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Abstract

We show, both theoretically and empirically, that several statistics of dealer het-

erogeneity affect prices and liquidity in the foreign exchange (FX) market. A higher

cross-sectional covariance between dealers’ risk aversions and inventories is associated

with higher FX returns. Although unobservable, this statistic can be proxied by

the cross-sectional covariance between dealer-to-customer (D2C) prices and bid-ask

spreads. A higher cross-sectional dispersion of dealer risk aversions is associated

with higher liquidity in the dealer-to-dealer market and can be proxied by the cross-

sectional dispersion of D2C spreads. These predictions are confirmed empirically using

proprietary data on the largest FX dealers’ D2C quotes.
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1 Introduction

Motivated by the failure of macroeconomic models to explain exchange rate dynamics, a

growing literature emphasizes the role of dealers in price formation in foreign exchange

(FX) markets.1 In particular, it has been shown that given dealers’ limited risk-bearing

capacity, their aggregate inventory affects exchange rates. The previous literature has chiefly

considered the dealer sector as a whole and abstracted away from dealer heterogeneity.2

This paper shows theoretically and empirically that dealer heterogeneity is an essential

determinant of exchange rates. In particular, we show that exchange rates are affected by

the aggregate inventory and how the inventory is allocated across different dealers. We also

show that the degree of heterogeneity in dealers’ risk-bearing capacity affects the liquidity

of the FX market.

The microstructure of the foreign exchange market is highly complex. Trading is decen-

tralized and has a pronounced two-tier structure, characterized by two principal segments:

the dealer-to-customer (D2C) and the dealer-to-dealer (D2D) segments. For pricing and

liquidity in the D2D market, our model emphasizes the role of dealers’ heterogeneity along the

two dimensions: risk aversions and inventories.3 However, neither of the two is empirically

observable. Our key idea is that prices and bid-ask spreads quoted by dealers in the D2C

market are informative about their unobservable characteristics. Our model of the D2C

market helps to map the relevant summary statistics of unobservable dealer heterogeneity

to the observable statistics of the cross-section of prices and spreads in the D2C market.

We develop a pure inventory-theoretic model that features D2C and D2D market seg-

1The fact that exchange rates are only weakly related to macroeconomic fundamentals is known as the
Meese and Rogoff (1983) exchange rate disconnect puzzle.

2We expand on the literature review in Section 8.
3We interpret risk aversion broadly, as a higher cost of holding more inventories for FX dealers. The

dealers are typically banks, and these costs usually come from banks’ capital requirements, costs of obtaining
funding, and regulatory constraints that may be binding at the bank level and transmitted into individual
trading desk behavior. Moreover, the slackness of such constraints may change over time. Therefore, we see
risk aversion as being time-varying. See Cenedese et al. (2021) for empirical evidence supporting this view.
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ments. Dealers first trade with customers in the D2C market and then offload excess FX

risk exposure in the centralized D2D market. We model the D2D market as a standard

uniform-price double auction.4 Importantly, we assume that dealers are: (i) heterogeneous

in their inventories and risk aversions and (ii) strategic, that is, they take their price impact

into account. We say that a liquidity mismatch occurs when dealers with relatively higher

risk aversion hold more inventories. Our measure of liquidity mismatch is a cross-sectional

covariance between dealers’ inventories and risk aversions.

Our D2D market model yields two main results: (a) higher liquidity mismatch is as-

sociated with higher FX returns, and (b) higher dispersion in dealers’ risk aversions is

associated with higher liquidity in the D2D market. Both results are intuitive. To see

(a), note that when liquidity mismatch is higher, the inventory allocation to dealers is less

efficient. Moreover, such inefficiency cannot be corrected instantly via inter-dealer trading

because of price impact. As a result, the dealer sector as a whole is effectively more risk

averse, and the FX returns are higher. To see (b), consider the following example. Imagine

that we have three dealers with a risk aversion of 1 each. They each provide 1 unit of

liquidity, 3 in total. Now consider what happens if dealers’ risk aversions are 0.5, 1, and

1.5 (so that average risk aversion is the same, but the dispersion is higher). Because the

liquidity provided (price elasticity) is inversely proportional to risk aversion, the dealers will

provide 2, 1, and 1/1.5=0.66 units of liquidity, 3.66 in total.5

We next use our D2C market model to help us map unobservable statistics of dealer

heterogeneity to observable quantities.6 First, we show that higher dispersion of dealer risk

aversions is associated with higher cross-sectional dispersion of bid-ask spreads in the D2C

4As in Kyle (1989), Vives (2011), Rostek and Weretka (2015) and Malamud and Rostek (2017).
5The price elasticity is inversely proportional to risk aversion when heterogeneity in risk aversions is small.

In the general case, this relationship is more complex. However, price elasticity is still a convex function of
risk aversion in this case. Thus, the logic of our simple example still applies.

6We actually have two models of the D2C market. A simple model, presented in Section 2, abstracts
from some of the essential features of the real FX market while delivering the same predictions as our full
model. We provide an overview of the FX market in Section 7.1 and present the full model in Section 7.2.
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market. This is intuitive because bid-ask spreads are positively related to risk aversions:

More risk averse dealers are less efficient at holding inventory and require higher compen-

sation, resulting in wider spreads. Our first prediction follows: Bid-ask spreads in the D2D

market are negatively related to the cross-sectional dispersion of D2C bid-ask spreads.

Second, we show that higher cross-sectional covariance between inventories and risk

aversions (liquidity mismatch) is associated with higher cross-sectional covariance between

prices and bid-ask spreads in the D2C market. We call the latter covariance the price-based

liquidity mismatch measure. The relationship between the two mismatch measures holds

because: (i) risk aversions and bid-ask spreads are positively related and (ii) inventories

(with which dealers start the D2D trading round) and D2C prices are positively related.

Part (i) is discussed above. To see part (ii), note that dealers posting the highest (lowest)

prices will attract a disproportionate share of aggregate customer sell (buy) volume. Thus,

dealers with the lowest (highest) prices will decrease (increase) their inventories, implying

a positive cross-sectional relationship between inventories and D2C prices.7 Our second

prediction follows: Prices in the D2D market are negatively related to the cross-sectional

covariance between D2C prices and bid-ask spreads.

To test these two novel predictions, one requires data on the cross-section of D2C quotes.8

To our knowledge, such data is not publicly available and has never been studied in the

7Non-exclusive relationship between dealers and customers is key for the positive cross-sectional rela-
tionship between inventories and D2C prices. That is, customers direct their orders to dealers offering the
best prices instead of directing them to a preferred, exclusive dealer. As we discuss in Section 7.1, such a
non-exclusive relationship is realistic for the FX market. Other models featuring exclusive customer-dealer
relationships (e.g., Babus and Kondor (2018)and Babus and Parlatore (2018)) will likely produce the opposite
result. See more discussion in Section 4.

8It is essential for our analysis to observe both bid and ask prices, which is a unique feature of our data.
Indeed, to compute the liquidity mismatch at a particular time one needs to observe mid-quote and bid-ask
spread at that time. For example, the data for the corporate bond market is different. The bond market
operates via request-for-quote (RFQ) mechanism. In RFQ dealers only provide one quote for a particular
direction of the trade. In contrast, in the request-for-market (RFM) trading mechanism customer requests
two-sided quotes from the dealers simultaneously. Such mechanisms are getting traction in interest rate
swaps market, as they allow traders to hide their trading intentions. Our empirical approach thus can be
useful in markets with RFM trading mechanisms, such as interest rate swap market. Our empirical approach
thus can be useful in markets with RFM trading mechanisms, such as interest rate swap market.
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literature. We use proprietary high-frequency data on quotes in the FX spot market for the

EUR/USD currency pair by the major dealers in the D2C market segment provided by a

major Swiss retail aggregator.9 We merge these data with data on quotes and spreads for

the same currency pair from Electronic Broking Services (EBS), one of the largest D2D FX

platforms in the world.10

We find strong support for our predictions in the data. While we naturally expect that

average price levels in D2C and D2D markets should be related, there is no apparent reason as

to why the dispersion of prices and spreads in the D2C dataset should be related to the price

and spread level in the D2D dataset. Yet the data strongly support the two key predictions

of our model: First, the D2C price-based liquidity mismatch is non-trivial and exhibits a

significant, positive predictive relationship with D2D prices. Second, the dispersion of D2C

bid-ask spreads negatively predicts D2D spreads.

We also test and find strong support for our other predictions. First, we find that D2D

prices are negatively related to the customer demand shocks that originate from the retail

aggregator (RA) (our data provider). Given the relatively small size of the RA, this finding

is surprising. We hypothesize that a common component in global customer order flow is

highly correlated with the customer shocks from our RA. Second, dealers posting the highest

prices among other dealers will likely be posting the lowest prices subsequently. In our model,

this occurs because such dealers will attract a disproportionate share of sell volume and will

end up with excess inventory. In order to decrease the inventory, they would try to attract

buy order flow by posting the lowest prices. Such behavior is consistent with dealer ‘quote

shading ’ – shifting prices in the direction opposite to the inventory. While there is some

9We view the retail aggregator as a customer in the framework of our model. Retail aggregators (RAs)
are intermediaries between retail clients and large foreign exchange dealers. These dealers compete for RAs’
order flow by providing high-frequency D2C quotes (bids and asks). Because we only consider the EUR/USD
currency pair, it seems safe to assume that our RA does not have any informational advantage relative to
the dealers, who are all large international investment banks. Thus, our assumption of pure inventory-driven
trades is well justified.

