may therefore seek exclusive 

protection once their items or they themselves are at risk, e.g., when they drive their car part-time 

for Uber or Lyft. In contrast to consumers of classical insurance products with annual premiums, 

those of on-demand policies are only charged for the actual time of usage. Claims are valid as long 

as coverage was active when the damage happened. The number of firms offering on-demand 

insurance has rapidly grown in recent years and now spans various product lines such as pay-per-

mile car insurance (Metromile, Cuvva, Friday), pay-per-use policies for bicycles and cameras 

(Lings, Getsafe), homeshare and rideshare coverage (Slice, Sure) and even commercial insurance 

products (Tapoly). Some observers estimate that the on-demand insurance market could grow to 

$190 billion by 2026 (see, e.g., Garth, 2019).   

Beyond its standalone appeal for technology-affine insurance customers, on-demand 

insurance exhibits an even greater potential: it is the natural form of insurance for the sharing 

economy. The sharing, collaborative or access economy is designed to allow individuals the 

consumption of a wide variety of products and services (from cars and houses to tools etc.) without 

ownership.2 A key segment is car sharing, which can take place in two forms. On the one hand, 

peer-to-peer platforms such as Turo are matchmakers between car owners and car seekers. On the 

 
2 In a narrow sense, sharing means collective consumption that does not involve profit-seeking lenders and 

intermediaries. Hence, Bardhi, and Eckhardt (2012) introduced the term access economy, which underlines that 

consumers are in fact participating in a heavily intermediated market and pay to utilize the property or service of 

someone else for a specific time span. 

https://turo.com/
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other hand, centralized mobility service providers such as Share Now run car fleets that they 

distribute across urban centers so that customers can access them on the spot through a smart phone 

app. In both cases, insurance coverage must be delivered in the form of new on-demand contracts, 

either for a fixed period (in the case of peer-to-peer car sharing) or in a pay-as-you-go format (for 

mobility services). Standard one-year insurance policies are not suitable for this purpose. 

We analyze on-demand insurance contracts in markets with adverse selection. Individuals 

may differ in their riskiness and in their amount of exposure to the risk; both are private 

information. We adopt the contract-theoretic approaches of Rothschild-Stiglitz (1976) as well as 

Wilson (1977), Miyazaki (1977) and Spence (1978). Much of the existing literature in this 

framework analyses “standard” insurance contracts, which cover a single risk and are fully 

characterized by the price of the policy and the quantity of coverage. It is implicitly assumed that 

the coverage is in force at all times during the policy period. In contrast, on-demand policies are 

in force only during selected times during the policy period. That is, on-demand policies are 

characterized by the price, the quantity of coverage and a determination of the subperiods during 

which the coverage is in force. The objective of this paper is to examine the efficiency effects of 

the introduction of on-demand policies and to characterize the equilibrium policies.  

We contribute to the large literature on risk classification and categorization in insurance 

markets (e.g., Hoy, 1982, 1989, Crocker and Snow 1985, 1986, Rothschild, 2011, 2015, among 

others).3 This literature shows that, under certain conditions, risk categorization improves welfare.4 

Our analysis is most closely related to the work by Bond and Crocker (1991), Crocker and Snow 

(2011) and Crocker and Zhu (2021). Bond and Crocker (1991) allow insurance companies to 

 
3 See Crocker and Snow (2013) and Dionne and Rothschild (2014) for reviews of this literature. 
4 Costless categorization always increases welfare, while costly categorization may or may not increase welfare. 

Rothschild (2011) shows that, if the government provides the appropriate partial social insurance policy, then private 

insurers have the incentive to engage in costly risk categorization if, and only if, it is welfare improving.  

https://www.share-now.com/
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classify risks based on the observable consumption of goods, which is correlated with the insurable 

risk. They term this idea “endogenous categorization”.5 Consumption may provide information 

about the individual’s privately known loss propensity and allow more efficient sorting of 

individuals into risk categories. Bond and Crocker (1991) show that this may lead to first best 

allocations, if the adverse selection problem is “small.” Crocker and Snow (2011) examine the 

bundling of different losses and perils into one insurance policy. The different risks and perils have 

different deductibles, allowing for screening in multiple dimensions. They show that 

multidimensional screening relaxes the self-selection constraint, improving the efficiency of 

allocations. This also implies that the Rothschild-Stiglitz equilibrium exists for a wider range of 

populations. Crocker and Zhu (2021) analyze the efficiency effects of voluntary risk classification. 

Consumers have the option of taking a costless, but imperfectly informative underwriting test, the 

results of which are used to classify individuals. They show that voluntary classification is Pareto 

superior to no classification and to mandatory classification. Voluntary classification allows the 

insurer to use both the choice to take the test and the test results to underwrite policies.  

The insurance policies examined in these papers can be characterized as “price-quantity-

plus” contracts, adding a dimension beyond just price and quantity.6 The contracts examined in 

Bond and Crocker (1991) add the correlated consumption goods. The contracts examined in 

Crocker and Snow (2011) are multi-dimensional, covering multiple risks. The contracts examined 

 
5 Bond and Crocker (1991) allow for both moral hazard and adverse selection, whereas we only consider an adverse 

selection problem. 
6 These papers, as is ours, are also related to the literature on contract form as a screening mechanism. Smith and 

Stutzer (1990) as well as Ligon and Thistle (2005) show that participating policies sold by mutual insurance companies 

offer individuals an additional possibility to signal their type. In the resulting equilibrium, low-risk individuals 

purchase policies from mutual insurers and high-risk individuals those from stock insurers. Posey and Thistle (2017) 

analyze automobile insurance markets with asymmetric information and show that the policyholders’ choice between 

full and limited tort coverage effectively represents a screening mechanism. Finally, Gemmo et al. (2017) draw on a 

Wilson-Miyazaki-Spence framework to examine transparency contracts, which allow for risk screening with 

wearables or telematics devices. They find that consumers who are prepared to share private information receive full 

insurance coverage, implying a Pareto improvement in terms of utilitarian welfare. 
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in Crocker and Zhu (2021) add the choice to take the underwriting test as well as its result. In our 

analysis, on-demand contracts are characterized by price and quantity plus the time dimension. 

There are two important distinctions compared to multidimensional risk bundling. First, on-

demand contracts have fewer degrees of freedom with regard to contract design. This limits the 

possibilities of effective screening with on-demand contracts. Second, the time dimension makes 

this problem inherently dynamic. An important condition in our analysis is whether the high-risk 

individuals’ uncovered loss under the low-risk policy is greater than the difference in the total loss 

probabilities. If this condition holds, then the time dimension provides enough information to 

separate the low risks and high risks. If so, both high and low risk types may receive full coverage 

at actuarially fair prices. The fairly priced, full coverage policies can be achieved in a Wilson-

Miyazaki-Spence (WMS) equilibrium and in a Rothschild-Stiglitz (RS) equilibrium. If the 

condition does not hold, the time dimension alone does not provide enough information to separate 

the low risks from the high risks and some rationing of coverage for the low risks is needed. 

Nonetheless, adding the time dimension relaxes the self-selection constraint so that the utility 

possibility frontier for on-demand contracts lies outside the utility possibility frontier for standard 

insurance policies. As a result, low risks receive more coverage in both the WMS and the RS 

equilibrium. 

The remainder of this paper is structured as follows. The next section provides an 

illustrative example. In the third section, we develop the model with two risk types. We analyze 

fixed-period on-demand policies, where the subperiods covered are offered by the insurer and the 

policyholder knows with uncertainty that those are the periods in which he will be at risk. We also 

analyze fixed-duration on-demand policies, where the insurer offers to cover a certain number of 

subperiods and the policyholder can select the ones for which he or she would like to be insured. 
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In both cases, individuals are assumed to commit to their coverage at the beginning of the policy 

period. Finally, we discuss pay-as-you-go insurance, where a commitment from the policyholder 

is not required.7 

We want to highlight that all three types of on-demand insurance policies we examine can 

be found in practice. Fixed-period contracts are popular for example with embedded travel 

insurance. If you book a trip online, you often have the option to directly add travel insurance. 

Here, the insured cannot choose the contract period himself, but there is also no uncertainty when 

he or she will actually require the coverage. Moreover, fixed-duration contracts can be applied 

when the usage (exposure) pattern throughout the year is known in advance. An example is 

insurance for small businesses, which have part-time (but repeating) opening times. Finally, pay-

as-you go contracts are becoming very popular in the car insurance space, where drivers usually 

do not know their future usage.  

 

An Illustrative Example 

Assume that there are two individuals who have wealth W and face a random insurable loss of 

fixed size D, which can occur only once during the policy period.8 Linda has a 20% risk of an 

accident during the only month in the year she needs to use a vehicle. Helen uses her vehicle 10 

months of the year and has a total accident risk of 30% for the whole year. At the beginning of the 

year, both commit to the time periods during which they will have coverage, with an associated 

 
7 Industry practitioners also use the term usage-based insurance (UBI) in this context. UBI is commonly defined as 

the combination of flexible coverage duration and observable risk behavior. In telematics car insurance, e.g., these 

elements are termed pay-as-you-drive (PAYD) and pay-how-you-drive (PHYD) (Śliwiński and Kuryłowicz, 2021). 
Our analysis focuses on the time dimension rather than the transparency dimension. The latter is treated in Gemmo 

et al. (2017). 
8 This is the same as assuming that the insurance policy is terminated without reinstatement after the first loss has 

been reported. 

https://onlinelibrary.wiley.com/doi/full/10.1111/rmir.12165
https://onlinelibrary.wiley.com/doi/full/10.1111/rmir.12165
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total premium ρ. Consumption then happens at the end of the year, after observing whether a loss 

has been realized and any indemnity paid.  

