

Stefan Giljum and Stephan Lutter

Institute for Ecological Economics

Vienna University of Economics and Business, Austria

29th Meeting of the London Group on Environmental Accounting

Contents

- About "Global Resource Use"
- 2. MRIO models: structure, pros and cons
- Existing MRIO databases and their applications
- 4. Options and barriers towards harmonised MRIO data system

'Global Resource Use (GRU)'

- Research group of currently 12 researchers
- Projects in European and international context

- Main clients
 - European Commission / European Research Council (ERC)
 - International organisations: UNEP / UNIDO / OECD
 - National environmental agencies
 - NGOs (e.g. Friends of the Earth, WWF)

GRU methods and approaches

- Environmental accounting (focus on material flows, water, land and energy) → core environmental indicators on the national level
- **Environmental-economic modelling**, multi-regional inputoutput models → global supply chain and 'footprint' analyses
- Geospatial and spatial statistics methods, incl. use of satellite data → link environmental pressures and local impacts
- Data visualisation platforms and policy-oriented assessment tools (e.g. <u>materialflows.net</u>; UNEP's <u>SCP-HAT</u>)

Basic structure of MRIO databases

- Domestic inter-industry table for one region
- Bilateral trade tables between industries of two regions
- Factor inputs such as value added for one region
- Final demand of domestic produce
- Final demand of imported produce
- Total output of one region
- Total input of one region
- Resource input / pollution output of one region
- Exemplary supply chain linking extraction in Country C to final demand in Country A

Pros and cons of MRIO approaches

Advantages

- Coverage of all supply chains → no "truncation" errors
- Global consistency → no double counting
- Consistent and comparable procedure across countries and environmental categories

Disadvantages / uncertainties

- Assumption of homogenous product output mix per sector
- Varying data quality and availability (e.g., IO tables, trade data)
- High level of technical knowledge to construct MRIO database

Global MRIO databases

- Past 15 years: MRIO databases widely used for economic, environmental and sustainability assessments
- Several databases exist; different construction principles and structures, different strengths and weaknesses
- No "single-best" option: selection depends on questions addressed (e.g., number of countries, sectors, environmental satellites, etc.)

Global MRIO databases

Item/MRIO	OECD ICIO (version 2022)	FIGARO (version 2022)	EXIOBASE (version 2022)	GLORIA (version 2023)
Countries / regions	76 + 1 RoW	EU27 + 18 main trading partners + 1 RoW	44 + 5 RoW	160 + 4 RoW
Sectors: industries i / products p	45 i	64 i	163 i / 200 p	120 i/p
Time	1995-2020	2010-2020	1995-2022	1990-2021
Main developer	OECD, France	Eurostat & Joint Research Center, EU	University of Science and Technology, Norway	University of Sydney, Australia
References	OECD, 2022	Eurostat, 2021	Stadler et al., 2018; Stadler, 2021	IE Lab, 2021; Lenzen et al., 2021

Selected applications

- OECD ICIO: Trade in Value Added (TiVA), carbon footprints
- **FIGARO**: value added and employment studies, e.g., related to EU exports; EU carbon footprints
- GLORIA: material footprints for UN International Resource Panel (IRP), MRIO for UNEP's SCP-HAT online tool
- **EXIOBASE**: IRP resources outlook; large number of academic studies (employment, energy, materials, GHG emissions, ...)

Status quo of (non) harmonisation

- Different MRIO databases applied for various questions
- Often results are deviating for the same indicator → difficult for policy-oriented applications, e.g., regarding possible targets for consumption-based indicators
- OECD initiated process with MRIO experts how to move forward towards comparable (material) footprint indicators for sciencebased policy making on the international level
- WU Vienna led preparation of two documents (available for the London Group): (1) MRIO guidance; (2) Institutional roadmap

Summary MRIO guide

- Overview of available methodologies and advantages of MRIO approaches
- Implementing the MRIO methodology
 - Comparison of available MRIO databases
 - Environmental satellite accounts
 - Step-by-step technical procedure
- Example results from material footprint analyses with ICIO

2 | ENV/EPOC/WPEI(2022)7/REV1

Guidance document on measuring demand-based material flows (material footprints)

Authors:

Stefan Giljum, Stephan Lutter

Institute for Ecological Economics / Vienna University of Economics and Business (WU), Austria

Jan Streeck, Nina Eisenmenger, Dominik Wiedenhofer

Institute of Social Ecology (SEC) / University of Natural Resources and Life Sciences Vienna (BOKU), Austria

Heinz Schandl

Commonwealth Scientific and Industrial Research Organisation (CSIRO),

DRAFT GUIDANCE ON MEASURING DEMAND-BASED MATERIAL FLOWS

For Official Use

Summary MRIO guide

- Choice of approach depends on various criteria
- National IO or hybrid model
- MRIO approaches
 - Official statistics vs. academic sources
 - Sector detail
 - Options to overcome limitations

Summary Roadmap

- Priority topics
 - Improvement of calculation method
 - Alignment of MRIO databases
 - Data provision and capacity building
- Main players within the framework
 - OECD, UNEP & IRP, Eurostat,
 NSOs, academic institutions, etc.

2 | ENV/EPOC/WPEI(2022)8/REV1

Updated roadmap for establishing a coordinated global framework for measuring demand-based material flows (material footprints)

Authors:

ephan Lutter, Stefan Giljum

Institute for Ecological Economics / Vienna University of Economics and Business (WU), Austria

Heinz Schandl

Commonwealth Scientific and Industrial Research Organisation (CSIRO)
Australia

Nina Eisenmenger

Institute of Social Ecology (SEC) / University of Natural Resources and Life Sciences, Vienna (BOKU), Austria

For Official Use

Three options for MRIO development

- Option 1: Develop ICIO/FIGARO into global reference
- Option 2: Utilise the MRIO data set developed for the UN IRP (GLORIA)
- Option 3: Develop regional MRIO databases

Key results from final expert workshop

- Construction and application of MRIO databases very active and fast developing field in academia and statistics
- Academic experts welcome diversity of models to avoid lockins and allow comparative quality assessments and methodological advancements
- ... but agree that a harmonised reference database on the aggregated level published by an official authority would be very helpful as common reference (e.g., for further disaggregation)

Key results from final expert workshop

- Reference database should be maintained by an international organisation, but statements by organisations were unconclusive
- OECD: ICIO database should have a clear place in a global MRIO framework; leadership not clearly addressed
- Eurostat: reference database should be governed by a consortium of international organisations; no resources to lead such a process, but provide EU data to global reference

Conclusions

- MRIO models will play a key role in the future to inform environmental-economic policy making (climate, resources, socioeconomic topics) → higher sector detail, more recent data, etc.
- "Competition" is in the interest of science, but policy-oriented work needs a solid and harmonised data foundation
- Key open question: how to ensure longer-term institutional grounding and stable funding scheme to maintain a global reference MRIO data infrastructure?

Thank you for your attention!

VIENNA UNIVERSITY OF ECONOMICS AND BUSINESS

DEPARTMENT SOCIOECONOMICS

Institute for Ecological Economics Welthandelsplatz 1, 1020 Vienna, Austria

DR. STEFAN GILJUM DR. STEPHAN LUTTER

T +43-1-313 36-5755

stefan.giljum@wu.ac.at www.wu.ac.at **GRU:** www.wu.ac.at/en/ecolecon/research/global-resource-use

www.materialflows.net

SCP-HAT: scp-hat.lifecycleinitiative.org