10According to Mancini et al. (2013), EBS is the largest inter-dealer FX trading platform, accounting for
60% of total D2D volume.
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mixed evidence for dealer quote shading in the D2D market, to the best of our knowledge,

we are the first to document it in the D2C market.11 Finally, such reversals in the cross-

section of D2C prices imply that cross-sectional covariance between D2C prices and bid-ask

spreads should exhibit negative auto-correlation. We find strong support for this prediction

as well.

The paper is organized as follows. Section 2 presents the simple model. Section 3

characterizes the equilibrium in the D2D market. Section 3.2 links D2D prices and liquidity

to statistics of unobservable dealer heterogeneity, while Section 4 links them to the observable

statistics of the cross-section of prices and spreads in D2C market. Section 5 derives

our empirical predictions, and Section 6 tests these predictions. Section 7 discusses the

microstructure of real-world FX markets and then describes the full model. Section 8 reviews

the existing literature. Section 9 concludes.

2 A Simple Model

In this section, we present a simple model of the FX market. The model here makes several

strong assumptions and abstracts from some essential features of the real-world FX market

in order to facilitate exposition. We present an overview of the FX market structure in

Section 7.1. In Section 7.2, we present our full model, which accounts for all FX market

features. The implications of the model here and that in Section 7.2 are essentially the same.

There are three time periods, t = 0, 1, 2, and two tradable assets, a risk-free asset with

a rate of return normalized to zero and a risky asset with a random payoff d at time t = 2.

We assume that d is normally distributed with mean d̄ and variance σ2
d.

The D2D market operates at t = 1. The market is populated by M > 2 heterogeneous

dealers, indexed by l = 1, · · · ,M , and having linear-quadratic utilities. Dealer l that begins

11While Lyons (1995) shows evidence consistent with quote shading, recent studies, such as Bjønnes and
Rime (2005) and Osler et al. (2011), have found no evidence of quote shading in the D2D FX markets.
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t = 1 with χl units of risky asset and trades Ql units at price PD2D derives expected utility

UD2D
l = d̄χl + (d̄− PD2D)Ql −

Γl

2
(χl +Ql)

2.

We refer to the coefficient Γl as dealer l’s risk aversion. We assume that the dealer knows his

initial inventory χl but does not know that of other dealers. The D2D market is structured as

a uniform-price double auction. Dealer l submits a (net) demand schedule Ql(PD2D) : R →

R, which specifies demanded quantity of the asset given its price PD2D in the inter-dealer

market. The price PD2D is such that the market clears, that is,
∑M

l=1Ql(PD2D) = 0. All

dealers are strategic and there are no noise traders. The D2D market is the same as that of

the full model, so the equilibrium characterization in that market (see Section 3) applies to

both models.

The D2C market operates at t = 0. We do not model customers explicitly but rather

assume that dealers compete for exogenous customer order flow q̃ by providing bid and ask

prices pbl and pal , respectively. We assume that q̃ is drawn from an arbitrary non-degenerate

distribution with finite first two moments and that q̃ is independent of all other random

variables in the model. The distribution of q̃ is public information. Positive (negative)

realizations of q̃ correspond to customer sell (buy) volume. The prices pbl and pal are provided

to customers and are not observed by competitor dealers. We denote the mid-price by

αl ≡ pbl+pal
2

and the bid-ask spread by bl ≡ pal − pbl . Customers observe the prices of all

dealers. We assume that dealers are myopic: They put zero weight on the utility derived in

the D2D trading round. Dealer l begins t = 0 with inventory xl. We assume that customers

are rational in that they route their orders to the dealer providing the best prices (smallest

pal for q̃ < 0 and largest pbl for q̃ > 0). Define the reservation ask (bid) price ral (rbl ) as the
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smallest ask price (largest bid price) acceptable to a dealer l. It is straightforward to derive12

ral = v̄ − Γl

(
xl +

1

2

E[q̃2|q̃ < 0]

E [q̃|q̃ < 0]

)
and rbl = v̄ − Γl

(
xl +

1

2

E[q̃2|q̃ > 0]

E [q̃|q̃ > 0]

)
. (1)

We assume that dealer’s prices are affine functions of their reservation values, as follows:

pal = ka
0 + k · ral and pbl = kb

0 + k · rbl , (2)

where k, ka
0 and kb

0 are constants. We show below that (2) holds exactly when the D2C

market is structured as a second-price auction (in which case bidding reservation value

is an equilibrium strategy). When the D2C market is structured as a first-price auction

and other dealers’ reservation values are i.i.d. uniformly distributed, (2) holds exactly. In

the case of first-price auction and general distribution, (2) holds approximately when the

heterogeneity in dealer’s risk aversions Γl is small, and risk aversions themselves are small.

Such approximate relation is sufficient for our main predictions.

We now briefly discuss our simplifying assumptions. First, we have assumed myopic

dealers. This assumption is made for simplicity. This assumption does not drive our results

as our full model does not assume dealers’ myopia and delivers the same results. Second,

we have assumed that dealers’ prices in the D2C market cannot depend on the quantities

demanded by customers. In other words, in our simple model, dealers have no flexibility

in conditioning prices on quantities. As we discuss in Section 7.1, in the real FX market,

dealers have partial flexibility : they provide separate quotes for orders below $1m and orders

between $1m and $5m. In our full model, dealers can post linear price schedules, that is they

have full flexibility in conditioning prices on quantities. We believe that not capturing the

partial flexibility of real FX markets is not crucial for our results because the results in the

model with no flexibility (simple model) and full flexibility (full model) are the same. Finally,

12Indeed, the ral solves v̄ (xl + E [q̃|q̃ < 0])− ral E [q̃|q̃ < 0]− Γl

2 E
[
(xl + q̃)2|q̃ < 0

]
= v̄xl − Γl

2 x
2
l . A similar

calculation applies to rbl .
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we have assumed exogenous, price-inelastic customer demand q̃. In our full model, customer

demand is endogenous and adjusts to prices posted by dealers. Because the implications in

the two models are the same, this simplification of customer demand is not crucial for our

results.

3 Equilibrium in the D2D Market

In this section, we use the results in Malamud and Rostek (2017) to characterize the unique,

robust linear Nash equilibrium in the D2D double auction game. Our D2D game is the same

in both the simple model and in the full model. Thus, the results here (the entire Section 3)

apply to both models. Given his asset holdings χl, dealer l’s objective is to choose the trade

size Ql in the D2D market that maximizes his quadratic utility (17) by choosing the optimal

trade size Ql. The key insight for understanding the nature of strategic trading comes from

the observation that the equilibrium demand schedule Ql = Ql(χl,PD2D) of dealer l equalizes

his marginal utility with his marginal payment for each price,

d− Γl (χl +Ql) = PD2D + βlQl, (3)

where βl measures the price impact of dealer l in the D2D market (also known as “Kyle’s

lambda”; see Kyle (1985)). Formally, βl is the derivative of the inverse residual supply

of dealer l, which is defined by aggregation through the market clearing of the schedules

submitted by other traders, {Qℓ(χℓ,PD2D)}ℓ̸=l. Importantly, it follows from (3) that if

dealer l knew his price impact βl, which is endogenous, he could determine his demand by

equalizing his marginal utility and marginal payment pointwise. Let Ql (·, βl) be the demand

schedule defined by (3) for all prices PD2D by dealer l, given his assumed price impact βl
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and his post-D2C inventory χl,

Ql(χl,PD2D) = (Γl + βl)
−1(d− PD2D − Γlχl).

To pin down equilibrium price impacts, we note that the market clearing condition requires

that the price impact assumed by dealer l be equal to the slope of his inverse residual supply,

which results from the aggregation of the other dealers’ submitted schedules. Proposition 1

(Proposition 1 in Malamud and Rostek (2017)) shows that the system for equilibrium price

impacts can be solved explicitly.13 Additionally, it derives some comparative statics.

Proposition 1 There exists a unique D2D market equilibrium. The equilibrium price is

given by

PD2D = d̄−Q∗ with Q∗ ≡ B−1

M∑
l=1

(Γl + βl)
−1Γlχl . (4)

Trader l’s price impact βl is given by

βl =
2Γl

ΓlB − 2 +
√

(ΓlB)2 + 4
,

where B ∈ R+ is the unique positive solution to
∑

l(ΓlB + 2 +
√

(ΓlB)2 + 4)−1 = 1/2 .

Moreover: (i) the price impact βl is cross-sectionally monotone decreasing in Γl,, i.e., if

Γl1 > Γl2 , then βl1 < βl2 ; and (ii) βl is monotone increasing Γℓ for any ℓ ̸= l : That is, an

increase in risk aversion of any trader worsens liquidity for all other traders. The equilibrium

post-D2D trade inventory of dealer l is

χ̃l = (Γl + βl)
−1Q∗ + (Γl + βl)

−1βlχl . (5)

13For symmetric risk aversions, the equilibrium of Proposition 1 coincides with the equilibrium in Rostek
and Weretka (2011), which in turn coincides with Kyle (1989), without nonstrategic traders and assuming
independent values). The case of symmetric risk aversions has also been studied in Vayanos (1999), and
Vives (2011).
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Dealers’ equilibrium indirect utility (17) is given by

Ul = E
[
χld− 0.5Γlχ

2
l + (0.5Γl + βl)(Γl + βl)

−2(Q∗ − Γlχl)
2
]
. (6)

It is well understood that the aggregate order flow from the D2C market affects D2D

pricing (see, e.g., Evans and Lyons (2002b)). In other words, previous research has high-

lighted the importance of the first cross-sectional moment of inventories for exchange rates.