In the traditional Rothschild-Stiglitz setting with standard contracts, Helen has a higher 

annual risk, reflected by the total loss probability pH = 0.3, so she gets full, fair insurance for a 

premium of ρ = 0.3D. Linda only receives partial, fair insurance, since she has a lower annual risk: 

her total loss probability is pL = 0.2. A separating equilibrium arises. However, on a monthly basis, 

Linda is at a higher risk. Linda’s joint probability of a loss in any subperiod9 is pL = 0.2 > 0.05 = 

max pH. 

Figure 1 

Linda’s and Helen’s Risk Profiles 

 

 

                          0.20 

Linda              _____ 

            0        1         2                                                                                                         12 

 |_____|_____|_____|_____|_____|_____|_____|_____|_____|_____|_____|_____|_ 

Helen             ______________________________________________________ 

                         0.02    0.04    0.01    0.04    0.04    0.03    0.05    0.03    0.01    0.03                 

 

This figure illustrates the risk profiles of the two individuals. Consider now the following on-

demand contract: Instead of a standard yearly contract, the on-demand contract provides full 

insurance for one month at the fair premium for Linda. Note that Linda has no coverage for the 

other months. Helen still keeps her original standard insurance contract, which covers the whole 

year.  

 To show that this is incentive compatible, there are various cases to consider. Linda could 

switch from the one-month on-demand policy to the full-year standard policy.  However, the 

standard policy is not her preferred choice, because it has a higher premium and provides coverage 

 
9 The joint probability of a loss in a subperiod P(A 𝑎𝑛𝑑 𝐵) comprises two coinciding events: A) a loss will occur in 

that subperiod and B) no loss occurred in the previous subperiods.  
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in months when she is not at risk. Helen, on the other hand, could switch from the full-year standard 

policy to the one-month on-demand policy with the lower premium. This, however, would leave 

her with no coverage for 9 of the 10 months in which she is at risk. As we will prove in the next 

section, the disutility from uncovered months is under certain conditions larger than the disutility 

from the premium differential. Hence, Helen prefers the standard contract. Finally, Helen could 

buy the one-month policy ten times, but this would cost (nH/nL)L = 10∙0.2D = 2D instead of the 

annual premium of 0.3D for the standard policy. In this example, the difference in the time periods 

for which Linda and Helen demand coverage is enough to distinguish between them and offer both 

fairly priced full coverage.    

 Now suppose instead of being at risk for only one month, Linda is at risk from January to 

September, with monthly loss probabilities which sum equals in total to 0.2. Linda can buy an on-

demand policy covering January to September. If Helen buys this policy, she is only at risk for an 

uncovered loss for three months with a probability of 0.07. If the on-demand policy offers full 

coverage, then Helen will imitate Linda and buy the policy – the premium savings are enough to 

offset the risk of uncovered losses. In this case, the time dimension alone is not enough to screen 

Linda and Helen. Some rationing of coverage in the on-demand policy is also needed. Yet, as 

Helen still would face the disincentive of uncovered losses, the indemnity can be larger than if 

Linda’s policy offered full-year coverage.   

 

Fixed-Period Policies  

In our basic model, all decisions are made at the beginning of the policy period for all subperiods. 

The analysis of on-demand contracts is inherently dynamic: the subperiods to insure are dispersed 

along the time dimension  For fixed-period policies, however, individuals commit at the 
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beginning of the year to all subperiods they would like to cover. This allows us to capture the 

economics of on-demand insurance without getting bogged down in the complexities of a dynamic 

model.  

We now generalize our example from the previous section and provide a sufficient 

condition when full coverage is optimal and can be supported by a competitive equilibrium. There 

is a continuum of individuals, who are assumed to be observationally identical. We assume all 

individuals are expected utility maximizers with non-satiated, risk averse preferences described by 

a utility function U, with U′ > 0 and U” < 0. Individuals have initial wealth W and face a possible 

loss of D. Individuals are assumed to be one of two types, a type with lower total risk (subscript 

L) and a type with higher total risk (subscript H); risk type is private information. The proportion 

of type i individuals is i, where 0 < H, L < 1 and H + L = 1. 

An insurance policy, C, is described by a premium, , an indemnity, I, and a time 

dimension, . The overall policy period is divided into T subperiods, so that  is a T-vector of zeros 

and ones describing when the policy is in force (t = 1) or not in force (t = 0). For a standard 

insurance policy,  is a T-vector of 1s, indicating the policy is always in force. For an on-demand 

policy, the insurer offers a contract which specifies the subperiods during which the policy is in 

force.10 The premium is paid at the beginning of the policy period. A loss may occur during one 

of the subperiods, in which case it is indemnified if the policy is in force during that subperiod. 

All consumption takes place at the end of the policy period. For ease of exposition, we assume that 

the discount rate is zero.  

 
10 Formally, a standard policy is a special case of an on-demand policy which is always in force (𝜏𝑖

𝑡 = 1 for all t). We 

take “on-demand” to mean that the policy is in force for at least one subperiod and not in force for at least one 

subperiod. We also distinguish on-demand policies from the null policy (no insurance), which has a premium and 

indemnity of zero, and  equal to a T-vector of zeros.  
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For an individual with an on-demand policy, three states can materialize. In state 1, there 

is no loss, implying that the premium is paid and the individual’s terminal wealth amounts to 𝑊𝑖
1 =

𝑊 − 𝜌𝑖. In state 2, there is an insured loss. Accordingly, the premium is paid, the loss is 

indemnified, and the individual’s terminal wealth amounts to 𝑊𝑖
2 = 𝑊 − 𝜌𝑖 − 𝐷 + 𝐼𝑖. Finally, in 

state 3, there is an uninsured loss: the policy was not in force during the subperiod in which the 

loss occured. In this case, the individual’s terminal wealth is 𝑊𝑖
3 = 𝑊 − 𝜌𝑖 − 𝐷. Note that the 

third state cannot occur with a standard policy.11 

We assume that at most one loss can occur during the policy period. Let 𝑝𝑖
𝑡 (0 ≤ 𝑝𝑖

𝑡 < 1) be 

the type i individuals’ probability of the joint events that a loss has not occurred up until t − 1 and 

then occurs in subperiod t (between t − 1 and t). The 𝑝𝑖
𝑡 are assumed to be common knowledge. 

We assume that 0 ≤ 𝑝𝑖
𝑡 < 1 and 0 < ∑ 𝑝𝑖

𝑡𝑇
𝑡=1  < 1, and we allow 𝑝𝑖

𝑡 = 0 during some subperiods, since 

the individual may not be engaged in the risky activity to be insured. For example, if someone 

drives for a ride-share service only on the weekend, then the probability of a loss is zero on 

weekdays. We do not assume that 𝑝𝐻
𝑡 > 𝑝𝐿

𝑡, this may or may not be true for any subperiod. The 

probabilities of the different states for the overall policy period can be determined as follows.  

• The probability of state 1 (no loss) is 𝑃𝑖
1 =  1 − ∑ 𝑝𝑖

𝑡𝑇
𝑡=1 .  

• The probability of state 2 (covered loss) is 𝑃𝑖
2 =  ∑ 𝑝𝑖

𝑡𝜏𝑖
𝑡𝑇

𝑡=1 .  

• The probability of state 3 (uncovered loss) is 𝑃𝑖
3 =  ∑ 𝑝𝑖

𝑡(1 − 𝜏𝑖
𝑡)𝑇

𝑡=1 . 

The high risks have a greater risk of loss and therefore a higher probability of no loss during the 

overall policy period than the low risks: 𝑃𝐿
1 > 𝑃𝐻

1. The probabilities of states 2 and 3 depend on 

the contract through . We write 𝑃𝑖𝑗
2 =  ∑ 𝑝𝑖

𝑡𝜏𝑗
𝑡𝑇

𝑡=1  and 𝑃𝑖𝑗
3 =  ∑ 𝑝𝑖

𝑡(1 − 𝜏𝑗
𝑡)𝑇

𝑡=1  when a type i 

 
11 In the Crocker and Snow (2011) model with n bundled risks, there are n + 1 states of the world with n degrees of 

freedom. Our model has three states and only one degree of freedom since W3 = W1 – D.   
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individual has the contract Cj (i ≠ j). We exclusively use the subscript i when a type i individual 

has the contract Ci. 

For a standard insurance policy, full insurance means the indemnity is equal to the loss. 

For an on-demand policy, full insurance means the indemnity is equal to the loss and the policy is 

in force during each subperiod with a non-zero risk of loss.  

The high and low-risk types can be at risk of a loss during different time periods.  Let the 

“at risk” set, Ri = {t | 𝑝𝑖
𝑡 > 0}, be the set of periods in which the probability of loss is positive. 

While there are exceptions, for most applications we expect that RH is not a subset of RL: 𝑅𝐻 ⊈ 𝑅𝐿. 

Hence, in our main analysis, we look at the case in which RH cannot overlap with RL, unless it 

contains more elements.12 Moreover, we assume that individuals do not choose contracts with 

superfluous coverage, that is, contracts for which 𝜏𝑖
𝑡 = 1 in subperiods where 𝑝𝑖

𝑡 = 0.13 The fairly 

priced, full insurance contract is denoted 𝐶𝑖
∗; for this contract, the premium is I = (1 – 𝑃𝑖

1)D, the 

indemnity is Ii = D and subperiods are insured if, and only if, they are at risk: 𝜏𝑖
𝑡 = 1 with t ∈ Ri. 

