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ABSTRACT

The paper focuses on the relationship between the carry factor and option-implied skew-

ness from a currency portfolio perspective. I show that it is possible to build ’crash-hedged

carry’ as well as a ’skew-neutral carry’ strategies with attractive risk-return profiles and

diversification properties, solely by adding option-implied skewness as an additional sig-

nal to interest rates. Since these two signals are correlated, I introduce a portfolio-

construction technique that solves the problem of double-sorting a low number of assets

on correlated signals. Both ’crash-hedged carry’ and ’skew-neutral carry’ exhibit posi-

tive realized skewness, which contradicts skew-based explanations (e.g. crash-risk) of the

carry premium. Also, they offer similar realized returns and an improved Sharpe ratio

compared to the traditional carry factor.
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I. Introduction

Although skewness and interest rates have often been connected in literature, in particular

to show that carry returns are associated with crash risk, a simultaneous use in portfolio

construction has not been attempted yet. This paper aims to fill this gap. To better illustrate

the motivation of this paper, consider Figure 1 which shows a FX-carry strategy and a strategy

going long currencies with high implied skewness and going short currencies with low implied

skewness1. The two performances are strikingly similar (the monthly returns have a correlation

coefficient of 0.87), with carry constantly outperforming the skewness-ranked portfolio by a

slight margin. I suspect that this is the consequence of a disparity between the quality of the

two signals with respect to downside risk. As the two signals are highly, but not perfectly

correlated, there exist currencies that are ranked high according to interest rates but at the

same time have a comparatively low ranking when it comes to implied-skewness and vice versa.

To further illustrate this case I show how both implied and realized skewness relate to mean

excess returns using portfolios constructed from carry and option-implied skewness signals

(Figure 2). Both sets of portfolios offer higher returns for more negative skewness. However,

the carry portfolios does have higher returns for less realized negative skewness and is also

less exposed to crash-risk ex-ante (as proxied by the average option-implied skewness of the

portfolios). Existing literature has inferred from the negative relationship of excess returns

and skewness that carry portfolios compensate crash-risk. The portfolios constructed from

option-implied skewness indicate that implied-skewness is a better signal for future realized

crash risk than interest rate differences and consequently, that crash-risk is not the risk that is

the reason for the risk premium of FX-carry.

In this paper, I show that by combining both interest rates and option-implied skewness

as signals for portfolio construction, one can extract a portfolio of high-yielding, low-skew

currencies and a portfolio of low-yielding, highly skewed currencies. These two are similar to

the ’corner’ portfolios in a double-sort. However, since it is hard to double-sort a low number of

1See Formula 6 in Section IV. Positive implied skewness is very rare and can be observed only in a few

exchange rates like e.g. USDJPY. Thus, when I refer to skewness being high, throughout the paper I mean

currencies which are strongly left-skewed, i.e. exhibit high negative skewness.
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assets according to two highly correlated characteristics, I introduce a weighting scheme based

on rank differences that is better suited to construct a portfolio that isolates the ’difference’

of the two characteristics. This weighting scheme can be interpreted as the equivalent of a

double-sort for a rank-based weighting scheme. The two portfolios can be combined to form a

’skew-neutral carry’ portfolio where the low-yielding, highly skewed currencies are shorted and

high-yielding currencies which are hardly skewed, are bought. The short portfolio can also be

used as a short in combination with the long-leg of the traditional carry-factor to produce a

’crash-hedged carry’ portfolio. Such a ’crash-hedged carry’ portfolio not only offers the same

return as the traditional carry factor, but also exhibits lower volatility and a positive realized

skewness coefficient. This empirical result contradicts crash-risk as an explanation for the

carry risk premium. The paper goes on to show that these new portfolios are not exposed to

systematic downside risk and when used as factors in a linear pricing model they are priced

whereas a traditional carry-factor is not. Lastly, I show that the two new portfolios add value

in a portfolio context when added to existing factors, especially, when investors care about

skewness. For this, ex-post efficient frontiers are calculated both in a simple mean-variance

and also in a three dimensional mean-variance-skewness setting.

II. Literature Review

The foreign exchange market represents one of the biggest asset classes with an estimated

turnover of USD 6.6 trillion per day (Schrimpf and Sushko, 2019). Yet, for a long time this asset

class was comparably less researched than its bond or stock market counterparts. Early research

starting with Hansen and Hodrick (1980), Meese and Rogoff (1983) and subsequently, Fama

(1984) established, that there seemed to be very little connection between currency movements

and macroeconomic variables, most importantly, interest rates. Macroeconomic theory would

predict that currencies depreciate by the difference in their interest rates, but these early

studies failed to confirm this prediction empirically, leading to the so-called uncovered interest

rate parity puzzle or forward premium puzzle. This apparent puzzle was meanwhile exploited

by investors world-wide, who recognized that they could earn positive returns on average by

borrowing money in low-interest currencies and investing it in high-yielding currencies.

However, sustained returns to an investment strategy are hard to justify in asset pricing
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if they do not represent compensation for some sort of risk that is borne by investors. Con-

sequently, asset pricing literature started to focus on finding what the associated risks of the

carry-trade are and a handful of solutions have been proposed, such as consumption risk (Lustig

and Verdelhan, 2007), peso problems (Burnside et al., 2011), volatility risk (Menkhoff et al.,

2012a) exposure to equity downside-risk (Lettau et al., 2014) and crash risk related to sudden

changes in liquidity (Brunnermeier et al., 2008). Also, comparatively late, researchers started to

think of foreign exchange in a portfolio context, and Lustig et al. (2011) created a carry-factor

as well as a dollar-factor, with which they were able to explain the majority of return variation

of portfolios sorted on interest rate differences. This paper started a strand of FX-literature

taking a portfolio view that proposed new risk-factors in the FX-space, some of which where

known from other asset classes, such as value (Menkhoff et al., 2017) or momentum (Menkhoff

et al., 2012b).

Still, the most prominent risk-factor which has persistently earned excess returns is carry. I

intend to contribute to the literature by connecting carry to what is in my opinion the single best

ex-ante measure of downside-risk, namely option-implied skewness. This has been done before.

In particular, some papers argue that carry is compensation for disaster risk (e.g. Brunnermeier

et al. (2008), Farhi et al. (2009), Burnside et al. (2011)) and show the strong connection between

implied skewness and interest rate differentials. Rafferty (2012) even creates a skewness factor

(based on realized skewness) and shows that such a factor can price portfolios sorted on interest

rate differences as well as currency momentum and value portfolios. However, instead of just

showing an empirical connection between carry and option-implied skewness, I will show that

by combining interest rates and option-implied skewness as signals, carry strategies that have

seemingly no disaster risk can be isolated.

This paper brings together the FX-carry literature with the literature on option-implied

information. Option-implied information is exciting to researchers and practitioners alike as

it is forward-looking. Thus, it is much more reactive to new information as any news should

instantly be priced in options. This is an advantage compared to historical estimates where

news only affect the latest of many data points used in estimation. In their seminal paper

Breeden and Litzenberger (1978) show how one can derive state-contingent claims from a set

of options with a continuum of strikes and how these translate to a risk-neutral distribution.
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From this (Q-)distribution moments can be calculated. Risk-neutral distributions combine the

market’s views on both its best estimate on true probabilities as well as its risk preferences.

