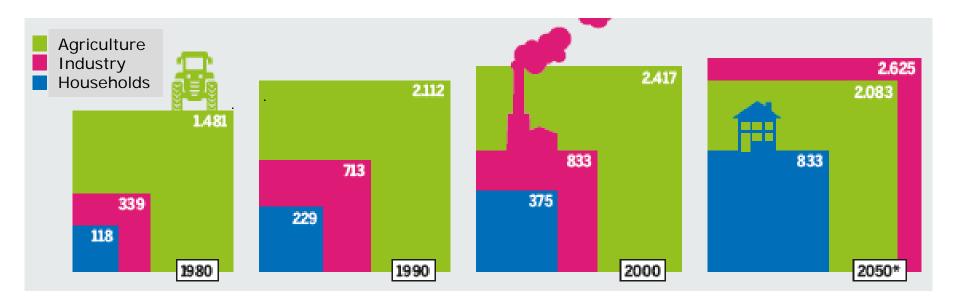


Sustainable water use – the way forward towards comprehensive measurement and management Special Session: Towards an Ecological Economics of Water

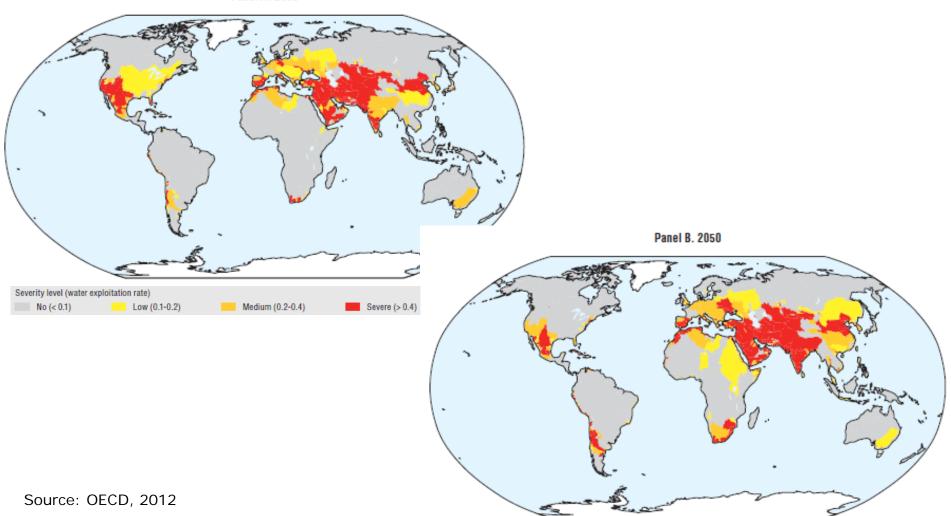
ESEE 2017, Budapest 21.6.17

Content



- Water a renewable but scarce resource
- Accounting aspects relevant for the resource water
- Water accounting approaches
- Modelling direct and indirect water appropriation
- The way forward

Increasing water input

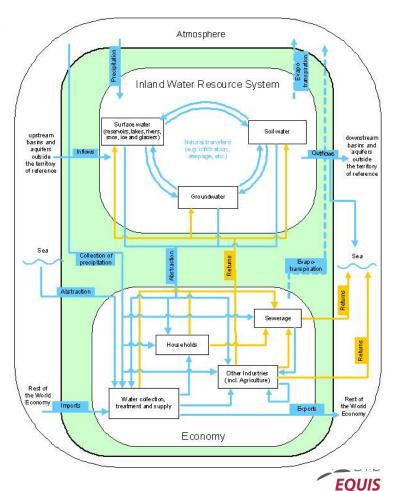


Increasing water stress

WIRTSCHAFTS UNIVERSITÄT WIEN VIENNA UNIVERSITY OI ECONOMICS AND BUSINES

Panel A. 2000

Accounting aspects relevant for the resource water

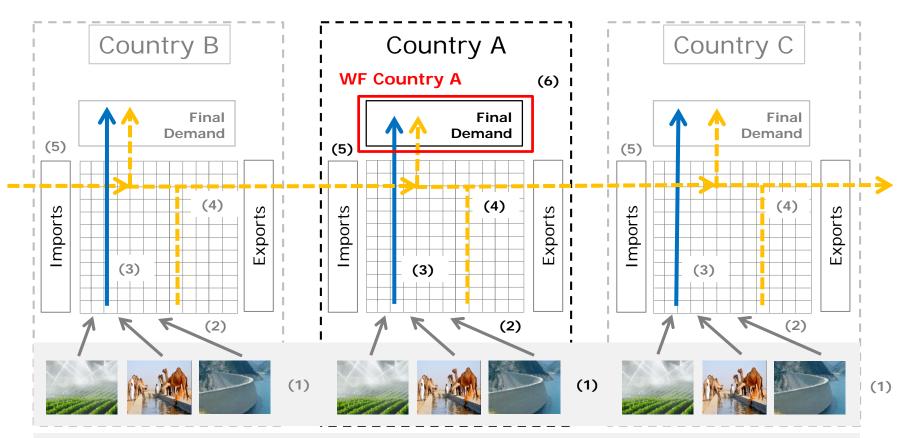


- Water abstraction vs. water consumption
- Blue vs. green water
- Spatial, temporal and sectoral differentiation
- Direct vs. indirect water use