Finally, we assume that the difference in total risk between the two types is less than the potential 

uncovered risk for the type H individuals: 

Assumption 1: ∑ 𝑝𝐻
𝑡𝑇

𝑡=1 −  ∑ 𝑝𝐿
𝑡𝑇

𝑡=1  ≤  ∑ 𝑝𝐻
𝑡 (1 − 𝜏𝐿

𝑡)𝑇
𝑡=1 . 

This assumption plays an important role in the analysis, which we discuss in detail below.  

In the aforementioned setting, the expected utility for a type i individual with the contract Cj is 

given by  

 
12 Suppose Linda and Helen both go on vacation to the beach for the month of July. Linda sits on the beach reading, 

while Helen goes jet skiing and snorkeling. Alternatively, suppose that Linda vacations during July and August, while 

Helen vacations only during July. In either case, the time periods they are at risk cannot be used screen Linda and 

Helen. Price-quantity contracts must be used, and we are essentially back to standard insurance. We wish to rule this 

type of situation out.  
13 This is a tie-breaker rule. A contract that offers superfluous coverage yields the same expected utility as a contract 

that does not. If some contract C is optimal, then so is every contract that offers the same coverage plus superfluous 

coverage. This leads to multiple equilibria which are not different in any meaningful economic sense.   
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𝑉𝑖(𝐶𝑗) = 𝑃𝑖
1𝑈(𝑊 −  𝜌𝑗) + 𝑃𝑖𝑗

2 𝑈(𝑊 − 𝜌𝑗 − 𝐷 + 𝐼𝑗) +  𝑃𝑖𝑗
3 𝑈(𝑊 − 𝜌𝑗 − 𝐷).        (1) 

The resource constraint of the insurers is  

RC 𝛿𝐻[𝜌𝐻 − 𝑃𝐻
2𝐼𝐻] + 𝛿𝐿[𝜌𝐿 − 𝑃𝐿

2𝐼𝐿]  ≥ 0            (2).  

The incentive compatibility constraints for the high risks and low risks are 

ICH 𝑉𝐻(𝐶𝐻)  ≥ 𝑉𝐻(𝐶𝐿),                (3) 

ICL 𝑉𝐿(𝐶𝐿)  ≥ 𝑉𝐿(𝐶𝐻),                (4) 

and the high-risk utility constraint is  

UH 𝑉𝐻(𝐶𝐻) ≥ �̅�𝐻.                 (5) 

where �̅�𝐻 is the lower bound on the high risks’ utility.14 Finally, the welfare maximization 

problem is  

OD arg max{𝐶𝐻 ,𝐶𝐿}𝑉𝐿(𝐶𝐿)                (6) 

subject to the constraints (2), (3), (4) and (5).  

 

Our first result is described by the following proposition: 

Proposition 1: If Assumption 1 holds, then, at the optimum (a), the resource constraint is 

binding, (b) the incentive compatibility constraints are both slack, and (c) both types 

receive full insurance contracts (𝐶𝐻
∗ , 𝐶𝐿

∗).  

 

Proof: All proofs are given in the Appendix. 

 

Part (c) of Proposition 1 is different from the well-known result for standard contracts in that the 

low risks now receive full instead of partial coverage. The economic reason is straightforward – 

the types can be screened by the subperiods for which the contract provides coverage. As a result, 

 
14 Without this lower bound, the solution would be to allocate all resources to the low risks. We consider solutions 

where �̅�𝐻 ≤ 𝑉𝐻(𝐶𝑃), where 𝐶𝑃 is the fairly priced pooled full insurance contract. This constraint implies that the high 

risks do not subsidize the low risks. Solutions to the welfare maximization problem where this inequality is reversed 

are symmetric, interchanging the roles of the H and L types. These solutions imply overinsurance for the high risks. 

Overinsurance violates the principal of indemnity in property and liability insurance.  
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premium and coverage do not need to be part of the screening mechanism and both types can be 

offered full coverage.  

 

Proposition 1 yields some important additional results. 

Corollary 1: If Assumption 1 holds, then (a) the WMS equilibrium contracts are (𝐶𝐻
∗ , 

𝐶𝐿
∗), and (b) there is no cross-subsidization. 

 

In the classical WMS model, if the proportion of high risks is small enough, then low risks may 

be willing to subsidize the high risks to relax their incentive compatibility constraint and obtain a 

contract with higher coverage for themselves. This is not the case with on-demand contracts, since 

the low risks obtain full insurance.  

 

Corollary 2: If Assumption 1 holds, then (a) the RS equilibrium contracts are (𝐶𝐻
∗ , 𝐶𝐿

∗) 

and (b) this is true for all values of H > 0.  

 

Since there is no cross-subsidization in the WMS equilibrium, both policies break even 

individually. Thus, in the presence of on-demand contracts, the WMS and RS equilibria coincide. 

An important problem with the RS equilibrium for standard contracts is that it does not exist, if 

the proportion of high risks is too small. On-demand contracts add the time dimension, which 

improves screening and solves the existence problem.  

 Note that Proposition 1 and its corollaries crucially depend on Assumption 1, which does 

not always hold. We let CL
** denote the low-risk partial insurance contract that satisfies the 

resource constraint and the incentive compatibility constraint ICH. Therefore, we now relax 

Assumption 1 and reconsider the results.   

Proposition 2: If Assumption 1 does not hold, then, at the optimum (a), the resource 

constraint is binding, (b) the incentive compatibility constraint ICL is slack and the 
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incentive compatibility constraint ICH is binding, (c) the high risks receive full insurance 

and the low risks receive partial insurance (CH
*, CL

**), and (d) the low risks receive higher 

coverage under on-demand contracts than under standard contracts.  

 

Assumption 1 determines whether or not the high-risk incentive compatibility constraint is 

binding, and, thus, whether the low risks receive full or partial coverage. However, even if 

Assumption 1 does not hold, on-demand contracts relax the incentive compatibility constraint ICH 

compared to standard contracts. As a result, the low risks receive higher coverage under on-

demand contracts.   

 

 In the WMS equilibrium for standard contracts, the low risks receive partial coverage. 

There is no cross-subsidization, if the population proportion of high risks is large enough. 

Otherwise, the low risks subsidize the high risks. That is, there is a 𝛿𝐻
0  such that the low risks 

subsidize the high risks for  𝛿𝐻 < 𝛿𝐻
0 . If Assumption 1 does not hold, this is also true for on-

demand contracts: 

Corollary 3: If Assumption 1 does not hold, then (a) the WMS equilibrium contracts are 

(CH
*, CL

**), meaning the high risks receive full insurance and the low risks receive partial 

insurance, (b) there is a 𝛿𝐻
∗  such that the low risks subsidize the high risks for 𝛿𝐻 <  𝛿𝐻

∗ , 

(c) the low risks receive higher coverage under on-demand contracts than under standard 

contracts, and (d) the presence of on-demand contracts leads to a lower critical fraction of 

high risks in the market, below which cross-subsidization occurs: 𝛿𝐻
∗ <  𝛿𝐻

0 . 

 
In the WMS equilibrium for standard contracts and on-demand contracts, the low risks receive 

partial coverage. However, the level of coverage for the low risks is higher under on-demand 

contracts than under standard contracts.  

 

 In the RS equilibrium for standard contracts, both policies break even individually. The 

high risks receive full coverage, while the low risks receive partial coverage. Moreover, there is a 
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𝛿𝐻
00 such the RS equilibrium does not exist for H < 𝛿𝐻

00. We have similar results for the RS 

equilibrium under on-demand contracts, if Assumption 1 does not hold. Let 𝐶𝐿
′ denote the fixed-

period policy for the low risks that offers partial coverage (𝐼𝐿
′ <  𝐷), earns zero expected profit 

(𝜌𝐿
′  − 𝑃𝐿

2𝐼𝐿
′ = 0), and satisfies the incentive compatibility constraint ICH as an equality (𝑉𝐻(𝐶𝐻

∗ ) =

𝑉𝐻(𝐶𝐿
′)). This policy provides less than full coverage for the low risks. 

Corollary 4: If Assumption 1 does not hold, then (a) the RS equilibrium contracts are (CH
*, 

CL
’), meaning the high risks receive full insurance and the low risks receive partial 

insurance, (b) there is a 𝛿𝐻
′  such that the equilibrium does not exist for 𝛿𝐻 <  𝛿𝐻

′ , (c) the 

low risks receive higher coverage under on-demand contracts than under standard 

contracts, and (d) the presence of on-demand contracts leads to a lower critical fraction of 

high risks in the market, below which the RS equilibrium does not exist: 𝛿𝐻
′ <  𝛿𝐻

00. 

 

As with the WMS equilibrium, the low risks receive higher coverage under the on-demand 

contracts than under standard contracts. Whether or not Assumption 1 holds, on-demand contracts 

relax the incentive compatibility constraint relative to standard contracts.     

 We now turn to the welfare comparison of standard and on-demand contracts. As on-

demand contracts relax the incentive compatibility constraints, we obtain the following result: 

Proposition 3: The utility possibility frontier for fixed-period on-demand insurance 

contracts lies outside the utility possibility frontier for standard insurance contracts.  