However, methods proposed to disentangle these two (Ross, 2015) have been found to be

based on assumptions that are too strong (Jackwerth and Menner, 2018). A nice overview of

applications for option-implied information can be found in Christoffersen et al. (2013). One

application that followed risk-neutral densities is the calculation of risk-neutral moments. Other

papers that use option-implied information in FX asset pricing are Della Corte et al. (2016),

Mueller et al. (2017) and Bang Nielsen (2018). For equities, Schneider et al. (2020) show that

coskewness, proxied by option implied skewness can explain low-risk anomalies. I find that this

connection between implied-skewness and coskewness also exists in FX-markets but rather than

explaining an existing anomaly, this information can be used to create portfolios which contrary

to conventional wisdom earn a carry risk premium with no systematic downside risk. Thus,

the long-established fact that investors should care about coskewness (Kraus and Litzenberger

(1976), Harvey and Siddique (2000)) not the source of the FX carry premium. This observation

contradicts existing literature (Dobrynskaya, 2014) which previously connected risk premiums

in FX-carry and equity markets through coskewness/systematic disaster risk.

No paper explores portfolios based on disparities between the signals given by implied

skewness and interest rate differentials. The closest paper to this one is Jurek (2014) who

shows that one can construct an efficiently tail-hedged portfolio out of currency forwards and

options that still earns positive returns. His results suggest that either only a small part of

carry returns is due to crash risk2 or FX-options are mispriced. In contrast to Jurek (2014), I

show that one can construct both a skew-neutral carry (RDF ) as well as a crash-hedged carry

(CARhedged) strategy without the use of options, solely by combining option-implied skewness

and interest rates as signals. Other than its simplicity regarding the instruments, my approach

also has the advantage of an increased currency universe. For the calculation of option-implied

skewness I only need data on options of each currency’s exchange rate against the USD, whereas

for efficient hedging with options one would need all crosses in the currency universe. This is

a bottleneck which effectively constrains the investment universe to just G10 countries.

2The author states that at most one third of the excess return of carry is compensation for crash risk. A

number that aligns very well with the positions of CARhml and SKWhml in Figure 2.
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III. Data

The basis for my research is data on foreign exchange spot prices as well as derivatives on

exchange rates. It is standard in literature to compute currency returns from FX-Forwards

as the prices of these derivatives resemble borrowing in a base currency (USD), exchanging

it into a foreign currency, and investing it at the foreign interest rate due to no-arbitrage

considerations. Consequently, returns calculated as

Rt+n =
St+n
Ft,t+n

− 1. (1)

are excess returns. In the above formula St is the spot exchange rate at time t of US-Dollars

per one unit of foreign currency and Ft,t+n is the forward exchange rate at time t for t + n.

The most common forward maturity used in literature is one month, which is the one I use.

Traders mostly quote forwards in ’points’ which are usually given (some FX-pairs have different

conventions) in 1
10000

units of the currency that is the numerator in a given pair. This means

that Ft,t+1 in the above equation has to be computed by adding these points to the respective

spot rates St of the currencies3.

The second type of derivative needed for my analysis are FX-options. As opposed to stock

options which are exchange-traded, have a price quoted in currency units, and have strike

prices as references, FX options are traded over-the-counter and follow different conventions.

They are quoted in Garman and Kohlhagen (1983) implied volatilities and referenced by delta.

More specifically, implied volatility data for FX-options can be obtained via direct quotes for

at-the-money options but has to be calculated for out-of-the-money options from so-called

risk-reversals and butterflies. Risk-reversals quote the difference between implied volatilities

of out-of-the-money calls and puts, whereas butterflies quote the average difference between

the implied volatilities of puts and calls with a given delta and at-the-money options. Risk-

3e.g. a trader might trade a 1-year forward on the USDZAR exchange rate and see a quote of 7000 points.

To get to the actual outright exchange rate in one year he has to divide these points by 10000 and add them

to the current spot rate. With a spot rate of 15, this would mean a forward exchange rate of 15 + 7000
10000 = 15.7

South African Rand per US-Dollar. As we are interested in the FX expressed as USD per ZAR we have to

calculate 1
15.7 to arrive at Ft,t+12.
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reversals and butterflies are usually quoted for deltas of 10% and 25% with which a volatility

smile from a put to a call with delta of (-)10% can be spanned. The implied volatilities for

(-)10/25% delta puts and calls can be calculated from butterflies and risk-reversals as follows:

IVcall,δ = BFδ + ATM +
RRδ

2
(2)

IVput,δ = BFδ + ATM − RRδ

2
(3)

This smile can be transformed to implied volatilities per strike prices for the given deltas

which is a necessary step for later calculations. One has to account for various conventions

like different premium-adjustments of deltas for different currencies. This is the case since the

premiums for different currencies might be paid in domestic or foreign currency depending on

the convention for a given exchange rate. Also, conventions might differ as to what is referred

to as the at-the-money strike for a given pair.4

There are multiple ways to ’connect’ the implied volatility dots to obtain a smooth function

of implied volatility per strike, the so-called volatility smile. The simplest approach is to use

cubic splines to interpolate between the five points. Since the volatility smiles calculated from

the data do not span the whole spectrum of strike prices, one has to make assumptions if the

smile is to be extended beyond the strikes corresponding to (-)10% delta. The arguably most

simple assumption is that the tails of the smile are left flat beyond deltas of (-)10%. Although

this approach is not suitable for option-traders, it is common in academic literature as it is easy

to replicate and is ’good enough’ for most applications. As I intend to do relative comparisons

of options smiles (in particular, their skewness) and use the data mostly for ranking purposes,

the said approach is appropriate in this context.

Option data are the bottleneck of the empirical work both in regards to time series and

cross-section of data. Whereas records for spot and forward data can go back to the 1970s for

4The ATM strike price might refer to the current spot rate, forward rate, or the strike price for which a

straddle of a put and call option are delta-neutral, depending on the currency pair and maturity of an option.

An exhaustive list of conventions and the resulting formulas to retrieve strike prices from deltas can be obtained

from text books. For references regarding conventions I can recommend Clark (2011) or Wystup (2017).
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various currencies, FX-option data mostly starts in the mid-nineties or even after the financial

crisis when it comes to developing markets. Option data is also limited in regards to the

cross-section of currencies, in particular, when it comes to more exotic currencies. Generally,

emerging markets with more developed capital markets have liquid options-markets (think e.g.

Brazil, Russia, South Africa) whereas frontier markets are not covered at all. All in all, these

bottlenecks result in a sample of 31 currencies quoted against the USD which can be divided

into 9 developed and 22 emerging market currencies. For the calculation of option-implied

skewness (as defined in the next section) a whole volatility smile is needed. The availability of

full (I require (-10%)-delta option data) volatility smiles constrains the start of my empirical

work with the year 2006 (Figure 3). To ensure consistency, Bloomberg (pricing source ’BGNL’,

’CMPL’ if the former is missing) is used as the single data source for monthly spot, forward

and option-implied volatility (in the form of ATM, risk-reversal, and butterfly) data.