The major consequence of the proposition above is that the second cross-sectional moments

matter. We focus on two of them: (i) dispersion of inventories and (ii) cross-sectional

covariance between inventories and dealers’ risk aversions. In the following section, we

derive the asset pricing implications of changes in (i) and (ii) and demonstrate how one can

diagnose such changes by using D2C market prices.

3.1 The Liquidity Mismatch

We introduce some notation. For vectors {xl}l and {yl}l, we use E[xl] =
1
M

∑
l xl and E[yl] =

1
M

∑
l yl to denote their cross-sectional means, and Cov(xl, yl) = E[(xl − E[xl])(yl − E[yl])]

to denote their cross-sectional covariance. We say that {x̂l}l is a mean-preserving spread of

{xl}l if x̂l = xl + ϵl and E[ϵl] = 0. We use the shortcut x for a vector {xl}l and we denote

∥x∥ = (
∑

l x
2
l )

1/2
the Euclidean norm of x. We also write a

s
= b whenever sign(a) = sign(b).

We say that a liquidity mismatch occurs when high-risk aversion dealers have large

inventories after the D2C trading round. Our first, inventory-based measure of liquidity

mismatch Ymismatch, mirrors this definition:

Ymismatch ≡ Cov(Γl, χl).

Note that neither risk aversions Γl nor post-trade inventories χl are empirically observable.
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Thus, we introduce an alternative, price-based measure Amismatch, as follows:

Amismatch ≡ Cov(bl, αl).

We show below that Amismatch
s
= Ymismatch, that is, when there is a positive (negative)

liquidity mismatch, both measures are positive (negative). Thus, Amismatch is a valid,

empirically observable alternative for Ymismatch.

3.2 D2D Pricing and Dealer Characteristics

When there is a liquidity mismatch, the allocation of inventories across dealers is inefficient.

Due to market power, such inefficiency will not be resolved after the D2D trade. As a result,

dealers (on average) will require higher compensation for holding the inventories, and the

prices will be lower. Consistent with this intuition, we show below that positive (negative)

mismatch Ymismatch introduces a downward (upward) distortion in the equilibrium D2D price.

Indeed, one can rewrite (4) as follows:

PD2D = d̄− B−1M
(
E[(Γl + βl)

−1Γl]E[χl] + Cov((Γl + βl)
−1Γl, χl)

)
. (7)

The key term in (7) is Cov((Γl + βl)
−1Γl, χl). We show below that Cov((Γl + βl)

−1Γl, χl))
s
=

Ymismatch, and so, indeed, positive (negative) mismatch Ymismatch introduces a downward

(upward) distortion in the equilibrium D2D price.

To see that Cov((Γl + βl)
−1Γl, χl))

s
= Ymismatch, note that by Proposition 1, less risk

averse dealers have greater price impact: If Γ1 < ... < ΓM , then dealers’ price impacts in the

D2D market satisfy β1 > · · · > βM . This is intuitive: Less risk averse dealers face a more risk

averse rest of the market and, therefore, a less elastic residual supply. By direct calculation,

the weights (Γl + βl)
−1Γl in Equation (4) are monotone increasing in Γl. Therefore, we can
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write

Cov((Γl + βl)
−1Γl, χl))

s
= Cov(Γl, χl) = Ymismatch.

The following proposition follows immediately.

Proposition 2 Fix {Γl}l. Consider three possibilities for distribution of inventories {χl}l

across dealers: {χl}l is such that (a) Cov(χl,Γl) > 0, (b) Cov(χl,Γl) = 0, and (c) Cov(χl,Γl) <

0. Suppose that E[χl] is the same in all three cases. Then, PD2D
(a) < PD2D

(b) < PD2D
(c) .

We also derive implications of changes in the dispersion of risk aversions.

Proposition 3 An increase in the dispersion of risk aversions Γl (defined as a mean-

preserving spread) leads to an increase in the liquidity of the D2D market, defined as the

price elasticity of aggregate dealer demand.

To understand the intuition behind the proposition above, consider the following example.

Imagine we have three dealers with a risk aversion of 1 each. They each provide 1 unit of

liquidity, 3 in total. Now consider what happens if dealers’ average risk aversion is 0.5, 1, and

1.5 (so that average risk aversion is the same, but we increased the dispersion). Since liquidity

provided (price elasticity) is inversely related to risk aversion, the dealers will provide 2, 1,

and 1/1.5=0.66 units of liquidity, 3.66 in total.14 Thus, greater dispersion in risk aversions,

results in more liquidity.

Propositions 2 and 3 establish the link between prices and liquidity in the D2D market

and unobservable dealer characteristics. The next section demonstrates how to identify these

unobservable characteristics from prices and spreads in the D2C market.

14The price elasticity is inversely proportional to risk aversion when heterogeneity in risk aversions is small.
In the general case, this relationship is more complex. However, price elasticity is still a convex function of
risk aversion in the general case. Thus the logic of our simple example still applies.
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4 Linking Dealer Characteristics to D2C Prices and

Spreads

Because neither risk aversions Γl nor inventories χl are observable, we cannot directly take

the predictions of Propositions 2 and 3 to the data. The key idea of this paper is that

mid-prices αl and bid-ask spreads bl in the D2C market are informative about unobservable

dealer characteristics Γl and χl. Here, we use our simple model to map Ymismatch and cross-

sectional dispersion of risk aversions to observable statistics of prices and spreads in the D2C

market. Section 7.3 shows that the same mapping is applicable in the full model.

First, we note that D2C bid-ask spreads are informative about dealers’ risk aversions.

Indeed, it follows directly from (1) and (2) that

bl = ka
0 − kb

0 +
1

2
kΓl

(
E[q̃2|q̃ > 0]

E [q̃|q̃ > 0]
− E[q̃2|q̃ < 0]

E [q̃|q̃ < 0]

)
.

Thus, changes in Γl are proportional to changes in bl. This is intuitive: More risk averse

dealers are less efficient at holding inventory and require higher compensation for doing so,

resulting in wider spreads. Directly from Proposition 3, we obtain the following.

Proposition 4 An increase in the dispersion of D2C bid-ask spreads bl (defined as a mean-

preserving spread) is associated with an increase in the liquidity of the D2D market.

We now show that Ymismatch
s
= Amismatch. The equilibrium relationship between prices in

the D2C market and dealers’ inventories and risk aversions is generally complex. However,

it is possible to derive analytical approximations when dealer heterogeneity is small. Such

an approximation allows us to capture the first-order effects of heterogeneity on equilibrium

quantities while preserving analytical tractability. The case of small heterogeneity corre-

sponds to small values of ∥Γ− Γ∗∥, that is, when risk aversions Γl are close to some average
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level Γ∗. Under such approximation, we can write

pal ≈ consta − kΓ∗xl, p
b
l ≈ constb − kΓ∗xl, and αl ≈ const− kΓ∗xl, (8)

where consta, constb, and const are some constants that are the same across dealers and ≈

denotes approximate equality, up to terms of order O(∥Γ− Γ∗∥).

It follows from (8) that the dealer posting the lowest ask (highest bid) price is also the

dealer with the lowest (highest) mid-price. Because the customer order flow is directed to

the dealer with the best price, the dealer with the smallest (highest) mid-price will decrease

(increase) his inventory, while other dealers’ inventories will be unchanged. Thus, we get a

positive cross-sectional relationship between changes in inventories χl−xl and mid-prices αl.

If total customer order flow q̃ is large compared to dealers’ initial inventories xl, then dealers

with the smallest (highest) mid-price also end up with the smallest (highest) post-D2C

inventory χl, and we have a positive cross-sectional relationship between χl and αl. Then

we have Cov(χl,Γl)
s
= Cov(αl,Γl)

s
= Cov(αl, bl), where the last equality follows because bl is

related positively to Γl. This results in Ymismatch
s
= Amismatch, and the following proposition

follows directly from Proposition 2.

Proposition 5 Suppose that ∥Γ − Γ∗∥2 is sufficiently small and that the realization |q̃| is

sufficiently large. Then Ymismatch
s
= Amismatch. Holding {Γl}l fixed, consider three possi-

bilities for the joint distribution of mid-prices and bid-ask spreads in the D2C market: (a)

Amismatch > 0, (b) Amismatch > 0 = 0, and (c) Amismatch < 0. Suppose that in all three cases,

E[αl] is the same. Then, PD2D
(a) < PD2D

(b) < PD2D
(c) .

We now provide several microfoundations for the relation (1).

Proposition 6 Suppose that the D2C market is structured as a second-price auction. Then

(1) holds with ka
0 = kb

0 = 0 and k = 1. Suppose that the D2C market is structured as a

first-price auction. From the perspective of any dealer l, other dealers’ reservation values
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rak, r
b
k, k ̸= l are i.i.d uniformly distributed, with rak ∼ U [ra, ra] and rbk ∼ U [rb, rb]. Then

(1) holds with ka
0 = ra/M , kb

0 = rb/M , and k = M−1
M

. Suppose that the D2C market

is structured as a first-price auction. Suppose that Γk = Γ∗ + Γ̂k, where Γ̂k are i.i.d.

distributed with a continuously differentiable CDF on the support S such that S ⊂ [−Γ∗,Γ∗].