Under standard contracts, the high-risk individuals receive full insurance and the low-risk 

individuals receive partial insurance (Crocker and Snow, 1986).15 When on-demand contracts are 

available, the low risks receive full insurance or partial insurance, depending on whether or not 

Assumption 1 holds. In either case, however, the low risks receive greater coverage than in the 

case where insurers only offer standard policies. In particular, for any WMS equilibrium in 

standard contracts, there is a pair of on-demand contracts (with the same tax and subsidy) that 

 
15 Except at the pooled policy 𝐶𝑃

0, where both types receive full insurance. 
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offers more coverage to the low risks. The equilibrium in on-demand policies is thus Pareto 

superior to the classical equilibrium in standard contracts.16  

 

Fixed-Duration Policies  

In this section, we extend our analysis to fixed-duration contracts. In contrast to fixed-period 

contracts, the insurance company now does no longer determine the covered subperiods. Instead, 

it fixes the number of available subperiods as part of the contract, and the policyholders decide for 

which specific subperiods they would like to be covered. Through the course of the following 

analysis, we will compare fixed-duration polices to fixed-period and to standard policies.  

 Let �̃�𝑖 denote the fixed-duration policy. A fixed-duration policy consists of a premium, i, 

an indemnity, Ii, and the number of subperiods for which the policy is in force, ni (ni ≤ T). Given 

ni, policyholders report the vector �̃�𝑖 to the insurer, i.e., they tell the insurer for which exact 

subperiods they want the policy to be in force 

 Given the number of subperiods offered in the contract, individuals choose the �̃�𝑖
𝑡 

to minimize their potential uncovered risk: �̃�𝒊 =  arg min ∑ 𝑝𝑖
𝑡(1 − 𝑇

𝑡=1 𝜏𝑖
𝑡′)(𝐷 − 𝐼𝑖) subject to 

∑ �̃�𝑖
𝑡𝑇

𝑡=1 ≤ 𝑛𝑖 . The inequality is weak, because ni may be greater than the number of at-risk 

subperiods Ri. In this case, subperiods will be insured (�̃�𝑖
𝑡 = 1) if, and only if, they are at risk (t ∈ 

Ri). We retain Assumption 1, with 𝜏𝐿
𝑡 replaced by �̃�𝐿

𝑡. The fairly priced, full insurance contracts are 

now denoted �̃�𝑖
∗. The premium is i = (1 – 𝑃𝑖

1)D, the indemnity is Ii = D, and the number of 

subperiods covered equals the number of at-risk subperiods, ni = #Ri.  

 
16 The exception is the pooled equilibrium. 
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 As with fixed-period on-demand contracts and standard contracts, full coverage is 

optimal for the high-risk types. For the low-risk types, in contrast, full or partial coverage is 

optimal, depending on whether or not Assumption 1 holds. 

Proposition 4:  

(a) If Assumption 1 holds, then at the optimum (i) the resource constraint is binding, (ii) 

the incentive compatibility constraints are slack, and (iii) both types receive the full 

insurance contracts (�̃�𝐻
∗ , �̃�𝐿

∗). 

 

(b)  If Assumption 1 does not hold, then at the optimum (i) the resource constraint is 

binding, (ii) the incentive constraint ICH is binding, (iii) under the optimal contracts 

(�̃�𝐻
∗ , �̃�𝐿

∗∗), the high risks receive full insurance and the low risks receive partial 

insurance, and (iv) the low risks receive higher coverage through on-demand contracts 

than through standard contracts. 

 

If Assumption 1 holds, the at-risk time periods covered can be used to screen types. If 

Assumption 1 does not hold, some price-quantity rationing is needed in addition to the at-risk time 

periods. Proposition 4 leads to the following Corollaries on WMS and RS equilibrium outcomes: 

Corollary 5: If Assumption 1 holds, then (a) (i) the WMS equilibrium contracts are (�̃�𝐻
∗ , 

�̃�𝐿
∗), and (ii) there is no cross-subsidization. (b)(i) The RS equilibrium contracts are (�̃�𝐻

∗ , 

�̃�𝐿
∗), and (ii) this is true for all values of H > 0.  

  

Corollary 6: If Assumption 1 does not hold, then  

(a) (i) the WMS equilibrium contracts are (�̃�𝐻
∗ , �̃�𝐿

∗∗) such that the high risks receive full 

insurance and the low risks receive partial insurance, (ii) there is a 𝛿𝐻
∗  such that the low 

risks subsidize the high risks for 𝛿𝐻 <  𝛿𝐻
∗ , (iii) the low risks receive higher coverage 

under on-demand contracts than under standard contracts, and (iv) the presence of on-

demand contracts leads to a lower critical fraction of high risks in the market, below 

which cross-subsidization occurs: 𝛿𝐻
∗  <  𝛿𝐻

′ . 

 

(b) (i) The RS equilibrium contracts are (�̃�𝐻
∗ , �̃�𝐿

′ ) such that the high risks receive full 

insurance and the low risks receive partial insurance, (ii) there is a 𝛿𝐻
′  such the RS 

equilibrium does not exist for 𝛿𝐻 <  𝛿𝐻
′ , (iii) the low risks receive higher coverage 

under on-demand contracts than under standard contracts, and (iv) the presence of on-
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demand contracts leads to a lower critical fraction of high risks in the market, below 

which the RS equilibrium does not exist: 𝛿𝐻
′ <  𝛿𝐻

00. 

 

If Assumption 1 does not hold, then the low risks receive partial coverage. The partial coverage 

may take the form of an indemnity which is smaller than the size of the potential loss or some 

uninsured at-risk periods or some combination of the two.  In particular, low risks may be willing 

to trade off a higher indemnity in covered subperiods for leaving some subperiods uninsured. For 

example, suppose the conditional probabilities of loss are one in ten for subperiod 1, one in ten 

million for subperiod 2 and zero for the remaining subperiods. The most important issue in 

determining the tradeoff is which alternative does the most to relax the incentive compatibility 

constraint. If, for example, the types Hs have a high conditional probability of loss in period 2, 

foregoing coverage in that subperiod would likely have a substantial effect in deterring the type 

Hs from wanting to choose the low-risk policy.  

We now turn to the welfare analysis of the fixed-duration policies compared to both 

fixed-period contracts and standard contracts.  

Proposition 5:  

(a) If Assumption 1 holds, then (i) fixed-period on-demand contracts and fixed-duration 

on-demand contracts have the same utility possibility frontier, and (ii) the utility 

possibility frontier for both types of on-demand contracts lies outside the utility 

possibility frontier for standard contracts.  

 

(b) If Assumption 1 does not hold, then (i) the utility possibility frontier for fixed-period 

on-demand contracts lies weakly outside the utility possibility frontier for fixed-

duration on-demand contracts, and (ii) the utility possibility frontier for fixed-

duration on-demand contracts lies outside the utility possibility frontier for standard 

contracts.  

 

The first part of Proposition 5 follows from the fact that the optimal fixed-period and optimal 

fixed-duration contacts are the fairly priced full insurance contracts for both types. The second part 

is obtained, because fixed-period contracts do not tighten the incentive compatibility constraints 
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compared to fixed-duration contracts, and fixed-duration contracts relax the incentive 

compatibility constraint compared to standard contracts. As a result, the utility possibility frontiers 

for both types of on-demand contracts lie outside the utility possibility frontier for standard 

contracts.  

 Assumption 1 plays a critical role in our main results for the optimal contracts. In particular, 

Assumption 1 determines whether the incentive compatibility constraint ICH is slack or binding. 

Observe that Assumption 1 can be rewritten as  ∑ 𝑝𝐿
𝑡𝑇

𝑡=1  ≥  ∑ 𝑝𝐻
𝑡 𝜏𝐿

𝑡𝑇
𝑡=1 . The left-hand side of the 

inequality is the total probability of a loss for type L individuals. The right-hand side is the 

probability of a covered loss for the high risks under the low-risk contract. One way to interpret 

this condition is that, if it holds, then the high risks’ probability of a covered loss under the low-

risk contract is “too small” for the high risks to want to imitate the low risks at full coverage. We 

should also point out that Assumption 1 can be verified ex ante. This follows from the fact that, if 

it holds, full coverage is optimal. If so, then low risk coverage is in force during all at risk periods, 

𝑝𝐿
𝑡 > 0 if, and only if, 𝜏𝐿

𝑡 =1. It is then a simple matter to verify whether or not Assumption 1 holds.  

 More broadly, on-demand contracts rely on the time dimension to screen high risks from 

low risks. There are situations where this works well, for example, if the time periods when they 

are at risk are different for the high risks and low risks (e.g., RH ∩ RL = ∅). In this case, the time 

dimension separates the high risk and low risks. There are also situations where this does not work 

at all, for example, if the low risks and high risk are both at risk during the same subperiods (RH = 

RL). In this case, the time dimension provides no information that can be used to separate the high 

risks and low risks. These are the extreme cases. When there is some overlap between RH and RL 

(RH ∩ RL ≠ ∅ but 𝑅𝐻  ⊈ 𝑅𝐿), the ability of the time dimension to screen types is less clear.  

Assumption 1 provides the dividing line between two situations. When Assumption 1 holds, the 
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time dimension provides enough information to completely separate the high and low risks, and 

the low risks obtain full insurance. When Assumption 1 does not hold the time dimension alone 

does not provide enough information to separate the high and low risks, and rationing of the low 

risks’ coverage is also required for screening. Nevertheless, as long as the at-risk time periods for 

the two types are not fully congruent, the time dimension does provide some information that can 

be exploited for screening. This relaxes the incentive compatibility constraint and leads to greater 

coverage for the low risks.  