Water accounting

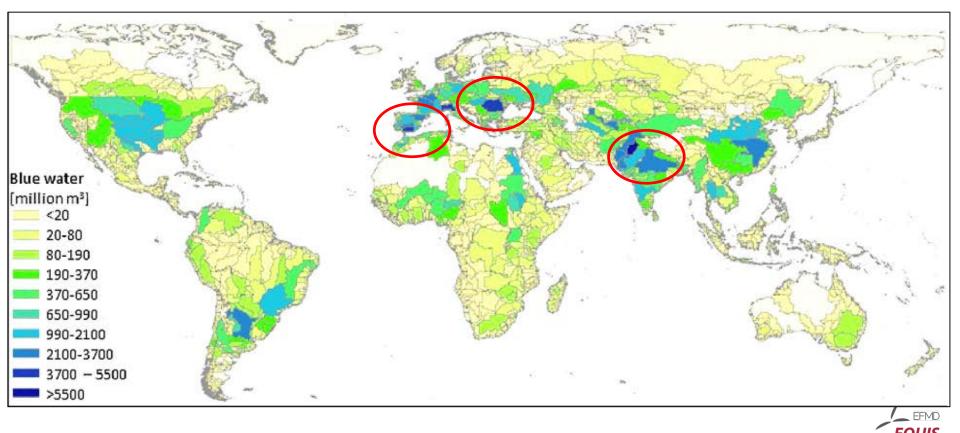
- UN System of Environmental-Economic Accounting for Water (UN, 2012)
 - SEEA sub-system
 - agreed concepts, definitions, ...
 - i.a. physical supply use tables, emission-, hybrid-, asset accounts
- Physical water flow accounts (Eurostat, 2014)
 - Physical supply and use tables of water flows
 - Physical supply and use tables of emissions to water
 - Key indicators (water consumption, water use, net emissions)

Modelling direct and indirect water appropriation



- 3 main approaches:
 - Bottom-up → Water Footprint (Utwente)
 - Top-down → environmentally-extended inputouput analysis (W-MRIO)
 - Hybrid approaches

W-MRIO


Water extensions: Global water extraction/consumption by country and sector (blue/green)

Spatially explicit assessment of water embodied in trade

Consumption of blue water induced by agricultural products consumed in the EU, 2007

Spatially explicit assessment of water embodied in trade

Analysis of source watersheds with highest scarcity impacts

Watershed	EU-27 BW [Mm ³]	Blue water scarcity [no. of months]	EU-27 induced water scarcity [Mm ³ month]	Rank BW	
Indus	25′107	12	297′556	1	
Guadalquivir	5′459	7	38'216	4	
Mississippi	8′895	4	35′582	3	
Ganges	3′658	7	25′610	9	
Ebro	3′478	3	10′434	10	
Nile	4′850	2	9′701	5	
Ро	4′276	2	8′552	7	
Danube	9′485	0	0	2	EFMD UIS

W-MRIO – pros/cons

EFMD

Key advantages

Calculating water footprints for all products and sectors, also with complex supply chains

Precise definition of system boundaries

Avoidance of double counting as supply-chains clearly distinguished from each other

Full consideration of different water intensities in a large number of countries

Accounting framework closely linked to standard economic / environmental accounting

Disaggregation of indicators by categories of final demand, industries or product groups

Possibility to carry out **spacialy explicit** footprinting analysis **and nexus analysis**

Key disadvantages

Assumption of a homogenous product output for aggregated economic sectors and product groups, leading to distortions of results

Use of monetary use **structures** of industries and product groups to allocate water extraction to final demand, which differ from physical use structures, in particular for water/materials

Quality of data for input-output tables of particularly non-OECD countries often difficult to evaluate

Data availability of water input on the sectoral level scarce

Data availability of spatially explicit water input even scarcer

Next steps in W-MRIO

- Disaggregation of economic sectors of high water appropriation – e.g. agriculture, electricity
- Improve availability of data for sectors with high impact – e.g. mining
- Combine MRIO with spatially more explicit data on water input
- Combine quantitative MRIO with data on impacts e.g. scarcity

Résumé

- Meaningful water management needs comprehensive water accounting.
- Useful water accounting needs data of high quality and high detail.
- W-MRIO builds the link between direct and indirect water use to ensure comprehensive water management.
- To improve modelling results, besides methodological aspects, also W-MRIO depends heavily on the data on water input.

Institute for Ecological Economics

Welthandelsplatz 1, 1020 Vienna, Austria

Dr. Stephan Lutter

T +43-1-313 36-5754 Stephan.lutter@wu.ac.at www.wu.ac.at