IV. Methodology

A. Signals

Two signals have to be extracted from the data. For carry, this is simple as the signal is the

domestic interest rate of each country. If we take the view of an US-investor and set the USD

as the base currency for all currencies, then we can use the (1-month) interest rate differential

priced in the forward CARi
t,t+1 =

Si
t

F i
t,t+1
− 1 as the signal. If all currencies i are expressed in

terms of USD those with the highest interest rates have the highest interest rate differential as

the domestic interest cancels out5.

The second signal is option-implied skewness. For option-implied moments, model-free

estimation has become the norm. The first to propose formulas for model-free estimation of

option-implied moments were Bakshi et al. (2003). Subsequently, slightly different approaches

have been suggested by Kozhan et al. (2013) and Schneider and Trojani (2015). The approaches

essentially differ in how options with different moneyness are weighted. I choose the approach

5If a currency is quoted as USD
XXX , and the interest is higher in the foreign country i than in the US, than

F i
t,t+1 < Si

t which means CARi
t,t+1 > 0. This is the amount an investor earns if the spot exchange rate stays

the same until expiry.
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of Schneider and Trojani (2015) which is given by the following formula(s):

upperSKEW Q
t,t+1 =

6

pt,t+1

∫ ∞
Ft,t+1

log

(
K

Ft,t+1

) √ K
Ft,t+1

Ct,t+1(K)

K2
dK

 (4)

lowerSKEW Q
t,t+1 = − 6

pt,t+1

∫ Ft,t+1

0

log

(
Ft,t+1

K

) √ K
Ft,t+1

Pt,t+1(K)

K2
dK

 (5)

SKEW Q
t,t+1 = upperSKEW Q

t,t+1 + lowerSKEW Q
t,t+1 (6)

This method is the most stable and arguably the best suited for real-life circumstances. The

reason is that weights for out-of the money options are very small. Thus, how the volatility

smile is extrapolated only has a negligible on the estimation and relative ranking of currencies.

In any case, since I calculate skewness for the sole purpose of ranking different currencies, my

results remain stable when using different approaches. The skewness measure coming out of

the above formula is not standardized. Standardized skewness (also referred to as the skewness

coefficient) would isolate the ’tailedness’ of a distribution from its volatility by dividing by

the cube of the standard deviation, whereas the skewness measure used in this paper scales

with volatility. This is desirable, as for construction purposes, I need a single measure of

(downside-)risk and it makes sense to keep the influence of volatility in the signal. The integral

is calculated via a trapezoidal approximation.

B. Portfolio construction

The goal of my work is to isolate a portfolio that trades the ’difference’ of two signals,

namely carry and skewness. The traditional approach would be to do a double-sort like for

example Fama and French (1992) do for size and value. This is called an unconditional double-

sort. Quantile-portfolios are constructed across signals, in their case market capitalization and

book-to-market. This approach works best for uncorrelated signals and when there are a high

number of assets. It is obvious why: One can think about the portfolios by drawing a scatter

plot which has the signals along its two axes. For instance, if we do a 3x3 unconditional

double-sort, the plane spanned by the x- and the y-axis is divided into 9 rectangles that have

to be populated. I draw such a plot for my case in Figure 4. It is comparatively easy to

9

Electronic copy available at: https://ssrn.com/abstract=4040261



form portfolios from all rectangles if the two signals have a low correlation (size and value)

and there are many assets (US equities). This increases the chances of all rectangles being

populated. However, it gets harder to populate all rectangles if one has a low number of assets

(31 currencies), which are spanned along two signals that are highly correlated, like in the case

of implied skewness and carry.

In my case both problems (very high correlation of the signals and low amount of assets)

are present. An 3x3 unconditional double-sort results in very concentrated ’corner portfolios’

(low skewness, high interest, and high skewness, low interest) which are of particular interest

if one wants to construct skew-neutral carry portfolios. The average number of currencies

in each corner portfolio is about one. Such concentrated portfolios would result in a very

volatile performance. To get corner portfolios with a reasonable amount of currencies (4 to

5, on average) one has to resort to a 2x2 sort. Alternatively, a conditional 2x2 double-sort

guarantees that each of the 4 portfolios is populated by a quarter of the assets (see Figure 5).

However, these solutions are less than ideal as many of the chosen currencies are very close to

the bounds of the corner portfolios. Thus, they do not offer big discrepancies between carry

and skewness but still enter into the portfolios with equal weight.

My solution is to focus on the differences in ranks according to the two signals and make the

portfolio weights a direct function of these rank differences. I propose the following formula to

form orthogonalized (’skew-neutral carry’) portfolios. Weights for the rank-difference (RDF )-

portfolios are calculated so that each currency i at time t has a weight such that

wRDF
i,t = κt

[
rank(CARi

t,t+1)− rank(−SKEW Q,i
t ,t+1 )

]
(7)

where κt is a scaling factor ensuring that both the long and short investments sum to (minus)

one. This scheme weights currencies proportional to their rank differences and thus overweights

those with high differences in signals. As a result, the strategy should be dominated by high-

yielding currencies with limited downside risk on the long side and low-yielding currencies with

higher downside risk on the short side. Table I details the weight calculation using the example

of March 2020. For a graphical illustration see Figure 6.

Other portfolios, which are constructed from a single signal like those shown in Figure 1 or

the ones used in asset pricing tests, are constructed using rank-based weighting as introduced
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in Asness et al. (2013) and defined by the following formula:

wi,t = κt

[
rank(zi,t)−

1

It

It∑
i=1

rank(zi,t)

]
(8)

where κ is again a scaling factor to ensure the sum of weights equal one (-1 for the short

positions) and zi,t is a signal for currency i at time t. This method is chosen since it assigns

the currencies with the strongest signals the highest (most negative, for shorts) weights. In

essence, the weighting scheme introduced in equation 7 can be interpreted as the rank-based

equivalent of a double-sort according to quantiles.

Rank-difference based weighting has advantages apart from over-weighting currencies with

particularly high discrepancies. Firstly, portfolios are not constrained to a particular rectangle

(graphically speaking, see Figure 5), but also currencies that have high discrepancies outside

of the (coloured) rectangles can enter into portfolios. This results in more potential assets that

can enter the portfolios. All currencies that do not fall directly on the diagonal (Figure 6) enter

into either the long or short portfolio. There is one more advantage of the weighting method-

ology specifically for the crash-hedged carry portfolio: Some currencies that have high-interest

rates and therefore enter prominently into the rank-weighted carry trade can be (partially)

neutralized by the short-leg based on rank differences. This happens if their skewness ranking

is even higher than warranted by the interest rate. The portfolios constructed using rank-

difference weighting produce better (co)skewness statistics for skew-neutral and crash-hedged

carry strategies than applying a double-sort (as can be seen by comparing the statistics in Ta-

bles V and XII). The double-sorted skew-neutral portfolio also improves (co)skewness statistics

compared to its carry counterpart but not by as much as its rank-based counterpart. Sum-

mary statistics of the weights of various portfolios in IV show that the rank-difference based

’skew-neutral carry’ (RDF ) is slightly more concentrated and exhibits higher turnover than

carry but lower turnover than momentum.