 

Pay-As-You-Go-Insurance 

The on-demand insurance products that we examined until now require an ex-ante 

commitment to the covered subperiods by both insurers and policyholders. This captures the 

economics of on-demand insurance when the at-risk periods are known in advance. In the context 

of uncertainty about the actual exposure intervals, however, this is not a desirable product feature.  

A ride-share driver, for example, might want to remain flexible with regard to the days when he 

or she offers the service. This is at odds with an insurance contract that requires him or her to fix 

the covered subperiods in advance. Similarly, the demand for bike insurance is likely to be weather 

dependent and hence stochastic from an ex-ante perspective. In the following, we therefore extend 

our analysis to pay-as-you go insurance. Pay-as-you-go insurance implies a fully dynamic contract, 

which requires a commitment by the insurance company but no commitment by the policyholder. 

Thus, pay-as-you-go insurance has similarities with multiperiod insurance contracting, e.g., 

Cooper and Hayes (1987), D’Arcy and Doherty (1990), Dionne and Doherty (1994), Nilssen 

(2000), DiGaridel-Thornton (2005), Jia and Wu (2019).17 These models examine multiperiod 

 
17 See Jia and Wu (2019), Table 1 and Appendix 1 for a summary of the theoretical and empirical literatures. 
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extensions of the standard insurance policy. Dynamic models with a one-sided commitment by the 

insurer predict “highballing” or front-loading of premiums. We show that if premiums are fully 

front loaded, pay-as-you-go insurance reduces to fixed-duration on-demand insurance.  

 To illustrate the general mechanics of pay-as-you-go insurance, we return to the 

introductory example of Helen and Linda in Figure 1. Linda is at risk for one one subperiod, with 

a probabilty of loss of 0.20. Helen has a total probaility of loss of 0.30, spread out over 10 

subperiods. Assume the price of full insurance for a single month under contract CL is 0.2𝐷. 

Suppose that under contract CH, the pricing is level for all 10 months; it is naively set to 0.03𝐷 per 

month. In the presence of a one-sided commitment, Linda will buy contract CH for one month and 

then stop paying. This is profitable for her, since 0.03𝐷 < 0.2𝐷. However, the insurance company 

would make negative profits if this contract menue is offered. As both ICL and RC are violated, 

this cannot be an equilibrium. The solution is to frontload the payments of contract CH to satisfy 

the incentive compatibility constraint of the low-risk types. This means Helen and Linda both pay 

0.2D upfront and Helen can add more coverage at a premium of 0.1 D later on. 

In the formal model, we retain most of the features from the previous analyses. Nonsatiated, 

risk-averse consumers have wealth W and are subject to the risk of a loss of size D, and at most 

one loss occurs during the policy period. The probability that the policyholder suffers no loss until 

subperiod 𝑡 − 1 and then a loss occurs between 𝑡 − 1 and t is 𝑝𝑖
𝑡, with ∑ 𝑝𝐻

𝑡 >  ∑ 𝑝𝐿
𝑡𝑇

𝑡=1
𝑇
𝑡=1 . The 

proportion of high (low) risk indiduals is H (L). The set of at-risk subperiods is Ri and we again 

focus on the case where 𝑅𝐻  ⊈ 𝑅𝐿. All consumption takes place at the end of the policy period. 

We assume that the discount rate is zero.  

An insurance contract, Ci therefore consists of the maximum number of covered subperiods 

(ni), a premium vector 𝝆𝒊 = (𝜌𝑖
1, … 𝜌𝑖

𝑇), containing the premium for each subperiod, and an 
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indemnity 𝐼𝑖. The subperiod premiums may be zero, even for periods during which the policy is in 

force. The resource constraint needs to hold over the full policy period, but not necessarily in every 

single subperiod. The insurer fully commits to the terms of the contract for the policy period, 

whereas the insured decides at the beginning of each subperiod, whether or not to pay the premium 

and obtain coverage. Formally, the policyholder chooses 𝜏𝑖
𝑡  ∈ {0, 1} at the beginning of each 

subperiod, subject to the overall limit of nj subperiods granted in the contract.18 If the policy is in 

force, then the policyholder pays the premium for that subperiod. To account for this freedom of 

choice, , let Π𝑖 be the power set of Ri and let 𝜋𝑖
𝑘 be a subset of Π𝑖 (𝜋𝑖

𝑘  ∈ Π𝑖). In addition, let #𝜋𝑖
𝑘 

denote the number of elements in the subset 𝜋𝑖
𝑘. We assume 𝜏𝑖

𝑡 = 1 for 𝑡 ∈  𝜋𝑖
𝑘 and = 0 otherwise. 

If a type i individual purchases a contract Cj and chooses to cover the subperiods included in 𝜋𝑖
𝑘 

(#𝜋𝑖
𝑘 ≤ 𝑛𝑗), then their expected utility is  

𝑉𝑖(𝐶𝑗; 𝜋𝑖
𝑘) =  ∑ (1 − 𝑝𝑖

𝑡)𝑈(𝑊 −  ∑ 𝜌𝑗
𝑡

𝑡∈𝜋𝑖
𝑘

𝑇
𝑡=1 ) + ∑ 𝑝𝑖

𝑡𝑈(𝑊 −  ∑ 𝜌𝑗
𝑡

𝑡∈𝜋𝑖
𝑘 − 𝐷 + 𝐼𝑗𝑡∈𝜋𝑖

𝑘 ) +

 ∑ 𝑝𝑖
𝑡𝑈(𝑊 −  ∑ 𝜌𝑗

𝑡
𝑡∈𝜋𝑖

𝑘 − 𝐷𝑡∉𝜋𝑖
𝑘 ).  (7) 

The incentive compatibility constraints need to hold for all 𝜋𝑖
𝑘consistent with the contract. The 

individual will choose to cover the periods that yield the highest expected utility, that is, the  

periods with the highest loss probabilities. Define 

𝑉𝑖(𝐶𝑗) = max
𝜋𝑖

𝑘 𝑉𝑖(𝐶𝑗;  𝜋𝑖
𝑘), 

 𝑠. 𝑡.     𝜋𝑖
𝑘 ∈ Π𝑖 ,  

 #𝜋𝑖
𝑘  ≤ 𝑛𝑗. 

 
18 This differs from the fixed-duration model, where the policyholder needs to make the coverage decision for all 

subperiods at the outset of the insurance contract. 
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Now consider a frontloaded premium. This forces the premium to stay constant for all 𝜋𝑘 , 

that is  ∑ 𝜌𝑗
𝑡

𝑡∈𝜋𝑖
𝑘 = 𝑐𝑜𝑛𝑠𝑡.  ∀𝑘. If that is the case, any consumer will pick the maximum amount of 

allowed risk periods, since the coverage can only improve by doing so, while the costs do not 

increase. Therefore, we obtain: 

𝑉𝑖(𝐶𝑗) = max
𝜋𝑖

𝑘 𝑉𝑖(𝐶𝑗;  𝜋𝑖
𝑘), 

 𝑠. 𝑡.    𝜋𝑖
𝑘 ∈ Π𝑖 ,  

 #𝜋𝑖
𝑘 = 𝑛𝑗  

This is just a different notation of the fixed-duration contract. The many incentive compatibility 

constraints arising from the flexibility collapse into one constraint per type and we are back to the 

case of fixed duration contracts. Consequently, with frontloaded premiums, the optimization 

problem is to maximize 𝑉𝐿(𝐶𝐿) subject to the constraints (2), (3), (4) and (5). Intuitively, if a large 

portion of the premium is paid upfront, subsequent subperiods are cheap enough to discourage 

picking a subset of the intended contract. 

 Assumption 1 still plays an important role in the analysis. The analogs of Propostions 1, 2, and 3, 

and their Corollaries continue to hold in the pay-as-you-go model.  

 

Summary and Conclusions  

 

In this paper, we formally characterize different types of on-demand insurance contracts 

(fixed period, fixed duration, pay-as-you-go) and analyze their welfare and equilibrium effects in 

markets with adverse selection. Individuals may differ with respect to their riskiness and the time 

spent exposed to the risk; both are private information. Since on-demand policies add the time 

dimension, they can be described as “price-quantity-plus” policies. The existing literature on price-
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quantity-plus contracts (e.g., Bond and Crocker ,1991, Crocker and Snow, 2011, Croker and Zhu, 

2021) suggests that adding an additional screening dimension relaxes the incentive compatibility 

constraint and leads to improved allocations. We show that, with the addition of the time 

dimension, this is also true for on-demand insurance.  

Under fixed-period on-demand contracts, both the insurer and the policyholder ex ante 

commit to the subperiods during which the policy will be in force. Fixed-duration polices, in 

contrast, determine the number of subperiods as part of the contract and the policyholder chooses 

ex ante which subperiods he or she would like to see covered. This decision, however, cannot be 

changed during the contract term. This leads to strong results on the optimal insurance policies 

and the contracts that characterize the WMS and RS equilibria.  

The key assumption in our analysis is whether the difference between the total loss 

probabilities of the high-risk types and the low-risk types is less than the potential uncovered risk 

for the high-risk types under the low-risk policy. If this condition holds, then the time dimension 

provides enough information to completely separate the two consumer groups. The welfare 

maximizing outcome is that both types receive full coverage. This full coverage outcome can be 

supported by both the WMS and RS equilibria. The RS equilibrium exists regardless of the 

proportion of high risks.  