Suppose that initial inventories xk are i.i.d. distributed with a continuous CDF on a bounded

support. Then (1) holds approximately up to terms of order O((Γ∗)2) and the statements of

Propositions 4 and 5 hold for small enough Γ∗.

We conclude with several remarks.

Remark 7 Our central result is that when (i) dealers have market power and (ii) are hetero-

geneous in their risk aversion, the price in the D2D market is affected by the distribution of

inventory risk (i.e., post-D2C inventories {χl}l) across dealers. In contrast, if the D2D market

was perfectly competitive or if dealers were homogeneous, only the aggregate inventory∑
l χl matters for D2D pricing. Indeed, in the homogeneous case, this follows because Q∗

is proportional to
∑

l χl (as follows from (4)). In the competitive case, all dealers can be

aggregated and substituted with a representative dealer holding the aggregate inventory;

hence, the prices are affected only by total supply and not by the inventory distribution

across dealers.15

Remark 8 The key to a negative relationship between PD2D and Amismatch in our model

(consistent with our empirical evidence), is a non exclusive relationship between dealers

and customers. In contrast, the models in which the relationship between customers and

dealers is exclusive (see, e.g., Babus and Kondor (2018) and Babus and Parlatore (2018))

will predict the opposite.16 To see why, suppose that in our simple model each dealer has

its customer base, so each dealer is getting exogenous order flow q̃/M . In such a model,

each dealer’s inventory is expected to change by the same amount and so Cov(χl,Γl) =

15See, e.g. Proposition IA.3 in Glebkin, Malamud and Teguia (2022) for a formal treatment.
16We show so formally in Appendix E, where we consider a model of Babus and Parlatore (2018).
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Cov(xl + const,Γl) = Cov(xl,Γl). Since xl is negatively related to αl (according to (8),

dealers with higher inventories bear more risk and require higher compensation for doing

so), we have Ymismatch = Cov(χl,Γl) = Cov(xl,Γl)
s
= −Cov(αl, bl) = −Amismatch. Here, we

substituted bl for Γl, similarly to the derivations underlying Proposition 4. Thus, with an

exclusive customer-dealer relationship, PD2D is positively related to Amismatch.
17

5 Empirical Predictions

The theoretical analysis in both our simple and full models yields the following empirical

predictions.

Prediction 1. PD2D is negatively related to Amismatch.

This prediction follows from Proposition 5 (simple model) and Proposition 11 (full

model).

Prediction 2. Bid-ask spreads in the D2Dmarket are negatively related to the dispersion

of D2C bid-ask spreads.

This prediction follows from Proposition 4 (simple model) and Proposition 10 (full

model).

Prediction 3. PD2D is negatively related to customer demand shock.18

This prediction follows from Proposition 2 (simple model) and Proposition 15 (full

model).19 While Prediction 3 is not linked to heterogeneity and would arise in most frag-

mented market models, it is still instructive to test this prediction with our data to see

whether the particular market segment we look at is representative of the global order flow.

17The derivations here are particularly simple because we assumed price-inelastic customer demand. In
Appendix E, we do not make such an assumption and show that our conclusions still hold. Intuitively,
customers and dealers trade toward an efficient allocation, where their risks are perfectly shared, but they
only do so imperfectly due to dealers’ market power. Thus, dealers who start with relatively high pre-D2C
inventory xl will end up with relatively high post-D2C inventories χ̃l.

18Demand shock stands for q̃ in the simple model and Θ in the full model.
19Proposition 2 implies that price is negatively related to E[χl], and since E[χl] = E[xl]+1/Mq̃ is positively

related to q̃, the statement follows.
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We derive two additional predictions that stem from the non exclusive relationship

between customers and dealers, the key feature of our model. Non exclusivity implies that

dealers posting the lowest (highest) prices attract a disproportionate share of customer buy

(sell) volume. Thus, these dealers will end up with the lowest (highest) inventories χl post-

D2C. Now note that dealers posting the lowest (highest) prices are also dealers with the

highest (lowest) inventories xl (see (8)). Then with the lowest pre-D2C inventory xl will end

up with the highest inventory post-D2C, χl. Because inventories and prices are negatively

related (see (8)), dealers posting lowest prices αl are likely to post the highest prices in the

next period.20 To test this, we define the price competitiveness measure pcl for a dealer l

to be equal to 1 (resp. −1) if he posts the highest (resp. lowest) price, and 0 otherwise.

Formally,

pcl =


1, αl = maxk αk,

−1, αl = mink αk, and

0, otherwise.

Our next prediction follows.21

Prediction 4. There is a negative auto-correlation in price competitiveness for any

dealer l.

Holding Γl fixed, such reversals in the cross-section of αl imply (for large enough total

customer order flow) the negative auto-correlation in Amismatch. Our final prediction follows.

Prediction 5. There is a negative auto-correlation in Amismatch.

20To go from inventories to prices, we need to define mid-prices in D2C in the next trading period. We
define them as the D2C mid-prices when dealers’ initial inventories xl equal their post-D2D inventories χ̃l.
We know that a dealer with the lowest αl will end up with the smallest post-D2C inventory χl. Then, it
follows from (5) that χl and χ̃l, for small ∥Γ− Γ∗∥. The statement then follows.

21The formal result underlying Predictions 4 and 5 is the Proposition 16 stated and proved in the Appendix.
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6 Empirical Analysis

In this section, we empirically test Predictions 1 through 5.

6.1 Empirical Specifications

In this section, we test the basic predictions of our model. To this end, we assume that, over

a sufficiently short period (such as a few seconds), no new fundamental information arrives;

thus, prices in both the D2C and D2D markets are driven exclusively by inventory shocks. We

assume that all other model parameters, including dealers’ risk aversions Γl, l = 1, · · · ,M

stay constant over that time horizon.22 Under this assumption, our model predicts that the

following time series relationship between D2C and D2D prices should hold over short time

horizons:

PD2D
t+1 = a0 + a1ᾱt + a2Amismatch,t + a3Θt .

Furthermore, Predictions 1 and 3 imply a2, a3 < 0. It is also natural that mid-prices in

D2D and D2C markets are positively related, thus, a1 > 0. To summarize, we expect the

following signs for our coefficients:

a1 > 0 > a2, a3.

We test this relationship by regressing D2D prices on both ᾱ and αmismatch and on a set of

controls. Following the extant literature, we replace dependent and independent variables

with their first differences in our main empirical specification because price levels are highly

22We do not micro-find the origins of the shocks to dealers’ risk aversions Γ. These shocks typically come
from banks’ capital requirements, shocks to dealers’ costs of funding, and regulatory constraints that may
be binding at the bank level and transmitted into individual trading desk behavior at the bank.
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persistent and replace prices by log prices.23 Thus, our main empirical specification is

∆pD2D
t+ℓ, ℓ = a0 + a1∆ᾱt, ℓ + a2∆Amismatch,t, ℓ + controlst , (9)

where for a variable Xt we denote

∆Xt,ℓ = Xt − Xt−ℓ and pD2D
t = logPD2D

t .

We consider several lags ℓ ranging from 1 to 60 seconds. We include four controls in our

analysis. The first is the liquidity demand of customers, ProxyLiqShock, which is a proxy

for effects of Θ and θ̄ on prices. The other three are measures of the realized order flow in the

D2D market. We include these variables following Evans and Lyons (2002b), who showed

that D2D order flow is correlated to price changes in the D2D market.

A second regression specification is designed to test Prediction 2 of our model: The

dispersion of spreads in the D2C market negatively predicts the spread in the D2D market.

To this end, we run the regression

Spread D2Dt+ℓ = a0 + a1Spread D2Ct + a2STD Spread D2Ct + controlst , (10)

where Spread D2C is the mean spread in the D2C market and STD Spread D2C is the

standard deviation of spreads in the D2C market. Similar to the specification for the D2D

prices, the specification for D2D spreads also contains control variables based on order flows.

Prediction 2 implies that a2 < 0. Also, it is natural that bid-ask spreads in D2D and D2C

markets are positively related. Thus, in this regression, we expect that

a1 > 0 > a2.

23See, for example, Evans and Lyons (2002b). The results are qualitatively similar when we use prices
instead.
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6.2 Data Description

We test the model’s predictions using three high-frequency datasets (time-stamped with 1-

second precision). The first two datasets are provided to us by a large Swiss retail aggregator

(the retail aggregator hereafter). The first dataset contains price schedules for the currency

pair “EUR/USD”24 submitted to the retail aggregator by the largest FOREX dealers. This

dataset covers the period from June 1, 2016 to September 30, 2016. Price schedules are

stepwise functions mapping volumes to bid-ask quotes: These are discretized versions of

the price schedules pl(q) in our full model (see subsection 7.2). The retail aggregator does

not have access to the D2D market and can manage its inventory only by trading with the

dealers. Thus, from the point of view of our model, the retail aggregator is a customer

trading with dealers in the D2C market.