As a comparison, I also look at an alternative weighting methodology: Average-rank-based

weighting is used in Fisher et al. (2015) for combining value and momentum stocks. Here

average ranks are calculated from two signals and portfolios are constructed from these av-

erage weights. Fisher et al. (2015) construct value-weighted quantile portfolios from these

average ranks. As value-weighting is not straightforward for FX, I do two versions: a
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skew-neutral long-short quintile portfolio where currencies are equally weighted and a skew-

neutral rank-weighted portfolio based on average ranks. The average ranks are calculated as[
rank(CARi

t,t+1) + rank(SKEW Q,i
t ,t+1 )

]
/2 6. A graphical illustration of the weighting scheme

is shown in Figure 10 and summary statistics of resulting portfolios are shown in Table XIII.

Although the resulting portfolios also show reduced skewness, they are inferior to double-sorted

and rank-difference-based portfolios when it comes to mean returns.

V. Empirical Results

This section focuses on the empirical properties of ’skew-neutral carry’ (RDF ) and ’crash-

hedged carry’ (CARhedged) portfolios that are constructed using the weighting scheme described

in Formula 7 in the previous section. RDF is comprised of long and short legs which are

both constructed using rank-difference based weighting, whereas CARhedged combines the rank-

difference based short leg with the long leg of the rank-weighted carry portfolio (for illustrations

of weight construction see Figure 6).

Table II shows summary statistics for the weights of the RDF and traditional carry (CAR)

strategies. In contrast to CAR, no currency is persistently in the long or short part of the RDF

strategy. Only INR has a positive weight more than 90% of the time and it also exhibits by far

the highest average weight (14.2%). For the shorts of RDF there are four currencies (CZK,

HUF, PLN, SEK) with a negative weight proportion of more than 90%. One can see that

most ’classic’ carry currencies do not have a clear tendency of being a long or short currency

with respect to RDF or exhibit small average weights, suggesting, that the two strategies are

unrelated.

Table III presents summary statistics for the returns of the new RDF and CARhedged

strategies as well as other FX-strategies from literature. Panel A summarizes the excess returns

of all portfolios and reveals that the period of 2006 until 2022 has not been a great period for

most existing FX-strategies. The positive exception is carry which has produced a Sharpe

ratio of 0.48. Both the average returns of RDF and CARhedged are greater than zero with

6Note, that unlike in Formula 7 I drop the minus sign in front of SKEW Q,i
t,t+1 . Since currencies with high

average rank will be bought, the best would be if these currencies had high interest rates and positive skewness.
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2.8% for RDF and 3.2% for CARhedged. Thus, the return of CARhedged is about the same as

that of the unhedged carry factor. Crucially, CARhedged delivers on its promise of hedging the

crash risk of the carry returns with a positive skewness coefficient. Also, the Sharpe ratio of

CARhedged is 0.12 higher than that of traditional carry due to lower realized volatility. Panel

B summarizes the spot returns of the strategies and shows that CARhedged loses 1.4% less

on the spot component than the unhedged CAR portfolio. Conversely, this means that also

the ex-ante interest rate difference of the CARhedged strategy is lower. Nonetheless, it seems

to be worth to sacrifice some interest rate difference ex-ante, as with the changed currency

composition the spot returns of CARhedged lose their negative skew. CARhedged exhibits a

positive correlation of 0.79 with the classic CAR due to their shared long leg as can be seen

in panel C. On the other hand, RDF is almost completely uncorrelated to CAR. This is

particularly interesting as the statistics suggest that similarly to CAR and CARhedged, RDF

also earns money by exploiting interest rate differences, albeit smaller ones than the other two

strategies. RDF produced a 0.54 Sharpe ratio over the 16-year period which is also is higher

than traditional carry. RDF also exhibits no negative skew and is either negatively or hardly

correlated with existing FX-strategies (highest correlation is to value with a coefficient of 0.25).

The returns from taking advantage of discrepancies between skewness and carry are short-

term, much like carry itself. This can be seen in Figure 9 which shows the annualized mean

return for RDF with different holding periods (implemented with FX-forwards with corre-

sponding maturities). Apart from the 1-month strategy no variant produces significantly pos-

itive returns. Also, considering the signal, short-term options (1M) work best for construction

purposes although RDF portfolios constructed from longer term options are similar in that

they also exhibit almost no realized skew (Table XIV) but their returns are 30-40 bps lower

p.a. Furthermore, the RDF strategy is robust to the initial sample of currencies (Figure 11).

Varying the currency sample by drawing 27 currencies randomly from the full sample, we no-

tice that the full sample is close to the mode of the distribution of mean returns and skewness

coefficients.

Table V takes apart the long and short parts of CAR and RDF (and thus CARhedged too)

and shows summary statistics for each component. RDFshort has a more negative skewness

coefficient than the regular CARshort. Also, it has a higher (more negative when shorted) corre-
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lation with CARlong than CARshort. A similar story applies to various coskewness measures to

the Mkt-factor of Fama and French (1992). Coskewness can be fully neutralized in both RDF

and CARhedged strategies whereas the traditional Carry strategies has negative coskewness

with the Mkt-factor.

To more formally show the crash exposure of Carry (CAR), skew-neutral (RDF ) and

hedged Carry (CARhedged) portfolios I run three regressions proposed in previous literature.

The first one proposed in Lettau et al. (2014) uses only negative observations of the Mkt-factor

(as downloaded from Professor French’s website). The second one uses the Mkt-factor and its

squared error terms e2Mkt as regressors and is the model used to calculate coskewness in the

paper of Kraus and Litzenberger (1976). Thirdly, I regress the portfolio returns on changes

in the CBOE VIX Index. Brunnermeier et al. (2008) argue that increases in the VIX are

associated with a rise in global risk aversion and worsening funding conditions which leads to

unwinds in carry trades. The results are shown in Table VI. All three regressions show similar

results: The beta coefficient starts out as significantly positive to (downside) equity market risk

for CAR, becomes insignificant for CARhedged and ends up negative for RDF (insignificant for

the downside beta). For ∆V IX the sign changes but the results are the same as in the other

two regression specifications: CAR has significant exposure to a form of crash risk whereas

CARhedged does not and RDF seems to even be negatively exposed to crash risk. Also, the

explanatory power of all regressions is lower for the new factors than for CAR.

Having established that RDF and CARhedged exhibit better coskewness measures to the

stock market than the simple CAR factor, I also investigate if existing FX factors can explain

RDF in table VIII. Right-hand side variables are additionally to carry (CAR and the USD-

factor (as proposed in Lustig et al. (2011)), momentum (Menkhoff et al., 2012b), value (Asness

et al., 2013), and the volatility risk premium (Della Corte et al., 2016). Although all factors

have significant beta coefficients to the RDF portfolio, RDF offers significant alpha to all of

them individually and collectively. Also, almost half of RDF remains unexplained (in terms

of R-squared) by the regression including all factors. This alpha is large as it is more than

half of RDF ’s return and it is higher than the return of all factors except CAR in the sample

period. The same exercise is done for the short part of RDF as it is used in the construction of

CARhedged. The results are shown in IX. The short side of RDF is well explained (R-squared
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> 0.9) by the other risk factors due to its directional exposure to the USD-factor as well

as exposure to the CAR and V RP factor. The short part of RDF also exhibits an alpha

which roughly equates to half the size of RDF . Contrary to the long/short RDF ’s alpha, it is

not statistically significant in the regression including all factors but significant when V RP is

excluded. A classic asset pricing graph of predicted versus mean returns for all three models

is shown in Figure 8.