If the key assumption does not hold, then the time dimension alone does not provide 

enough information to completely separate the high risks and low risks, and some rationing of 

coverage for the low risks is required. However, the time dimension still provides some 

information for screening and relaxes the incentive compatibility constraint. The low risks receive 

more coverage than under standard policies. This is true for the welfare maximizing policies, as 

well as the WMS and RS equilibrium contracts. Under on-demand policies, the RS equilibria exist 
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when they would not exist under standard policies. Whether or not the key assumption holds, fixed-

period and fixed-duration on-demand insurance leads to more coverage for the low risks and is a 

Pareto improvement over standard policies.  

We also discuss pay-as-you-go insurance. Pay-as-you-go insurance relaxes the full 

commitment requirement on the side of the policyholder. Hence, whether a subperiod is covered 

or not can be determined at the beginning of that particular subperiod, rather than at the beginning 

of the overall policy period. We argue that  frontloading of the policy is an optimal equilibrium 

outcome. Under the same condition on the probabilities, the time dimension completely separates 

the two risk types and leads to full coverage for both types as an optimal and equilibrium outcome. 

That is, we obtain essentially the same results for pay-as-you-go insurance as for fixed-duration 

on-demand insurance.   
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Appendix 

Proofs of Propositions 

 

Proposition 1: If Assumption 1 holds, then at the optimum (a) the resource constraint is 

binding, (b) the incentive compatibility constraints are both slack, and (c) both types 

receive the full insurance contracts (𝐶𝐻
∗ , 𝐶𝐿

∗).  

Proof: (a) If the resource constraint is slack, then, since they are non-satiated, both types can be 

made better off. (c) Consider feasible contracts (CH, CL) for which the resource constraint is 

binding. Assume the incentive compatibility constraints hold, so that type H’s prefer contract CH 

and type Ls prefer contract CL. Assume that contract Ci has premium i, offers indemnity Ii (0 < Ii 

≤ D) and has some at risk subperiod which is uninsured. That is, there is a t’ ∈ Ri for which 𝜏𝑖
𝑡′ = 

0.  Now consider the contract Ci’ for which period t’ is covered. The incremental premium is 𝑝𝑖
𝑡′𝐼𝑖 

so the individual’s expected wealth is unchanged. But this shifts the probability from 𝑃𝑖
3 to 𝑃𝑖

2 

which increases expected utility. Then for the optimal contracts, we have t ∈ Ri implies 𝜏𝑖
𝑡 = 1. This 

implies 𝑃𝑖
2 = (1 – 𝑃𝑖

1) and 𝑃𝑖
3 = 0. Repeating this argument seriatim proves that prices are 

actuarially fair. Since coverage is fairly priced, full insurance is optimal for both types. The 

optimum contracts are (𝐶𝐻
∗ , 𝐶𝐿

∗).  

We now show that, under Assumption 1, the incentive compatibility constraints hold at 

(𝐶𝐻
∗ , 𝐶𝐿

∗) and are indeed slack. We first show that the upward incentive compatibility constraint, 

 𝑉𝐿(𝐶𝐿) ≥ 𝑉𝐿(𝐶𝐻), (A1) 

is slack. Both types are fully insured and the total loss probability is lower for the low risk, 𝑃𝐿
2 =

 ∑𝑛
𝑡=1 𝑝𝐿,𝑡𝜏𝐿,𝑡 < ∑𝑛

𝑡=1 𝑝𝐻,𝑡𝜏𝐻,𝑡 =  𝑃𝐻
2. This implies that  

 𝑈(𝑊 −  𝑃𝐿
2𝐷) >  𝑈(𝑊 −  𝑃𝐻

2𝐷). (A2) 

Now to prove that the downward incentive compatibility constraint is slack, we need to show that:  
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 𝑃𝐻
1𝑈(𝑊𝐻

1) + 𝑃𝐻
2𝑈(𝑊𝐻

2) > 𝑃𝐻
1𝑈(𝑊𝐿

1) + 𝑃𝐻𝐿
2 𝑈(𝑊𝐿

2) + 𝑃𝐻𝐿
3 𝑈(𝑊𝐿

3) (A3) 

Observe that  𝑅𝐻  ⊈ 𝑅𝐿 implies 𝑃𝐻𝐿
3  ≠ 0. Since the high risks are fully insured, (A3) can be rewritten 

as  

 𝑈(𝑊 − 𝑃𝐻
2𝐷) ≥ (𝑃𝐻

1 + 𝑃𝐻𝐿
2 )𝑈(𝑊 − 𝑃𝐿

2𝐷) + 𝑃𝐻𝐿
3 𝑈(𝑊 − 𝑃𝐿

2𝐷 − 𝐷) (A4)  

Using the fact that the low risks are fully insured and the strict concavity of the utility function we have: 

𝑈 ([𝑃𝐻
1 + 𝑃𝐻𝐿

2 ](𝑊 − 𝑃𝐿
2𝐷) + 𝑃𝐻𝐿

3  (𝑊 − 𝑃𝐿
2𝐷 − 𝐷)) =  𝑈(𝑊 − 𝑃𝐿

2𝐷 − 𝑃𝐻𝐿
3 𝐷) >   

 [𝑃𝐻
1 + 𝑃𝐻𝐿

2 ]𝑈(𝑊 − 𝑃𝐿
2𝐷) + 𝑃𝐻𝐿

3 𝑈(𝑊 − 𝑃𝐿
2𝐷 − 𝐷) (A5) 

We can write the high risks expected utility at full insurance as  

𝑈(𝑊 − 𝑃𝐻
2𝐷) =  𝑈(𝑊 − 𝑃𝐿

2𝐷 − (𝑃𝐻
2 − 𝑃𝐿

2)𝐷) (A6) 

By Assumption 1, (𝑃𝐻
2 − 𝑃𝐿

2)𝐷 ≤ 𝑃𝐻𝐿
3 𝐷, and the strict inequality in (A5)we have  

 𝑈(𝑊 − 𝑃𝐻
2𝐷) >  𝑈(𝑊 − 𝑃𝐿

2𝐷 − 𝑃𝐻𝐿
3 𝐷) (A7) 

Therefore, the downwards compatibility constraint is slack. This completes the proof. || 

 

Corollary 1: If Assumption 1 holds, then (a) the WMS equilibrium contracts are (𝐶𝐻
∗ , 

𝐶𝐿
∗), and (b) there is no cross-subsidization. 

 

Proof: (a) The WMS equilibrium is the solution to the maximization problem OD, with the high 

risk individual rationality constraint �̅�𝐻 = VH(𝐶𝐻
∗ ). (b) At the WMS equilibrium, the high risk 

individual rationality constraint UH is binding. || 

Corollary 2: If Assumption 1 holds, then (a) the RS equilibrium contracts are (𝐶𝐻
∗ , 𝐶𝐿

∗) 

and (b) this is true for all values of H > 0.  
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Proof: This follows from the fact that there are no cross-subsidies at the WMS equilibrium for all 

values of H. || 

 

Proposition 2: If Assumption 1 does not hold, then at the optimum (a) the resource 

constraint is binding, (b) the incentive compatibility constraint ICH is binding, (c) at the 

optimal contracts (CH
*, CL

**) the high risks receive full insurance and the low risks receive 

partial insurance, and (d) the low risks receive higher coverage under on-demand contracts 

than under standard contracts.  

Proof: (a) This follows from the non-satiation of individuals.  

The Lagrangian for the optimization problem is 

 𝐹 = max𝑃𝐿
1𝑈(𝑊𝐿

1) + 𝑃𝐿
2𝑈(𝑊𝐿

2) + 𝑃𝐿
3𝑈(𝑊𝐿

3) (A8) 

 +𝛾1[𝛿(𝜌𝐻 − 𝑃𝐻
2𝐼𝐻) + (1 − 𝛿)(𝜌𝐿 − 𝑃𝐿

2𝐼𝐿)] 

 +𝛾2[𝑃𝐿
1𝑈(𝑊𝐿

1) + 𝑃𝐿
2𝑈(𝑊𝐿

2) + 𝑃𝐿
3𝑈(𝑊𝐿

3) − 𝑃𝐿
1𝑈(𝑊𝐻

1) − 𝑃𝐿𝐻
2 𝑈(𝑊𝐻

2) − 𝑃𝐿𝐻
3 𝑈(𝑊𝐻

3)] 

 +𝛾3[𝑃𝐻
1𝑈(𝑊𝐻

1) + 𝑃𝐻
2𝑈(𝑊𝐻

2) + 𝑃𝐻
3𝑈(𝑊𝐻

3) − 𝑃𝐻
1𝑈(𝑊𝐿

1) − 𝑃𝐻𝐿
2 𝑈(𝑊𝐿

2) − 𝑃𝐻𝐿
3 𝑈(𝑊𝐿

3)] 

 +𝛾4[𝑃𝐻
1𝑈(𝑊𝐻

1) + 𝑃𝐻
2𝑈(𝑊𝐻

2) + 𝑃𝐻
3𝑈(𝑊𝐻

3) − �̅�𝐻] 