The second dataset contains the orders submitted for execution by its clients for the same

currency pair and period. The geographical composition of the retail aggregator’s clients who

trade the EUR/USD currency pair is highly heterogeneous and is dominated by large groups

of clients from Italy, Switzerland, China, and Spain. 95% of clients in this dataset are retail

clients, while the rest are corporate clients. For 99% of the observations, the order size

does not exceed USD 1 mln. Thus, for our empirical analysis, we filter the data to keep

the quotes and the orders with an order size not exceeding 1 million. The negative of the

aggregate demand of all the retail aggregator clients represents the inventory shock Θt. The

third dataset is the EBS dataset provided to us by NEX Data. EBS is one of the largest

D2D FX platforms in the world. This dataset is a comprehensive account of FX’s best bids

and asks aggregated within each second. It also indicates when a transaction occurs and its

price and size. Mancini et al. (2013) compared the EBS dataset with other FX datasets and

concluded that “EBS is effectively the only current data source for intraday data.” For the

sake of consistency with the second dataset obtained from the retail aggregator, we restrain

24According to the Triennial Central Bank Survey (April 2016), this currency pair accounts for the most
significant turnover on the FOREX market.
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our final dataset to the subset of transactions with the order size of 1 mln or less.25 All three

of our datasets are time-stamped with 1-second precision.

We follow Mancini et al. (2013) to clean our two (high-frequency) quote datasets. In

addition, for the the retail aggregator datasets, we filter the data sample on quotes to retain

price schedules from a subsample of dealers who were simultaneously providing quotes during

a long continuous time interval within each trading day. We also use quotes associated with

a volume of 1 million, the dominant volume submitted by dealers to the retail aggregator.

After applying such a filtering procedure, we retain quotes from 10 large dealers. In our full

model, dealers’ price schedules are linear in volume: pl(q) = αl + bl q. Given the trade

size q = 1 million, we observe the bid pl,t(−q) and the ask pl,t(q) for each dealer at each time

instant t, which we then use to directly back out the mid-prices and slopes, as follows:

αl,t =
pl,t(q) + pl,t(−q)

2
and bl,t =

pl,t(q)− pl,t(−q)

2q
.

The relevant aggregate quantities in the D2C market are as follows. The average mid-price

is

ᾱt =
1

M

M∑
l=1

αl,t ,

the average spread is

Spread D2Ct =
1

M

M∑
l=1

bl,t,

and the sample dispersion of spreads is

STD Spread D2Ct =

√
1

M − 1

∑
(bl,t − Spread D2Ct)

2

25Transactions of size one mln or less account for more than 50% of deals in the EBS data. We ran our
analysis with all transaction data in an earlier paper version and obtained the same qualitative results.

21



We then construct our measure of liquidity mismatch, as follows:

Amismatch,t = Cov(αl,t, bl,t) =
1

M

∑
l

(
αl,t −

1

M

∑
αl,t

)(
bl,t −

1

M

∑
bl,t

)
. (11)

Formula (11) corresponds precisely to our theoretical liquidity mismatch.

Our proxy for the customers’ liquidity demand is the net of all seller-initiated orders and

buyer-initiated orders from the retail aggregator’s clients, that is, the net selling pressure.

This definition follows our assumption that any online broker acts as an intermediary between

retail clients and large dealers, and such brokers are competitive. The net selling pressure

can then be seen as a scaled proxy of the total customer shocks Θt.
26 However, clients’ orders

arrive at a much lower frequency than the frequency at which dealers update their quotes,

thus, the obtained time series of the proxy of Θt is sparse. To mitigate this problem, we

smooth the original time series of the aggregate clients’ order flow by taking a five-minute

moving average.

Finally, our proxy for the D2D price PD2D and bid-ask spreads are the mid-price and

half-Bid-Ask spread in the inter-dealer market, which we compute using the EBS record for

orders of size 1-mln, as follows:

PD2D
t =

BestBidt +BestAskt
2

and Spread D2Dt =
(BestAskl,t −BestBidl,t)

2
.

We construct proxies for order flow in the D2D market using the EBS dataset, aggregated

at the second level, which provides volume and buy/sell information for each executed

transaction. We use completed orders of size 1 million and construct the following three

proxies for order flow in the D2D market:

26Or q̃ in a simple model.
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• D2D V ol: Aggregate daily (signed) net order flow (in mln) in the D2D market. This

variable stands for daily net order flow (in mln) in the D2D market.

• D2D V ol 1h: Aggregate (signed) net order flow (in mln) in the D2D market computed

within a trailing window of 1 hour.

• D2D V ol 24h: Aggregate (signed) net order flow (in mln) in the D2D market computed

within a trailing window of 24 hours.

We report the summary statistics for the final merged dataset in Table 1. Mid-price

distributions are essentially the same in both the D2C and the D2D markets, while the

spreads differ.27 This is because dealers have much larger trades relative to customers,

hence, larger bid-ask spreads in a linear price impact model like ours. Moreover, dealers

know that customers’ order flow (from the retail aggregator) is uninformative.

27Differences in prices are small because FX markets are very liquid and have very narrow bid-ask spreads.
As one can see from Table 1, a typical bid-ask spread is about 0.3-0.5 basis points. So one can only see the
difference in the fifth digit after comma, whereas we only show the first four digits after comma in Table 1
for ᾱ and PD2D.
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Table 1: Summary statistics

Variable mean q50 min max q05 q95 sd

ᾱ 1.1187 1.1186 1.0952 1.1416 1.1012 1.1349 0.0096

PD2D 1.1187 1.1186 1.0952 1.1416 1.1012 1.1349 0.0096

10−8 · Amismatch -0.6718 0.0003 -5605.62 20711.5 -0.0671 0.0721 96.585

ProxyLiqShock 79.92 13.63 -1003498 940646.9 -11103.46 11560.01 14447.76

D2D V ol (mln) 65.0821 49 -280 343 -202 322 148.37

D2D V ol 1h(mln) 2.8236 2 -141 142 -29 41 21.68

D2D V ol 24h(mln) 54.0072 40 -464 388 -185 299 138.04

10−5 · Spread D2C 4.7849 4.1111 1.8750 667 2.9375 8.3571 6.7528

10−5 · STD Spread D2C 2.8242 2.1380 0.3780 1786.72 1.0501 4.8990 17.8299

10−5 · Spread D2D 4.9185 5.0000 0.0091 150 2.5000 10.0000 3.6401



6.3 Empirical results

We begin with a test of Predictions 1 and 3. We test that our novel D2C price-based measure

of liquidity mismatch positively predicts future FX exchange rates while customers’ order

flow negatively predicts those rates. To this end, we estimate (9). We regress changes in D2D

log prices on both lagged changes in D2C prices and lagged clients’ order flow proxies, with

the lag ℓ = 10 seconds. We also standardize independent variables (subtracting the sample

mean and dividing by the sample standard deviation). Table 2 reports our main estimation

results for the 10-second lag. Heteroscedasticity and auto-correlation robust standard errors

are shown in parentheses. The first column shows that our D2C price-based measure of

liquidity mismatch, Amismatch, negatively and significantly forecasts price fluctuations in the

D2D market. This is entirely consistent with Prediction 1. In terms of economic significance,

an increase in the cross-sectional liquidity-risk mismatch in the D2C market by one sample

standard deviation results in a 19 basis points decrease in the FX exchange rate. This

corresponds to an aggregate daily mispricing of $259 mln.28

Column 2 shows that customers’ order flow in the D2C market negatively forecasts

price changes in the D2D market, consistent with Prediction 3. The negative sign means

that an increase in the customers’ liquidity demand results in lower future prices. Given

that a significant fraction of the retail aggregator’s customers is based in Switzerland, it is

astonishing that their order flow predicts changes in the EUR/USD exchange rates quoted

on EBS, one of the largest international inter-dealer platforms in the world. Note, however,

that the economic significance of customer order flow is much lower than that of the liquidity

mismatch. We hypothesize that there is a common component in global customer order flow

that our proxy for liquidity shock picks up. The remaining columns of the table show that

controlling for lagged D2D order flow keeps our main results the same.

28There are 74 days in our sample, so an increase in mismatch by one daily standard deviation results in
a 19/

√
74 = 2.2 basis points decrease in the FX exchange rate (recall that we standardize the variables by

dividing them by sample standard deviation). Multiplying the daily EUR/USD volume of $1,172 trillion
(Bank for International Settlements (2016)) by 2.2 basis points results in the stated number.
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We repeat the same empirical test for lags ℓ = 1, 3, 5, 15, 20, 30, 40, 45, 50, and 60 seconds

and present the results in Section B.2. There are two main observations following from that

section. First, the impact of liquidity mismatch on future D2D prices is significant for small

lags ℓ but loses significance as we increase ℓ. This result is intuitive: Liquidity mismatch

matters because price impact precludes heterogeneously risk averse dealers from immediately

trading toward the efficient allocation of risk. Instead, they are forced to trade toward their

risk target over multiple rounds. It takes dealers several seconds to rebalance their portfolios

in an ultra-fast market such as foreign exchange. Second, the predictive power of the D2C

customers’ liquidity demand (ProxyLiqShock) is significant over longer horizons relative to

both liquidity mismatch and the average mid-price in the D2C market. This suggests that

customers’ liquidity shocks induce (relatively) long-term changes in dealers’ inventories.

[Include Table 2 here.]

We turn to test Prediction 2 of our model: The dispersion of spreads in the D2C market

negatively predicts the spreads in the D2D market. To this end, we estimate (10).29 Table

3 presents the results of this estimation, with heteroscedasticity and auto-correlation robust

standard errors shown in parentheses. It shows that the average D2C spread positively

predicts D2D spreads, which is intuitive. The table also shows that the standard deviation

of D2C spreads also predicts D2D spreads, but negatively so. The economic magnitude of

this effect is quite large: A sample standard deviation increase in the spread dispersion leads

to a $0.61 decrease in spreads. This corresponds to the aggregate daily decrease in trading

costs of $74 bln when spread dispersion increases by one daily standard deviation.30 This

result provides strong empirical support for our model’s prediction that spread dispersion

29As in (9), we standardize independent variables (subtract sample mean and divide by sample standard
deviation).