Now I turn to investigate RDF ’s and CARhedged’s use in pricing FX portfolios, I estimate

asset pricing models of the form

Et[Mt+1R
i
t+1] = 0 (9)

with a linear stochastic discount factor Mt+1 = 1− b(ft+1−µ), where b is a vector of factor

loadings and µ denotes the mean of the factors f . This model implies a beta pricing model

where the factor prices of risk λ and the sensitivities to the factors βi determine a portfolio’s

expected return E[Ri] = λ′βi. To obtain the λ, I estimate b so that equation 9 holds using

the Generalized Methods of Moments of Hansen (1982) and calculate the λ via the identity

λ = Σffb
7. I estimate three models and show the results in Table VII. Firstly, I use USD and

CAR as factors. This is the model estimated in Lustig et al. (2011). Secondly, I swap CAR for

RDF , and finally, I swap CAR for CARhedged. As test assets, I use quintile portfolios CARi,

MOMi, V ALi, V RPi, as well as RDFlong and RDFshort. All models estimate the price of risk

λ of CAR, RDF , and CARhedged roughly equal their mean returns. However, the estimated

standard errors for λRDF and λCARhedged
are much smaller than that of λCAR. This results in

λRDF and λCARhedged
being significantly positive while λCAR is not statistically different from

zero. Also, the point estimate of λCAR is lower than the estimate of Lustig et al. (2011),

indicating that the carry risk premium has declined recently. Estimates of b are significant

regardless of which of the factors is used in the model. A graph of predicted versus mean

returns for the 22 test assets is shown in Figure 8. All three models perform well in explaining

the test assets. The third model using USD and CARhedged as factors offers the best fit both

in terms of R2 and root-mean-square error by a slight margin.

7see Cochrane (2009), chapter 13.2 for details
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The low correlations of both RDF and CARhedged with the other factors suggest that these

new strategies might be a sensible addition from a portfolio view. To analyze the value of the

two new strategies in a portfolio context, I compute the ex-post optimal currency strategy for

combinations of FX-risk factors which are detailed in Figure 7 as well as Table X. Specifically,

I look at two options: Swapping CAR for CARhedged and adding RDF to this swap. The new

strategies move the efficient frontier resulting in a 0.13 increase in Sharpe ratio (0.01 if only

the CARhedged is used instead of CAR). Thus, in a mean-variance context considerable value

is added by the RDF portfolio. However, if skewness is considered as an extra dimension,

the new strategies add even more value in terms of Sharpe-ratio. To illustrate this I simulate

weights and plot the efficient frontiers with the condition of the realized skewness coefficient

being equal or higher than 0.1. This equals slicing the mean-variance-skewness space exactly

at the skewness coefficient of 0.1. Swapping CAR for CARhedged adds 0.13 to the Sharpe-ratio

of the mean-variance optimal portfolio and adding RDF adds another 0.02. The details of the

skewness-constrained ex-post optimal strategies can be seen in Table XI. The improvement in

the skewness coefficient-restricted efficient portfolios is caused by the fact that the CARhedged

strategy has a much better skewness profile than CAR. RDF in turn dominates the weights

of the optimal portfolio when added because of its favorable correlation profile with respect to

the other factors. Thus, to investors who care about the skewness of their portfolios, adding

CARhedged and RDF to existing factors seems to be worthwhile since they can improve the

skewness profile of their portfolios.

VI. Conclusion

The paper finds that although option-implied skewness and forward discounts convey similar

information, their less-than-perfect correlation can be used to construct skew-neutral or crash-

hedged carry strategies using only FX-Forwards. Both the skew-neutral and crash-hedged

carry-trade offer positive skewness coefficients and an increased Sharpe ratio compared to the

traditional carry factor while earning money from spot depreciations being smaller than ex-

ante interest differences. Additionally, they are unrelated to various measures of systematic

downside risk. This strongly suggests that crash risk is not the main source of the carry risk

premium. Furthermore, both portfolios offer value when investors care about skewness in their
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FX portfolios and in contrast to the carry factor, have a significant price of risk in the sample

period from 2006 to 2022. Further efforts need to be made in order to see what risks might be

priced in these portfolios.
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VII. Tables

Table I. The table illustrates the weighting scheme according to rank difference given in
Formula 7. The data is from March 2020. A graphical illustration can be seen in the middle
graph of Figure 6.

FX CAR CARrank SKEW * 10^5 SKEWrank rankdif weights
TWD -7.08 1 -0.11 6 -5 -0.051
CHF -1.96 2 0.16 2 0 0.000
JPY -1.93 3 0.83 1 2 0.020
EUR -1.48 4 -0.05 3 1 0.010
ILS -1.26 5 -0.50 11 -6 -0.061
KRW -1.18 6 -1.45 21 -15 -0.152
HUF -0.96 7 -1.05 20 -13 -0.131
SEK -0.92 8 -0.68 16 -8 -0.081
CLP -0.91 9 -0.36 10 -1 -0.010
GBP -0.84 10 -0.65 14 -4 -0.040
SGD -0.59 11 -0.08 5 6 0.061
CAD -0.43 12 -0.56 12 0 0.000
CZK -0.31 13 -0.96 18 -5 -0.051
NOK -0.26 14 -3.36 26 -12 -0.121
MYR -0.21 15 -0.99 19 -4 -0.040
AUD -0.20 16 -2.43 24 -8 -0.081
THB 0.23 17 -0.26 8 9 0.091
NZD 0.30 18 -2.24 23 -5 -0.051
PLN 0.32 19 -0.81 17 2 0.020
PEN 1.57 20 -0.30 9 11 0.111
CNY 1.95 21 -0.06 4 17 0.172
BRL 2.34 22 -5.02 27 -5 -0.051
COP 2.51 23 -1.56 22 1 0.010
RON 3.37 24 -0.66 15 9 0.091
MXN 5.56 25 -15.75 31 -6 -0.061
ZAR 5.80 26 -3.36 25 1 0.010
RUB 6.51 27 -6.29 29 -2 -0.020
IDR 7.82 28 -5.32 28 0 0.000
PHP 10.42 29 -0.13 7 22 0.222
TRY 11.02 30 -6.69 30 0 0.000
INR 12.67 31 -0.60 13 18 0.182
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Table II. The table illustrates summary statistics for the rank difference and carry for various currencies.