The first order conditions are 

 
𝜕𝐹

𝜕𝜌𝐿
= −𝑃𝐿

1𝑈′(𝑊𝐿
1) − 𝑃𝐿

2𝑈′(𝑊𝐿
2) − 𝑃𝐿

3𝑈′(𝑊𝐿
3) + 𝛾1(1 − 𝛿) − 𝛾2 (𝑃𝐿

1𝑈′(𝑊𝐿
1) +

𝑃𝐿
2𝑈′(𝑊𝐿

2) + 𝑃𝐿
3𝑈′(𝑊𝐿

3)) + 𝛾3(𝑃𝐻
1𝑈′(𝑊𝐿

1) + 𝑃𝐻𝐿
2 𝑈′(𝑊𝐿

2) + 𝑃𝐻𝐿
3 𝑈′(𝑊𝐿

3)) = 0  (A9) 

 
𝜕𝐹

𝜕𝜌𝐻
= 𝛾1𝛿 + 𝛾2(𝑃𝐿

1𝑈′(𝑊𝐻
1) + 𝑃𝐿𝐻

2 𝑈′(𝑊𝐻
2) + 𝑃𝐿𝐻

3 𝑈′(𝑊𝐻
3))  

 −(𝛾3 + 𝛾4)(𝑃𝐻
1𝑈′(𝑊𝐻

1) + 𝑃𝐻
2𝑈′(𝑊𝐻

2) + 𝑃𝐻
3𝑈′(𝑊𝐻

3)) = 0 (A10 

 
𝜕𝐹

𝜕𝐼𝐿
= 𝑃𝐿

2𝑈′(𝑊𝐿
2) − 𝛾1(1 − 𝛿)𝑃𝐿

2 + 𝛾2𝑃𝐿
2𝑈′(𝑊𝐿

2) − 𝛾3𝑃𝐻𝐿
2 𝑈(𝑊𝐿

2) = 0 (A11) 

 
𝜕𝐹

𝜕𝐼𝐻
= −𝛾1𝛿𝑃𝐻

2 − 𝛾2𝑃𝐿𝐻
2 𝑈′(𝑊𝐻

2) + 𝛾3𝑃𝐿𝐻
2 𝑈′(𝑊𝐻

2) + 𝛾4𝑃𝐿𝐻
2 𝑈′(𝑊𝐻

2) = 0 (A12) 



30 
 

 

along with the conditions for H and L and the complementary slackness conditions (we do not 

need these for the proof).  

 We first show that the incentive constraint ICH must be binding. If Assumption 1 does not 

hold, then both incentive compatibility constraints cannot be slack. We can rewrite (A11) as:  

 𝑈′(𝑊𝐿
2) − 𝛾3

𝑃𝐻L
2

𝑃𝐿
2 𝑈′(𝑊𝐿

2) = 𝛾1(1 − 𝛿) (A13) 

Substituting this into (B9) and rearranging yields  

 𝑃𝐿
1𝑈′(𝑊𝐿

1) + (1 − 𝑃𝐿
2)𝑈′(𝑊𝐿

2) + 𝑃𝐿
3𝑈′(𝑊𝐿

3) = (A14) 

 𝛾3[𝑃𝐻
1𝑈′(𝑊𝐿

1) + 𝑃𝐻𝐿
2 𝑈′(𝑊𝐿

2) −
𝑃𝐻𝐿

2

𝑃𝐿
2 𝑈′(𝑊𝐿

2) + 𝑃𝐻𝐿
3 𝑈′(𝑊𝐿

3)] 

The LHS of (B14) is strictly positive. If ICH is slack, then 𝛾3 = 0, which creates a contradiction. Therefore, 

𝛾3 > 0 and ICH is binding. This proves part (b).  

Now let CP be the pooled fair-odds full insurance policy. Both incentive constraints are 

binding at the solution (CP, CP). We must have �̅�𝐻 = VH(CP) for this to be a solution. For �̅�𝐻 < VH(CP),  

than full coverage. Using the first order conditions (A10) and (A12), straightforward but tedious 

manipulation yields  

 (1 − 𝑃𝐻
2)𝑈′(𝑊𝐻

1) + 𝑃𝐻
3(𝑈′(𝑊𝐻

3)) − 𝑈′(𝑊𝐻
1)) = (1 − 𝑃𝐻

2)𝑈′(𝑊𝐻
2) = 0      (A15) 

Since the constraint ICH is binding, we must have 𝑃𝐻
3 = 0. Suppose that the contract CH leaves some at-

risk period for the high risk uncovered. Then, as argued in the proof of Proposition1, adding coverage 

increases the high risks expected utility without violating the resources constraint. But doing so would make 

the constraint ICH slack. So we must have t ∈ RH implies 𝜏𝐻
𝑡  = 1 and 𝑃𝐻

3 = 0. Therefore, the high risks 

have full coverage. This proves part (c).  

 Now we need to show that the low risks receive higher coverage under on-demand policies 

than under standard policies. To do this, we need to show that the constraint ICH for on-demand 
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contracts, evaluated at the solution to the problem in standard contracts, is slack. Let (𝐶𝐻
0, 𝐶𝐿

0) be 

the solution to the welfare maximization problem in standard contracts. In both economic 

environments, the probability of no loss is 𝑃𝑖
1 =  1 − ∑ 𝑝𝑖

𝑡𝑇
𝑡=1 , i = H, L. Under standard contracts, 

we have 𝑃𝑖
2 =  ∑ 𝑝𝑖

𝑡𝑇
𝑡=1  and 𝑃𝑖

3 = 0, for i = H, L. For on-demand contacts, we have 𝑃𝐻
2 =  ∑ 𝑝𝐻

𝑡𝑇
𝑡=1  

and 𝑃𝐻
3 = 0 for the high risks and 𝑃𝐿

2 =  ∑ 𝑝𝐿
𝑡𝜏𝐿

𝑡𝑇
𝑡=1  and 𝑃𝐿

3 =  ∑ 𝑝𝐿
𝑡(1 − 𝜏𝐿

𝑡)𝑇
𝑡=1  for the low risks; 

we can have 𝑃𝐿
3  ≠ 0.   

Since high risks are fully insured in both economic environments, we can write: 

 𝑃𝐻
1𝑈(𝑊 − (1 − 𝑃𝐿

1)𝐼𝐿
0) + 𝑃𝐻𝐿

2 𝑈(𝑊 − (1 − 𝑃𝐿
1)𝐼𝐿

0 − 𝐷) (A16) 

 +𝑃𝐻𝐿
3 𝑈(𝑊 − (1 − 𝑃𝐿

1)𝐼𝐿
0 + 𝐼𝐿

0 − 𝐷) + 𝐾 = 

 𝑃𝐻
1𝑈(𝑊 − (1 − 𝑃𝐿

1)𝐼𝐿
0) + 𝑃𝐻

2𝑈(𝑊 − (1 − 𝑃𝐿
1)𝐼𝐿

0 + 𝐼𝐿
0 − 𝐷) 

The LHS of (A14) is for on-demand contracts and the RHS is for standard contracts. We need to show 

that K > 0. Eliminating the first term on each side of (A14) and dividing by 𝑃𝐻
2 yields  

 (𝑃𝐻𝐿
2 𝑃𝐻

2⁄ )𝑈(𝑊 − (1 − 𝑃𝐿
1)𝐼𝐿

0 − 𝐷) + (𝑃𝐻𝐿
3 𝑃𝐻

2⁄ )𝑈(𝑊 − (1 − 𝑃𝐿
1)𝐼𝐿

0 + 𝐼𝐿
0 − 𝐷) + 𝐾 = 

 𝑈(𝑊 − (1 − 𝑃𝐿
1)𝐼𝐿

0 + 𝐼𝐿
0 − 𝐷) (A17) 

Since (𝑃𝐻𝐿
2 𝑃𝐻

2⁄ ) and (𝑃𝐻𝐿
3 𝑃𝐻

2⁄ ) are conditional probabilities, the concavity of the utility function 

implies that  

𝑈((𝑃𝐻𝐿
2 𝑃𝐻

2⁄ )(𝑊 − (1 − 𝑃𝐿
1)𝐼𝐿

0 − 𝐷) + (𝑃𝐻𝐿
3 𝑃𝐻

2⁄ )(𝑊 − (1 − 𝑃𝐿
1)𝐼𝐿

0 + 𝐼𝐿
0 − 𝐷)) + 𝐾 = (A18) 

 𝑈(𝑊 − (1 − 𝑃𝐿
1)𝐼𝐿

0 + 𝐼𝐿
0 − 𝐷) 

This implies that  

 𝑈([𝑊 − (1 − 𝑃𝐿
1)𝐼𝐿

0 + (𝑃𝐻𝐿
2 𝑃𝐻

2⁄ )𝐼𝐿
0 −  𝐷) + 𝐾 = (A19) 

 𝑈(𝑊 − (1 − 𝑃𝐿
1)𝐼𝐿

0 + 𝐼𝐿
0 − 𝐷) 
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If 𝑅𝐻  ⊈  𝑅𝐿 then (𝑃𝐻𝐿
2 𝑃𝐻

2⁄ ) < 1 and (A17) holds as an equality if, and only if, K > 0. This proves part (d) 

and completes the proof of the Proposition. || 

Corollary 3: If Assumption 1 does not hold, then (a) the WMS equilibrium contracts are 

(CH
*, CL

**), (b) there is a 𝛿𝐻
∗  such that the low risks subsidize the high risks for 𝛿𝐻 <  𝛿𝐻

∗ , (c) 

the low risks receive higher coverage under on-demand contracts than under standard contracts and 

(d) 𝛿𝐻
∗ <  𝛿𝐻

0
. 