30Table 3 implies that 1 sample standard deviation (74 days) increase in the spread dispersion leads to
a $0.61 decrease in spreads. Then, the daily change in spreads, relative to the average EUR/USD rate of
1.1187 (see Table 1), is 0.61/

√
74 · 1.1187. Multiplying this by the daily EUR/USD volume of $1.172 trillion

(Bank for International Settlements (2016)) yields the stated number.
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in the D2C market negatively predicts future D2D spreads. Controlling for D2D order flow

and customers’ liquidity shocks does not impact the results.

We repeat this empirical test for lags ℓ = 1, 3, 5, 15, 20, 30, 40, 45, 50, and 60 and present

the results in Section B.3. As one can see, regression results strongly support our empirical

predictions at all horizons. The predictive power of the standard deviation of D2C spreads

decreases as the lags increase but remains statistically significant for longer lags.

[Include Table 3 here.]

Finally, we test Predictions 4 and 5. To this end, we run two regressions,

∆pct+ℓ, ℓ = a0 + a1∆pct, ℓ, and ∆Amismatch,t+ℓ, ℓ = a0 + a1∆Amismatch,t, ℓ,

with a lag ℓ = 10s.31 We expect a1 < 0 in both. Tables 5 and 4 present the results. In

line with our predictions, there is negative auto-correlation in both pc and Amismatch. In

Section B.5, we repeat these empirical tests for lags ℓ = 1, 3, 5, 15, 20, 30, 40, 45, 50, and 60.

The negative auto-correlation is present and is statistically significant for all these lags.

[Include Tables 5 and 4 here.]

7 Full Model

7.1 An Overview of FX Market Structure

The real-world FX markets are fragmented. Neither retail nor institutional traders (e.g.,

hedge funds, corporates, or smaller regional banks) can trade directly. To trade in the FX

market, they are usually subscribed to continuous quotes from a set of major dealer banks

(and, potentially, a set of non-bank electronic market-makers) through these dealer banks’

31We report the estimates of the price competitiveness regressions for one particular dealer. The results
for other dealers are similar and are available upon request.
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single-bank platforms (SBP).32 Most of the D2C trading happens on such SBPs. Since

a customer typically subscribes to multiple SBPs, the dealer banks compete in the D2C

markets through quotes.33

Thus, the market is naturally fragmented into two segments with quite different natures

of competition:

• In the D2C segment, dealer banks compete in price schedules, whereby prices are

quoted on both sides (bid and ask) as a function of order size. In our sample, separate

quotes are provided for trades below USD 1 million and trades between USD 1 million

and USD 5 million, with spreads naturally increasing in the trade size. These prices

are often quoted on dealer-specific SBPs. Customers may split large orders (more than

USD 1 million) across several dealers.

• In the D2D market segment, a few dealer banks trade and provide liquidity to each

other to offload excess FX risk exposure (for example, inventory that they were not

able to internalize through offsetting customer order flow).

• Given the relatively small number of major dealer banks, the competition is imperfect

both in the D2C and the D2D segments, and dealers take their market power in both

segments into account.

While this market structure is specific to FX markets, many other OTC markets have a

similar architecture. For example, in CDS markers, customers would often trade with dealers

using a request for quote protocol, whereby they would simultaneously request quotes from

multiple dealers (see, e.g., Collin-Dufresne et al. (2019)). One unique feature of the FX

32On such an SBP, a dealer bank provides continuous quotes to its customers and usually uses these quotes
to manage the direction of customers’ trading and to internalize customer order flow. Some smaller regional
banks also have SBP, whereby they offer quotes to their customers that aggregate multiple quotes that they
receive from major dealers and market-makers). Many of these smaller banks act as retail aggregators, trying
to internalize customer order flow and offload excess inventory by trading with major banks at their quoted
prices.

33Anecdotal evidence suggests that smaller banks usually subscribe for quotes from all major dealers, while
a typical hedge fund subscribes to approximately three to five quote streams.

28



market is the availability (for many customers) of both bid and ask quotes by multiple,

non-anonymous dealers. This makes it different from (i) limit order markets, where one

could see multiple quotes, but there is no way to know whether a given bid and a given ask

come from the same dealer; (ii) one-sided RFQ markets, where it is possible to obtain quotes

from multiple dealers, but only on one side of the market (either only the bid or only the

ask).34 Furthermore, we are unaware of any dataset containing such two-sided quotes. For

our analysis, it is crucial to see the bid-ask spread quoted by every dealer because we use

this information to back out important dealer characteristics. This is why the unique nature

of our data (see Section 6 below) is ideally suited for our empirical analysis.

7.2 Model: Replicating the Real World FX Market Structure

This section aims to develop a theoretical model that captures the crucial aspects of the

real-world market structure described in the previous section. First, each dealer bank must

have the ability to quote prices to its customers through its own SBP, accounting for the

imperfect quote competition with other dealers. Second, each customer must be able to

choose dealer with whom to trade. Third, a customer shall be able to split orders across

several dealers. Fourth, in the case of a customer order imbalance, each dealer must be

able to offload some of its inventory in the inter-dealer market. Fifth, we need a way of

modeling imperfect competition and market power in both segments. Finally, the model

should feature dealer heterogeneity to speak to heterogeneity in prices and bid-ask spreads

in the data. Below, we outline a model that accounts for all these frictions.

There are five time periods, t = −1, 0− , 0, 1, 2, and two tradable assets, a risk-free

asset with a rate of return normalized to zero and a risky asset with a random payoff d at

time t = 2. We assume that d is normally distributed with mean d̄ and variance σ2
d. The

34For example, this market structure is common in bond and CDS markets (see Collin-Dufresne et al.
(2019)). While it is formally possible to request both bid and ask quotes from a given group of dealers,
anecdotal evidence suggests that it is highly uncommon to do so because dealers in those markets want to
know the actual direction of the customer’s desired trade before providing the quote.
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market is populated by M heterogeneous dealers, indexed by l = 1, · · · ,M, and n ex-ante

identical customers, indexed by c = 1, · · · , n. All agents start with zero asset inventories.

The timeline is as follows:

• At time t = −1, dealers’ inventory shocks xl, l = 1, · · · ,M are realized and are public

information.35 Making such information private is irrelevant for the D2D trading round

because of the ex-post nature of the D2D market mechanism. As for the D2C round,

the absence of uncertainty about other dealers’ holdings is a simplifying assumption.

In the real world, dealers have many sources of price-based information, allowing them

to make inferences about other dealers’ inventory constraints. For example, dealers

may observe other dealers’ quotes on various platforms. However, modeling price-

based inference would drastically complicate the analysis, introducing signaling and

belief manipulation aspects into the equilibrium behavior. For this reason, almost

all existing models of OTC markets make the same simplifying assumption of publicly

observed private types. (See, for example, Duffie et al. (2005), Schürhoff and Li (2019),

Babus and Parlatore (2018).) We abstract from these effects and leave them for future

research. These shocks may originate from previous trading rounds on the dealer-

specific SBP.

• At time t = 0−, customers’ endowment shocks vector Θ = {θc}nc=1 is realized; each

shock is customers’ private information. We assume that these shocks are independent

and identically distributed across customers and are drawn from an arbitrary non-

degenerate distribution with finite first two moments. Parameters θ̄ = E[θ] and σ2
θ =

Var[θ] are public information. For simplicity, we assume that customers are ex-ante

homogeneous and have identical parameters θ̄, σθ. In the real world, customers might

be heterogeneous across dealers, which may be an important aspect of heterogeneity

in dealer behavior. We leave this aspect for future research. As for the case of dealers,

35This assumption is made for simplicity.
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we could also interpret θ as a private demand/taste shock unrelated to actual asset

holdings.

• At the time t = 0, each dealer trades with customers in the D2C market using

the bank’s own SBP. Namely, the dealer l publishes a (dealer-specific) binding price

schedule pl(q), l = 1, · · · ,M to each customer on the SBP, describing the per-unit

price at which he is willing to sell q units of the risky asset. When q < 0, then −pl(q)

is the per-unit bid price for many −q units. Although in real life the price schedules

are restricted to step functions (with different prices quoted for orders below USD 1

million and between USD 1 million and USD 5 million), we restrict dealers to use linear

schedules instead. That is, we assume pl(q) = αl + blq. Such a restriction captures

the ability of real-world dealers to quote different prices for different order sizes while

preserving analytical tractability.36

• We assume that each customer has access to the SBPs of all dealers.37 Given the

quoted price schedules on all the SBPs, each customer c optimally chooses the vector

of quantities qc = (ql(θc))
M
l=1, where ql(θc) specifies the quantity of the asset acquired

from dealer l by a customer with endowment shock θc. The total amount paid by

36Allowing dealers to optimize in a more general class of functions complicates the analysis significantly.
Each dealer selects a mechanism (the price schedule pl(q)), while at the same time competing with other
dealers’ mechanisms and simultaneously taking into account the fact that all dealers serve as liquidity
providers to each other during the second stage of the game (the inter-dealer trading). Such games in
competing mechanisms are known to be extremely complex; even with homogeneous traders and a single
trading round, optimal price schedules are highly nonlinear, and a symmetric equilibrium often fails to exist.
See, for example, Biais et al. (2000, 2013), and Back and Baruch (2013). In our paper, the problem is much
more involved because dealers are asymmetric, and there is a second rebalancing stage, introducing another
dimension to the strategic interaction. In particular, when posting a price schedule, a dealer l has to account
for the fact that his schedule affects customers’ trades with other dealers, which in turn affects other dealers’
inventories, thereby affecting the ability of dealer l to trade with other dealers in the subsequent D2D trading
round.