FX RDF mean RDF sd RDF % > 0 RDF % < 0 CAR mean CAR sd CAR % > 0 CAR % < 0
CZK -12.0 7.2 6 92 -6.4 4.7 10 87
HUF -8.1 6.2 2 94 1.8 6.7 60 37
SEK -8.0 5.8 10 90 -7.5 3.2 0 97
PLN -7.6 5.6 5 93 0.2 3.4 44 48
COP -5.1 6.4 12 81 4.7 5.4 84 15
CLP -4.3 8.1 33 60 2.3 5.6 74 21
KRW -3.7 8.5 32 63 -2.2 3.4 20 70
NOK -3.1 6.9 24 70 -2.8 2.8 18 78
RON -3.0 8.6 37 59 3.4 5.7 74 23
ILS -2.8 6.2 30 65 -5.6 3.6 6 94
CHF -2.6 4.8 20 64 -11.4 1.3 0 100
ZAR -1.8 2.8 21 69 9.5 2.0 100 0
MYR -1.2 8.8 43 53 -0.5 5.6 49 44
PEN -1.1 7.5 43 53 2.4 5.3 74 23
TWD -0.5 6.4 32 65 -9.2 5.0 8 91
EUR -0.2 5.6 42 45 -8.5 2.6 0 100
BRL 0.4 4.8 53 40 9.6 2.9 99 1
MXN 1.4 5.4 57 32 7.0 3.3 100 0
JPY 2.1 5.1 84 10 -10.2 1.9 0 100
AUD 2.3 6.7 70 27 1.5 4.5 66 26
CAD 2.4 4.4 66 22 -4.0 2.2 1 97
GBP 2.5 7.2 66 26 -4.9 3.2 14 85
IDR 3.1 7.1 68 22 6.7 5.4 87 11
NZD 3.3 4.7 70 21 2.7 4.0 72 23
RUB 3.4 6.5 59 26 8.1 4.8 90 9
THB 3.4 7.1 70 26 0.5 5.1 47 48
TRY 4.5 5.3 68 3 11.6 2.1 100 0
SGD 4.6 6.0 72 20 -4.9 3.5 4 89
PHP 7.8 9.0 79 20 1.4 6.5 69 29
CNY 10.2 12.1 75 20 -0.2 8.7 58 38
INR 14.2 7.1 96 4 8.2 4.1 97 3
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Table III. The table illustrates summary statistics for the skew-neutral strategy based on
rank differentials (RDF ) and hedged carry (CARhedged) as well as various FX-factor strategies.
CAR, SKW , V AL (Asness et al., 2013), MOM (Menkhoff et al., 2012b) and V RP (Della Corte
et al., 2016) are constructed with rank-based weights like in Asness et al. (2013) and USD is an
equal-weighted portfolio of all currencies against the US-Dollar. The statistics are annualized
and include monthly (log-)returns from January 2006 until August 2022.

Panel A: returns all currencies
RDF CARhedged CAR SKW V AL MOM VRP USD

mean 2.76 3.16 3.08 0.76 0.93 0.31 0.42 0.55
sd 5.15 5.30 6.36 7.46 5.36 6.04 4.83 7.56

skew 0.02 0.06 -0.15 -0.17 -0.00 0.16 0.02 -0.12
kurt -0.20 -0.16 0.07 0.10 0.03 0.20 0.10 -0.16

maxDD -7.89 -10.33 -10.03 -16.58 -13.80 -22.55 -16.10 -23.84
SR 0.54 0.60 0.48 0.10 0.17 0.05 0.09 0.07

Panel B: spot returns all currencies
RDF CARhedged CAR SKW V AL MOM VRP USD

mean -0.82 -3.40 -4.81 -4.28 0.80 -0.38 2.16 -1.99
sd 5.19 5.26 6.31 7.43 5.40 6.05 4.87 7.61

skew -0.04 0.01 -0.17 -0.18 0.00 0.22 0.04 -0.17
kurt -0.21 -0.15 0.08 0.10 0.04 0.24 0.08 -0.14

SR -0.16 -0.65 -0.76 -0.58 0.15 -0.06 0.44 -0.26

Panel C: correlations all currencies
RDF CARhedged CAR SKW V AL MOM VRP USD

RDF 1.00 0.57 0.05 -0.52 0.25 -0.39 -0.11 -0.56
CARhedged 0.57 1.00 0.79 0.36 -0.17 0.03 -0.18 0.06

CAR 0.05 0.79 1.00 0.83 -0.33 0.19 -0.18 0.49
SKW -0.52 0.36 0.83 1.00 -0.42 0.39 -0.09 0.73
V AL 0.25 -0.17 -0.33 -0.42 1.00 -0.24 0.15 -0.29

MOM -0.39 0.03 0.19 0.39 -0.24 1.00 -0.01 0.29
V RP -0.11 -0.18 -0.18 -0.09 0.15 -0.01 1.00 0.24
USD -0.56 0.06 0.49 0.73 -0.29 0.29 0.24 1.00

Table IV. The table illustrates summary statistics for the weights of various portfolios. Av-
erage turnover is calculated as 1

t−1
∑T

t=2

∑It
i=1 |wi,t − wi,t−1| and the average Herfindahl-Index

is defined as 1
t

∑T
t=1

∑It
i=1w

2
i,t.

mean RDF CARhedged CAR SKW V AL MOM VRP USD
... turnover % 112.88 69.18 55.03 57.16 44.96 264.08 71.05 0.03

... Herfindahl-Index 0.23 0.17 0.18 0.18 0.18 0.18 0.18 0.03
... max. weight 19.79 12.72 12.82 12.82 12.82 12.82 12.88 3.23
... min. weight -19.52 -19.38 -12.82 -12.82 -12.82 -12.82 -12.88 3.23
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Table V. The table illustrates summary statistics for the long and short components of the
strategy based on rank differentials (RDF ) and Carry (CAR). CAR is constructed with
rank-based weights like in Asness et al. (2013). The statistics are annualized and include
monthly (log-)returns from January 2006 until August 2022. The coskewness measures are
calculated relative to the stock market (Mkt-factor taken from Kenneth French’s website).
The three coskewness measures are (1) taken from Harvey and Siddique (2000), (2) the β2
from a regression Ri = α + β1 ·Mkt + β2 ·Mkt2 like in Kraus and Litzenberger (1976), and
(3) the covariance of a portfolios excess return on the squared excess return of the US stock
market. The bottom part of the table is the correlation matrix.

CARlong CARshort RDFlong RDFshort CAR RDF CARhedged

mean 1.55 -1.48 1.42 -1.72 3.08 2.76 3.16
sd 9.73 6.56 6.26 9.32 6.36 5.15 5.30

SR 0.16 -0.23 0.23 -0.18 0.48 0.54 0.60
skew -0.18 -0.04 -0.15 -0.15 -0.15 0.02 0.06
kurt 0.10 0.04 0.18 0.12 0.07 0.05 0.09

HS2000 -0.08 0.01 -0.08 -0.09 -0.05 0.01 0.01
KL1976 -0.25 0.01 -0.18 -0.28 -0.13 0.02 0.02

COV(R2
m, Ri) -20.71 10.24 -13.25 -21.01 -8.79 6.41 0.08

CARlong 1.00 0.76 0.90 0.84 0.74 -0.42 0.35
CARshort 0.76 1.00 0.83 0.94 0.13 -0.67 -0.25
RDFlong 0.90 0.83 1.00 0.85 0.51 -0.31 0.16
RDFshort 0.84 0.94 0.85 1.00 0.32 -0.77 -0.21

CAR 0.74 0.13 0.51 0.32 1.00 0.04 0.79
RDF -0.42 -0.67 -0.31 -0.77 0.04 1.00 0.57

CARhedged 0.35 -0.25 0.16 -0.21 0.79 0.57 1.00

24

Electronic copy available at: https://ssrn.com/abstract=4040261

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


Table VI. The table illustrates regressions of Carry (CAR), skew-neutral (RDF ) and hedged Carry (CARhedged) portfolios on different versions
of the Mkt-factor (Mkt as downloaded from Kenneth French’s website, e2Mkt being deviations from the mean of Mkt and Mktdown being only
negative observations of Mkt. ∆V IX is the change in the CBOE VIX Index. CAR is constructed with rank-based weights like in Asness et al.
(2013). The regressions include monthly (log-)returns from January 2006 until August 2022.