 

Proof: Parts (a) and (b) follow from the fact that the WMS equilibrium is the solution to the 

maximization problem OD, with the constraint UH set to �̅�𝐻 = VH(𝐶𝐻
∗ ). Parts (a) and (b) follow 

from standard arguments. Parts (c) and (d) follow from the fact that, compared to standard 

contracts, on-demand contracts relax ICH. || 

 

Corollary 4: If Assumption 1 does not hold, then (a) at the RS equilibrium contracts are 

(CH
*, CL

’), the high risks receive full insurance and the low risks receive partial insurance, 

(b) there is a 𝛿𝐻
′  such the equilibrium does not exist for 𝛿𝐻 <  𝛿𝐻

′ , (c) the low risks receive higher 

coverage under on-demand contracts than under standard contracts and (d) 𝛿𝐻
′ <  𝛿𝐻

00
. 

 

Proof: The RS equilibrium policies are the solution to the problems of maximizing low risk 

expected utility subject to the constraints ICH, ICL, UH with �̅�𝐻 = VH(𝐶𝐻
∗ ), and the resource 

constraints  

RCH  𝜌𝐻 − 𝑃𝐻
2𝐼𝐻 = 0          (A20) 

RCL  𝜌𝐿 −  𝑃𝐿
2𝐼𝐿 = 0          (A21) 

Parts (a) and (b) are proved in Rothschild and Stiglitz (1967). Parts (c) and (d) follow from the fact 

that, compared to standard contracts, on-demand contracts relax ICH. || 

 

Proposition 3: The utility possibility frontier for the on-demand fixed-period contracts 

lies outside the utility possibility frontier for the standard contracts.  
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Proof: If Assumption 1 then the optimal policies are full insurance for both types. If Assumption 

1 does not hold then the high risk receive full insurance and the low risk receive partial insurance. 

The partial insurance for the low risks under on-demand contracts provides more coverage for the 

low risk than the partial insurance under standard contracts. For any given value of �̅�, the high 

risks are no worse off under on-demand contracts and the low risks are strictly better off. || 

 

Proposition 4: (a) If Assumption 1 holds, then at the optimum (i) the resource constraint 

is binding, (ii) the incentive compatibility constraints are slack, and (iii) both types receive 

the full insurance contracts (�̃�𝐻
∗ , �̃�𝐿

∗). 

 (b) If Assumption 1 does not hold, then at the optimum (i) the resource constraint is 

binding, (ii) the incentive constraint ICH is binding, (iii) at the optimal contracts (�̃�𝐻
∗ , �̃�𝐿

∗∗) 

the high risks receive full insurance and the low risks receive partial insurance, and (iv) the 

low risks receive higher coverage under on-demand contracts than under standard  

contracts. 

 

Proof: Part (a). (i) Nonsatiation implies the resource constraint is bonding. (ii), (iii) We need to 

show that ni = #Ri for i = H, L. Assume the incentive constraints hold. Let (�̃�𝐻, �̃�𝐿) be a proposed 

solution such that ni < #Ri. Individuals choose �̃�𝒊 =  𝑎𝑟𝑔 𝑚𝑖𝑛 ∑ 𝑝𝑖
𝑡(1 − 𝑇

𝑡=1 𝜏𝑖
𝑡′)(𝐷 − 𝐼𝑖) subject 

to ∑ �̃�𝑖
𝑡𝑇

𝑡=1 ≤ 𝑛𝑖 . Now consider policies (�̃�𝐻
′ , �̃�𝐿

′ ) such that 𝑛𝑖
′ = ni + 1. Then individuals add 

coverage in the uncovered subperiod with the highest conditional probability of loss. This shifts 

probability from state 3 to state 2, which increases expected utility. Therefore, (�̃�𝐻 , �̃�𝐿) cannot be 

a solution. This implies that ni = #Ri and that �̃�𝑖
𝑡 = 1 if and only if, 𝑝𝑖

𝑡 > 0 at any solution. The 

remainder of the proof follows from the same argument as Proposition 1. The proof of part (b) 

follows from the same argument as the proof of Proposition 2. || 

 

Corollary 5: If Assumption 1 holds, then (a)(i) the WMS equilibrium contracts are 

(�̃�𝐻
∗ , �̃�𝐿

∗), and (ii) there is no cross-subsidization. (b)(i) The RS equilibrium contracts 

are (�̃�𝐻
∗ , �̃�𝐿

∗), and (ii) this is true for all values of H > 0.  
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Proof: The proof of part (a) follows from the same argument as the proof of Corollary 1. The 

proof of part (b) follows from the same argument as the proof of Corollary 3. || 

 

Corollary 6: If Assumption 1 does not hold, then (a) (i) the WMS equilibrium 

contracts are (�̃�𝐻
∗ , �̃�𝐿

∗∗) such that the high risks receive full insurance and the low 

risks receive partial insurance, and (ii) there is a 𝛿𝐻
∗  such that the low risks subsidize 

the high risks for 𝛿𝐻 <  𝛿𝐻
∗  , (iii) the low risks receive higher coverage under on-demand 

contracts than under standard contracts, and (iv) 𝛿𝐻
∗  <  𝛿𝐻

′ .  

(b) (i)_The RS equilibrium contracts are (�̃�𝐻
∗ , �̃�𝐿

′) such that the high risks receive full 

insurance and the low risks receive partial insurance,  (ii) there is a 𝛿𝐻
′  such the 

equilibrium does not exist for 𝛿𝐻 <  𝛿𝐻
′ , (iii) the low risks receive higher coverage under 

on-demand contracts than under standard contracts, and (iv) 𝛿𝐻
′ <  𝛿𝐻

00
. 

 

Proof: The proof of part (a) follows from the same argument as the proof of Corollary 2. The proof 

of part (b) follows from the same argument as the proof of Corollary 4. || 

 

Proposition 5:  

(a) If Assumption 1 holds, then (i) fixed-period on-demand contracts and fixed-duration 

on-demand contracts have the same utility possibility frontier, and (ii) utility possibility 

frontier for the fixed-duration on-demand contracts lies outside the utility possibility 

fronter for the standard contracts.  

 

(b) If Assumption 1 does not hold, then (i) the utility possibility frontier for the fixed-

period on-demand contractslies weakly outside the utility possibility frontier for the 

fixed-duration on-demand contracts, and (ii) the utility possibility frontier for the fixed-

duration on-demand contracts lies outside the utility possibility frontier for the standard 

contracts.  

 

Proof: (a) Both (i) and (ii) follow from the fact that if Assumption 1 holds then the optimal on-

demand policies are full insurance for both types both types.  
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(b) We want to show that fixed-period contracts relax the incentive compatibility constraint, ICH, 

compared to fixed-duration contracts. If so, then the low risks will obtain higher partial coverage 

and will be better off under the fixed-period contracts, 

We know from Propositions 2 and 4 that high types always get full insurance. Hence we 

can focus our attention on the expected utility the high risks receive from the low risk contracts. 

Then we have the difference  

𝑉𝐻 (𝐶𝐿
∗∗(�̃�𝐿, 𝐼𝐿 , �̃�𝐿)) − 𝑉𝐻 (�̃�𝐿

∗∗(�̃�𝐿, 𝐼𝐿, �̃�𝐿, �̃�𝐿)) = 𝐾  (A22) 

where the first term is the high risk expected utility under the low risk fixed-period contract, 

evaluated at the fixed-duration optimal values, and the second term is the high risk expeced utility 

under the fixed-duration contract. We need to show that K ≥ 0. 

 Let �̃�𝐿
𝑠 be the wealth in state s under the fixed-duration contract �̃�𝐿

∗∗. Then we can write 

(A22) as  

 𝑃𝐻
1𝑈(�̃�𝐿

1) + 𝑃𝐻𝐿
2 𝑈(�̃�𝐿

2) + 𝑃𝐻𝐿
3 𝑈(�̃�𝐿

3) + 𝐾 = (A23) 

�̃�𝐻
1𝑈(�̃�𝐿

1) + �̃�𝐻𝐿
2 𝑈(�̃�𝐿

2) + �̃�𝐻𝐿
3 𝑈(�̃�𝐿

3) 

Eliminating the first term on each side of (A23) and using the definitions of 𝑃𝐻𝐿
3  and �̃�𝐻𝐿

3 , 

this can be rewritten as  

(𝑃𝐻𝐿
2 − �̃�𝐻𝐿

2 )[𝑈(�̃�𝐿
2) − 𝑈(�̃�𝐿

3)] =  −𝐾   (A24) 

Then K is nonnegative if, and only if, (𝑃𝐻𝐿
2 −  �̃�𝐻𝐿

2 ) ≤ 0 or [∑𝑛
𝑡=1 𝑝𝐻,𝑡𝜏𝐿

𝑡] ≤ [∑𝑛
𝑡=1 𝑝𝐻,𝑡�̃�𝐿

𝑡]. This 

follows from the definition of �̃�𝐿. Then fixed-period contracts weakly relaxes the incentive 

compatibility constraint, ICH, relative to fixed-duration contracts, the low risks will obtain at least 

as much partial coverage and are weakly better off under the fixed-period contracts. This proves 

part (b)(i). Using the same argument as Proposition 2(d), we can show that fixed-duration on-

demand contracts relax ICH compared to standard contracts, leading to higher partial coverage for 
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the low risks and making the low risks better off. This proves part (b)(ii) and completes the proof 

of Proposition 5. || 

 