37It is a simplifying assumption. If the customer is a regional bank, it may have a subscription to quotes
from all major dealers; by contrast, if the customer is a hedge fund, it may decide to subscribe to only
a subset of those dealers. Investigating the architecture of the D2C trading network and the endogenous
decision of each customer with which dealers to connect is an important direction for future research.
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customer c to the dealers is then given by

π(qc) =
M∑
l=1

ql(θc) pl(ql(θc)).

A customer c ends up holding a total of

q̄c = θc +
M∑
l=1

ql(θc)

units of the asset. Thus, our model features order-splitting by customers. As discussed

above, in the real world, order-splitting occurs often for orders above USD 1 million.

• After this D2C trading round on the SBPs, dealer l receives the vector of orders

Ql = (ql(θc))
n
c=1 and a total cash transfer of

Πl(Ql) ≡
n∑

c=1

pl(ql(θc))ql(θc) (12)

from the customers and ends up holding

χl = xl −
n∑

c=1

ql(θc) (13)

units of the asset. The aggregation of the D2C order flow Ql into the sum
∑n

c=1 ql(θc)

represents the process of internalization of order flow by dealer l.

• At the time t = 1, dealers trade in the centralized inter-dealer market to rebalance

their inventories. In the real world, D2D platforms function closely to a centralized

limit-order market. We capture this fact by assuming that the D2D market operates

as the standard uniform-price double auction (see, e.g., Kyle (1989), Vives (2011),

Rostek and Weretka (2015), and Malamud and Rostek (2017)). Dealer l submits a

(net) demand schedule Ql(PD2D) : R → R, which specifies demanded quantity of
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the asset given its price PD2D in the inter-dealer market. All dealers are strategic; in

particular, there are no noise traders. As is standard in strategic centralized market

models for divisible goods or assets, we study the Nash equilibrium in linear bid

schedules (hereafter, equilibrium). With divisible goods, equilibrium is invariant to

the distribution of independent private uncertainty.38 We denote by Ql(χl,PD2D) the

D2D net trade of dealer l with inventory χl (see (13)). The latter is given by the

total initial inventory plus the total non-internalized customer order flow in the D2C

market. Post-D2D trade, the dealer ends up with an inventory of

χ̃l = χl + Ql(χl,PD2D) . (14)

• At time t = 2, the asset pays off.

We assume that all agents (dealers and customers) incur quadratic costs for holding

inventories, equivalent to linearly decreasing marginal values. Importantly, these inventory

holding costs are heterogeneous across dealers: Although customers are assumed to be

homogeneous, all having the same cost γ, dealers are heterogeneous, with dealer l incurring

38 That is, the linear Bayesian Nash Equilibrium with independent private endowment values has an ex
post property and coincides with the linear equilibrium that is robust to adding noise in trade (robust Nash
Equilibrium; e.g., Vayanos (1999) and Rostek and Weretka (2015)). Equilibrium is linear if schedules have
the functional form of ql(·) = α0 + αl,qq

0
l + αl,pp. Strategies are not restricted to linear schedules; rather,

it is optimal for a trader to submit a linear demand, given that others do. The approach of analyzing the
symmetric linear equilibrium is common in centralized market models (e.g., Kyle (1989), Vayanos (1999),
and Vives (2011)). Our analysis does not assume equilibrium symmetry. As equilibrium schedules are
optimal even if traders learn the independent value endowments q0l (or equivalently, stochastic marginal

utility intercepts, d̃ = d−αΣq̃0l ) of all other agents, equilibrium is ex post Bayesian Nash. The key to the ex
post property is that permitting pointwise optimization – for each price – equilibrium demand schedules are
optimal for any distribution of independent private information and are independent of agents’ expectations
about others’ endowments.

33



cost Γl.
39 Thus, customers’ total expected utility is given by

u(qc) = −π(qc) + E
[
d · q̄c − 0.5γ q̄2c

]
. (15)

Dealers’ total expected utility has two components:

Ul = E
[
Πl(Ql) + Ul(χ̃l,PD2D)

]
, (16)

where Πl(Ql) is the total transfer (12) received from customers, while

Ul(χ̃l,PD2D) = d · χ̃l − 0.5Γlχ̃
2
l − PD2D Ql(χl,PD2D) (17)

is dealers’ quadratic utility of their post-D2D trade inventory (14) net of the total price

PD2DQl(χl,PD2D) paid for the Ql(χl,PD2D) units of the asset in the D2D market.

We follow the standard route used in most of the market microstructure literature and

confine our attention to linear equilibria, characterized in the following definition.

Definition 9 A linear Nash equilibrium is a collection of the following policies:

• price schedules pl(q) = αl + bl q in the D2C market segment, l = 1, · · · ,M ;

• customer demand

q(θc) = (ql(θc))
M
l=1, ql(θc) = δl + ηlθc ; and

• dealer demand schedules Ql(PD2D) = Q
(0)
l +Q

(1)
l PD2D in the inter-dealer market

39The assumption of homogeneous customer compositions across dealers is made for two reasons: First,
it simplifies the analysis and, second, we cannot observe customer composition empirically. In the real
world, heterogeneity in customer composition might be responsible for a large fraction of variation in the
effective inventory cost. We view the inventory cost Γ as a theoretical shortcut for the unobservable sources
of heterogeneity. Allowing for dealers’ heterogeneity is crucial for matching their highly heterogeneous
empirically observed behavior.
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such that

• dealer demand schedules form a robust Nash equilibrium in the D2D market;40

• customers’ demand maximizes customers’ utility (15); and

• dealers choose αl and bl to maximize expected utility (16) given customers’ demand

functions q(θc) and provided the equilibrium allocation from the second stage of the

game.

Given the definition of equilibrium, we follow the standard backward induction procedure:

First, we solve for the unique, robust linear Nash equilibrium of the second stage of the game

(the D2D market). Second, we use this equilibrium to calculate dealers’ utilities (16). Third,

we solve for customers’ optimal demand given the linear dealer price schedules. Fourth, we

use customers’ demand schedules as well as the dealers’ utilities from the second trading

round to solve for the equilibrium in the liquidity provision game in the D2C market.

7.3 Linking Dealer Characteristics to D2C Prices and Spreads in

the Full Model

This section shows how unobservable dealer characteristics can be linked to prices and spreads

in the D2C market. The equilibrium relationship between prices and liquidity in the D2C

market and dealers’ inventories and risk aversions is generally complex. However, it is

possible to derive analytical approximations when dealer heterogeneity is small. Such an

approximation allows us to capture the first-order effects of heterogeneity on equilibrium

quantities while preserving analytical tractability. Under such approximation, we show that:

(i) more risk averse dealers quote wider spreads, that is, b−1
l is negatively related to Γl (see

40As in Rostek and Weretka (2015, p. 2955), the robust Nash equilibrium is in one in which large traders’
demands are optimal even after adding full-support uncertain additive noise to their residual demand.
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Proposition 21); and (ii) dealers with higher prices end up holding higher post-D2C inven-

tories, that is, χl is positively related to αl (see Lemma 23). Then, Ymismatch
s
= Amismatch.

Both (i) and (ii) are intuitive. More risk averse dealers are less efficient at holding

inventory and require higher compensation, resulting in wider spreads. Dealers posting the

highest prices would attract a disproportionate share of sell volume from customers (since

customers would choose to sell to dealers offering the highest price) and would end up with

the highest inventories post-D2C.

We thus formulate the analog to Proposition 2, where unobservable dealer characteristics

are substituted by observable prices and spreads in the D2C market.

Proposition 10 Suppose that ∥Γ − Γ∗∥2 + ∥x∥2 + θ̄2 is sufficiently small and that n is

sufficiently large. Then Ymismatch
s
= Amismatch. Suppose further that {Γl}l are fixed. Consider

three possibilities for the joint distribution of mid-prices and bid-ask spreads in the D2C

market: (a) Amismatch > 0, (b) Amismatch > 0 = 0, and (c) Amismatch < 0. Suppose that in

all three cases, E[αl] is the same. Then, PD2D
(a) < PD2D

(b) < PD2D
(c) .

As in Proposition 5, the Proposition 10 states that Ymismatch
s
= Amismatch when hetero-

geneity among dealers is small and when customer order flow is significant. In the Proposition

10 the last requirement is captured by the condition that n must be large enough.

We also derive the following proposition from the fact that bid-ask spreads in the D2C

market are positively related to dealers’ risk aversion.

Proposition 11 An increase in the dispersion of D2C bid-ask spreads bl (defined as a mean-

preserving spread) is associated with an increase in the liquidity of the D2D market.
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8 Literature Review

Motivated by the failure of macroeconomic models to explain exchange rate dynamics,41 a

growing body of literature shows how order flow and dealer inventories serve as essential

determinants of exchange rates.