CAR RDF CARhedged CAR RDF CARhedged CAR RDF CARhedged

(Intercept) 0.002 0.004 0.004 0.002 0.003∗∗ 0.003∗ 0.003∗∗ 0.002∗∗ 0.003∗∗

(0.004) (0.003) (0.004) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Mktdown 0.193∗ −0.103 0.033

(0.080) (0.065) (0.080)
Mkt 0.169∗∗∗ −0.127∗∗∗ 0.016

(0.031) (0.027) (0.029)
e2Mkt −0.093 0.009 0.051

(0.386) (0.290) (0.345)
∆V IX −0.128∗∗∗ 0.091∗∗∗ −0.019

(0.019) (0.019) (0.017)

R2 0.127 0.067 0.005 0.181 0.147 0.002 0.157 0.120 0.005
Adj. R2 0.112 0.052 −0.011 0.172 0.138 −0.009 0.153 0.115 −0.000
Num. obs. 62 62 62 186 186 186 194 194 194
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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Table VII. This table includes results from estimating asset pricing models of the form
Et[Mt+1R

i
t+1] = 0 with a linear stochastic discount factor Mt+1 = 1−b(ft+1−µ) via GMM. Test

assets are quintile portfolios of CARi, MOMi, V ALi, V RPi and the long and short portfolio
of RDF . As factors USD, CAR, RDF and CARhedged are used. Estimates for market prices
of risk λ and factor loadings b, as well as adjusted R2, square-root of mean squared errors, and
p-values of χ2 tests are reported. The models include annualized monthly excess returns from
January 2006 until August 2022. Standard errors are adjusted according to Newey and West
(1987) using an optimal number of lags according to Andrews (1991).

λUSD λCAR λRDF λCARh
bUSD bCAR bRDF bCARh

R2
adj RMSE χ2

Model 1 0.23 3.2 -0.31 0.84 51.86 0.76
(3.1) (2.61) (0.3) (0.36) 7.41%

Model 2 0.42 2.89 0.6 1.4 49.17 0.78
(1.04) (0.6) (0.33) (0.46) 17.16%

Model 3 0.27 3.2 0 0.94 55.57 0.73
(1.95) (1.37) (0.27) (0.38) 8.86%
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Table VIII. Time-series regression results for RDF -returns with carry, momentum, value, the V RP -factor, and USD-factor as explanatory
variables. RDF offers significant alpha compared to some of the factors individually. Also, half the variation in RDF -returns remains
unexplained in the full multivariate regression. The best model seems to be the simple CAR/USD model as it explains a good portion of
variation with two parameters. In particular, it is interesting to see how CAR on its own is an insignificant explanatory variable but as USD
is added it becomes highly significant. The regression includes annualized monthly (log-)returns from January 2006 until August 2022.

RDF RDF RDF RDF RDF RDF RDF RDF RDF

(Intercept) 2.764∗∗ 2.654∗∗ 2.701∗∗ 3.114∗∗ 2.813∗∗ 2.805∗∗∗ 1.771∗∗ 1.821∗∗ 1.635∗

(0.961) (1.073) (1.032) (1.046) (1.068) (0.777) (0.710) (0.752) (0.738)
CAR 0.036 0.341∗∗∗ 0.383∗∗∗ 0.425∗∗∗

(0.064) (0.065) (0.056) (0.055)
MOM 0.207∗ 0.121∗∗ 0.101∗

(0.081) (0.042) (0.048)
VAL −0.375∗∗∗ −0.241∗∗∗ −0.236∗∗∗

(0.077) (0.059) (0.060)
VRP −0.116 0.156∗

(0.094) (0.068)
USD −0.383∗∗∗ −0.522∗∗∗ −0.464∗∗∗ −0.510∗∗∗

(0.038) (0.050) (0.048) (0.051)

R2 0.000 0.002 0.059 0.152 0.012 0.319 0.453 0.539 0.556
Adj. R2 0.000 −0.003 0.054 0.148 0.007 0.315 0.448 0.530 0.545
Num. obs. 199 199 199 199 199 199 199 199 199
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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Table IX. Time-series regression results for RDFshort-returns with carry, momentum, value, the V RP -factor, and USD-factor as explanatory
variables. RDFshort offers significant alpha once USD is included as an explanatory variable. The regression includes annualized monthly
(log-)returns from January 2006 until August 2022.

RDFshort RDFshort RDFshort RDFshort RDFshort RDFshort RDFshort RDFshort RDFshort

(Intercept) −1.719 −3.172 −1.593 −2.203 −1.904 −1.842∗∗ −1.010∗ −1.020∗ −0.882
(2.261) (2.131) (2.235) (2.205) (2.180) (0.687) (0.597) (0.593) (0.570)

CAR 0.472∗∗∗ −0.274∗∗∗ −0.286∗∗∗ −0.317∗∗∗

(0.128) (0.045) (0.040) (0.039)
MOM −0.409∗ −0.036 −0.021

(0.184) (0.029) (0.032)
VAL 0.519∗∗ 0.064 0.060

(0.189) (0.042) (0.044)
VRP 0.447∗ −0.115∗

(0.205) (0.048)
USD 1.167∗∗∗ 1.279∗∗∗ 1.263∗∗∗ 1.297∗∗∗

(0.036) (0.031) (0.030) (0.037)

R2 0.000 0.104 0.070 0.089 0.054 0.903 0.930 0.932 0.935
Adj. R2 0.000 0.099 0.065 0.085 0.049 0.903 0.929 0.931 0.933
Num. obs. 199 199 199 199 199 199 199 199 199
∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05
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Table X. This table shows the result of ex-post optimized tangency portfolios calculated
from monthly (log)returns from January 2006 until August 2022. The first column shows
the weights if CAR is replaced with CARhedged, the second column shows the mean-variance
optimal portfolio weights of existing FX-risk premia, and the third column shows weights for
a combination of RDF , CARhedged, and all other FX-factors except CAR.

CARhedged swap old factors all factors except CAR
CARhedged 0.52 0.05

RDF 0.48
CAR 0.58
MOM 0.14 0.18 0.04
V AL 0.18 0.19 0.22
V RP 0.18 0.30 0.06
USD -0.03 -0.25 0.15

Sharpe ratio 0.72 0.71 0.84

Table XI. This table shows the result of ex-post optimized tangency portfolios calculated
from monthly (log-)returns from January 2006 until August 2022 which are constrained to
have a skewness coefficient higher or equal 0.1. The first column shows the weights if CAR is
replaced with CARhedged, the second column shows the mean-variance optimal portfolio weights
of existing FX-risk premia, and the third column shows weights for a combination of RDF ,
CARhedged, and all other FX-factors except CAR.

CARhedged swap old factors all factors except CAR
CARhedged 0.43 0.16

RDF 0.29
CAR 0.54

MOM 0.18 0.13 0.13
VAL 0.25 0.20 0.32
VRP 0.09 0.35 -0.02
USD 0.04 -0.22 0.12

0.71 0.58 0.73
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VIII. Figures
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Figure 1. The graph shows the performances of a currency strategy sorted on interest rate
differentials (Carry) and a currency strategy sorted on option-implied skewness (Skewness)
constructed with rank-based weighting. Option-implied skewness is defined as in Formula 6.
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Figure 2. The left graph shows the excess returns and realized skewness of quintile portfolios
sorted on interest rate differentials (CAR) and quintile portfolios sorted on option-implied
skewness (SKW ). The right graph shows the excess returns and average ex-ante implied
skewness (Formula 6) of quintile portfolios sorted on interest rate differentials (CAR) and
quintile portfolios sorted on option-implied skewness (SKW ).
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Figure 3. The graph shows the number of available currencies considering option data needed
to calculate skewness as given in Formula 6 (10 delta, 25 delta and ATM implied volatilities
available). The data number of currencies increases above 20 starting in 2006 and quickly rises
to 30.
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Figure 4. Illustration of an unconditional 3x3 double sort according to carry and option-
implied skewness (March 2020).
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Figure 5. Illustration of weighting of different portfolios (March 2020). The left graph shows the quartile-based Carry CAR portfolio with
equal weights. The middle graph shows the skew-neutral portfolio based an (un)conditional double-sort (unconditional is the colored area,
conditional are the coloured dots/currencies), and the right graph illustrates the hedged carry, which is compromised of the long leg of CAR
and short leg of the skew-neutral portfolio. Final weights are proportional to vertical lines. Blue dots represent positive weights and red dots
negative weights.
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Figure 6. Illustration of weighting of different portfolios (March 2020). The left graph shows the Carry (CAR) portfolio with rank-based
weights as in Asness et al. (2013). The middle graph shows the skew-neutral portfolio based on rank-differences (RDF ) and the right graph
illustrates the weights of the hedged carry, which is compromised of the long leg of CAR and short leg of RDF . Final weights are proportional
to vertical lines. Blue dots represent positive weights and red dots negative weights.

34

E
lectronic copy available at: https://ssrn.com

/abstract=
4040261



2 4 6 8 10

−
2

0
2

4
6

Efficient Frontiers

standard deviation in %

ex
ce

ss
 r

et
ur

n 
in

 %

CAR_h
RDF

CAR

MOM

VAL

VRP USD

0.72
0.71

0.84

EF without CAR hedged & RDF
EF with CAR hedged instead of CAR
EF CAR hedged & RDF instead of CAR

2 4 6 8 10

−
2

0
2

4
6

Efficient Frontiers with skewness >= 0.1

standard deviation in %

ex
ce

ss
 r

et
ur

n 
in

 % CAR_h

RDF

CAR

MOM

VAL
VRP USD

0.7

0.57

0.83

Figure 7. The graphs show the ex-post mean-variance efficient frontiers for various combi-
nations of currency factors. The basis are monthly returns from January 2006 until August
2022.
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Figure 8. The graphs shows the classic asset pricing chart of predicted return vs. mean
returns for 22 different FX portfolios and the three linear models summarized in Table VII.
The basis are monthly returns from January 2006 until August 2022.
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IX. Appendix
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Figure 9. The figure shows the annualized mean return for RDF with different holding
periods (implemented with FX-forwards with corresponding maturities). The basis are monthly
returns from January 2006 until August 2022. The returns (except for the holding period of
1-month) are overlapping and the standard errors are corrected for auto-correlation using the
methodology of Newey and West (1987). Returns for holding periods greater than 1 month
are not significantly different from 0.
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Figure 10. Illustration of average-rank-based weighting on March 2020. First average ranks are calculated and then these are used to create
portfolios. Fisher et al. (2015) propose to calculate average ranks and value-weight quantile portfolios to more efficiently combine value and
momentum stocks. The right graph illustrates the weights of a skew-neutral long-short quintile portfolio where currencies are equally weighted.
The left graph illustrates a skew-neutral rank-weighted portfolio based on average ranks.
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Table XII. The table illustrates summary statistics for the long and short components of
the skew-neutral strategy based on a 2x2 unconditional double-sort (SN) and Carry (CAR).
CAR is constructed from the highest and lowest quartile of currencies according to interest
rates. The statistics are annualized and include monthly (log-)returns from January 2006 until
August 2022. The bottom part of the table is the correlation matrix.

CARlong CARshort SNlong SNshort CAR SN CARhedged

mean 1.87 -1.55 1.74 -1.62 3.47 2.84 3.26
sd 10.20 6.51 6.61 10.10 7.22 6.68 6.93

SR 0.18 -0.24 0.26 -0.16 0.48 0.43 0.47
skew -0.17 -0.04 -0.10 -0.14 -0.14 0.01 -0.05
kurt 0.10 0.03 0.19 0.13 0.08 0.02 0.02

HS2000 -0.12 -0.08 -0.10 -0.09 -0.03 -0.02 -0.04
KL1976 -0.34 -0.18 -0.24 -0.31 -0.11 -0.04 -0.08

COV(R2
m, Ri) -19.65 -11.83 -14.04 -21.86 -10.52 6.06 1.48

CARlong 1.00 0.71 0.80 0.76 0.77 -0.35 0.36
CARshort 0.71 1.00 0.74 0.90 0.10 -0.61 -0.26
SNlong 0.80 0.74 1.00 0.75 0.46 -0.14 0.09
SNshort 0.76 0.90 0.75 1.00 0.27 -0.76 -0.33
CAR 0.77 0.10 0.46 0.27 1.00 0.05 0.74
SN -0.35 -0.61 -0.14 -0.76 0.05 1.00 0.58

CARhedged 0.36 -0.26 0.09 -0.33 0.74 0.58 1.00

Table XIII. The table illustrates summary statistics for average-rank-based portfolios. RDFq
is a skew-neutral long-short quintile portfolio where currencies are equally weighted and
CARhedged,q uses the short leg of the former to combine it with the long quintile of a clas-
sic carry portfolio. RDFrw is a skew-neutral rank-weighted portfolio based on average ranks
and CARhedged,rw combines a rank-weighted long carry portfolio with the short leg of RDFrw.
The statistics are annualized and include monthly (log-)returns from January 2006 until August
2022.

RDFq CARhedged,q RDFrw CARhedged,r

mean 1.63 1.89 1.94 2.99
sd 5.53 4.47 4.54 4.72

skew 0.01 -0.03 -0.03 -0.01
kurt 0.04 -0.21 0.02 -0.18

SR 0.30 0.42 0.43 0.63
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Table XIV. The table shows summary statistics of RDF portfolios constructed using four
different option maturities to calculate the skewness signal. Although 1-month options are the
best, longer-dated options seem to convey similar information and result in similar portfolios
with lower returns.

1-month 3-month 6-month 1-year

mean 2.764 2.397 2.385 2.445
sd 5.151 5.238 5.251 5.292

Sharpe Ratio 0.537 0.458 0.454 0.462
skew 0.016 0.034 0.018 0.033
kurt 0.306 0.323 0.327 0.396
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Figure 11. This graph shows the distribution of mean returns and the skewness coefficients
of RDF for all combinations of 27 currencies selected from the full sample of 31 currencies.
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Figure 12. This graph shows the distribution of mean returns and the skewness coefficients
of CARhedged for all combinations of 27 currencies selected from the original sample of 31
currencies.
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