Lyons (1995) was one of the first to provide strong empirical evidence that dealers actively

control their inventories and study how this inventory control creates a link between order

flow and exchange rates. In particular, consistent with classical theories (see, e.g., Ho and

Stoll (1981)), Lyons (1995) shows that dealers “shade prices”–that is, they shift prices in

the direction opposite to their inventory. While such price shading has been documented in

other markets,42 recent studies, such as Bjønnes and Rime (2005) and Osler et al. (2011),

have not found evidence of price shading in the FX markets. In contrast to these papers,

and in agreement with Lyons (1995), our empirical results provide strong evidence of price

shading in the D2C market.

In a seminal contribution, Evans and Lyons (2002b) develop the first theoretical model to

account for the two-tier structure of the FX market and derive an endogenous link between

order flow and exchange rates. Consistent with the constraints that the real-world FX dealers

face, Evans and Lyons (2002b) assume that dealers need to hold zero inventory overnight. As

a result, dealers optimally shade their prices to achieve the zero inventory target. This price

shading leads to a contemporaneous relationship between order flow and exchange rates.

Although many papers study (both theoretically and empirically) prices and liquidity

in the D2D segment of the FX market, to the best of our knowledge, there are no papers

that study the joint price formation in the D2C and D2D segments.43 This is an important

41The fact that exchange rates are only weakly related to macroeconomic fundamentals is known as the
Meese and Rogoff (1983) exchange rate disconnect puzzle.

42See, e.g., (Madhavan and Smidt, 1993) and (Dunne et al., 2010).
43An incomplete list of papers focusing on inter-dealer trading includes Reiss and Werner (1998), Reiss

and Werner (2005) and, more recently, Li and Schürhoff (2019). A recent paper of Eisfeldt, Herskovic and
Liu (2022), considers a corporate bond bond market and shows that when interdealer price dispersion is
high, bond prices are low. Similarly, we show that when liquidity mismatch is high, exchange rates are low.
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gap in our understanding of FX markets, especially given that the D2C trading volume is

higher than the D2D volume (see, Moore et al. (2016)). Our paper seeks to fill this gap.

Similar to Evans and Lyons (2002b), ours is a pure inventory-theoretic model.44 However,

it differs from that of Evans and Lyons (2002b) in several important dimensions. First, we

assume that dealers are heterogeneous in their risk-bearing capacities. Second, we introduce

strategic competition between dealers for order flow in the D2C market. Third, we assume

that dealers are also strategic when trading in the D2D market. This assumption is crucial

for our main results: It implies that (heterogeneous) dealers have (heterogeneous) price

impact and, hence, the joint distribution of inventories and price impacts (as captured by

the liquidity mismatch) matters for equilibrium prices and allocations. Finally, because we

apply our model to very short horizons (up to ten seconds), we do not need to impose the

zero inventory constraint. We believe that all of these new ingredients are important for

correctly modeling real-world FX markets and allow us to capture new effects that have not

previously been studied in the literature.

Our theoretical model is related to several existing models of market fragmentation.

Dunne et al. (2015) develop a dynamic model of dealer intermediation between a monopolistic

customer-dealer market with homogeneous dealers and a competitive inter-dealer market.

Vogler (1997) develops a fragmented market model with homogeneous dealers. The inter-

dealer market in Vogler (1997) operates through the double auction protocol, which is

similar to ours, but absent heterogeneity, the notion of liquidity mismatch does not arise.

Most importantly, Vogler (1997) assumes Bertrand competition between dealers in the D2C

market: Dealers quote a single price, and customers can both buy and sell unlimited amounts

In our analysis (available upon request) we found that D2C price dispersion is not statistically significant in
predicting D2D prices. At least in the FX market, the liquidity mismatch appears to be a better measure
compared to price dispersion. We note however, that liquidity mismatch cannot be computed in all markets
as one needs to see both bid and ask prices at all times.

44See, Bacchetta and Van Wincoop (2006), Evans et al. (2011), Evans and Lyons (2005c); Cao et al.
(2006), Frankel et al. (2009), Lyons et al. (2001), King et al. (2010), Michaelides et al. (2018), and Gargano
et al. (2018) for FX microstructure models of exchange rates that rely on private, heterogeneous information.
Incorporating such informational asymmetries into our model is an important direction for future research.
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at this price.45 Thus, counterfactually, there is no bid-ask spread in the D2C market.

Summarizing, neither Vogler (1997) nor Dunne et al. (2015) can account for the key features

of our model: (1) dealer heterogeneity; (2) imperfect competition (price impact) in the inter-

dealer market; and (3) illiquid D2C markets. All of these features are crucial for our ability

to compute the price-based liquidity mismatch from the observed cross-section of D2C prices

and spreads.

Colliard et al. (2018) study the effects of market fragmentation and dealer market power

in which dealers differ in their connectivity. However, they deliberately keep the matching

process between dealers and their clients simple to focus on the D2D market. While their

market mechanisms are well-suited for many OTC markets, such as the bond market, ours

could be better suited for modeling forex trading since the market structure is very different.

The closest to ours is the paper by Babus and Parlatore (2018), who developed a

fragmented market model with identical (homogeneous) dealers and a D2D double auction

market protocol as in our paper. In addition, they assume that each dealer runs a local

D2C market and has a customer base that can only trade in this local market with one

particular dealer. They show how market fragmentation can arise endogenously when

customers endogenously decide upon the local market they want to join. Thus, in Babus

and Parlatore (2018), conditional on the chosen market participation structure, competition

between dealers is non existent. Although their model might apply to some real-world

fragmented markets, the assumed market structure differs from the structure we observe

in real-world FX markets. Yet, introducing dealer heterogeneity into their model would

lead to dispersion in dealer-specific prices and spreads (price impacts) in the D2C market.

Hence, their model might produce the joint behavior of D2D and D2C prices that we

observe in our data. In Appendix E, we extend the model of Babus and Parlatore (2018)

to allow for dealer heterogeneity and then derive the equilibrium relationship between the

price-based liquidity mismatch in the D2C market and the price level in the D2D market.

45Dunne et al. (2015) also consider an extension of their model with the same trading protocol.
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Surprisingly, we find that this model implies the sign of a relationship that is opposite to the

one that we observe in the data. By contrast, our model does indeed produce the empirically

observed positive relationship between the liquidity mismatch and D2D prices. In Section

3.1, we explain how the nature of competition between dealers drives this difference in model

predictions. Namely, in our model (as in the real world), dealers in the D2C market compete

in mechanisms (price schedules; see Biais et al. (2000, 2013) and Back and Baruch (2013)).

This competition implies that they use D2C markets to aggressively manage their inventories

to the extent that their post-D2C inventories are negatively related to pre-D2C inventories,

reverting the sign of the link between D2C and D2D markets.

Our notion of liquidity mismatch is indirectly related to the liquidity mismatch defined

in Brunnermeier and Krishnamurthy (2012) (see also Bai et al. (2018)) as the mismatch

between the market liquidity of assets and the funding liquidity of liabilities. It is natural to

expect that the inventory cost in our model is closely related to the dealers’ funding liquidity.

Hence, the total inventory cost for a given dealer is linked to the liquidity mismatch of

Brunnermeier and Krishnamurthy (2012), defined on a single bank level. However, in stark

contrast to Brunnermeier and Krishnamurthy (2012), our liquidity mismatch measure is

cross-sectional and captures a mismatch in the distribution of assets across different dealers

with different liquidity needs and different price impacts. The fact that one can identify the

mismatch directly from prices in the D2C segment is a surprising and novel prediction of

our model.

Babus and Parlatore (2018) belongs to a larger stream of literature on fragmented markets

(see, e.g., Babus and Kondor (2018), Malamud and Rostek (2017), and Babus and Parlatore

(2018)) that assumes identical, auction-like trading protocols in the two market segments.46

Under such protocols, effectively, dealers do not play any unique role, resulting in customers

and dealers end up equally providing liquidity to each other. We show that, contrary to our

46Some papers (see, e.g., Liu et al. (2017)) also assume a competitive D2D market, implying that the
allocation of risk among dealers is irrelevant.
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model, this behavior leads to an opposite (negative) sign of the relationship between liquidity

mismatch and price level. Empirically, we find strong evidence for the positive relationship,

suggesting that our modeling of D2C trading is crucial for matching the data.

Numerous papers provide evidence that order flow contains information about contem-

poraneous (Evans and Lyons (2002b), Evans and Lyons (2002a), Hau et al. (2002), Fan

and Lyons (2003), Froot and Ramadorai (2005), Bjønnes et al. (2005), Danielsson and Love

(2006), Killeen et al. (2006), Berger et al. (2008), Brunnermeier et al. (2008), King et al.

(2010), Rime et al. (2010), Breedon and Vitale (2010), and Bjønnes et al. (2011)) and future

(Evans and Lyons (2005b), Danielsson et al. (2012), and Evans and Rime (2016), Collin-

Dufresne et al. (2019)) prices. In this paper, our focus is on predictive relationships at

horizons that are short enough so that efficient allocation cannot be achieved due to market

imperfections. The key insight from our model is that price dispersion in the D2C market

can be used to recover information about the distribution of inventories and the liquidity

mismatch. This novel, endogenous, purely price-based object is unique to our model.

Our model assumes that dealer inventories constitute an important driving force behind

price dynamics. Recent empirical evidence supports this assumption. For instance, Friewald

et al. (2019), Anderson and Liu (2019), and Randall (2015) show that inventory costs explain

a significant fraction of yield spread changes in corporate bonds. Hendershott and Menkveld

(2014) provide similar evidence for equity markets. Numerous papers have also shown the

importance of the D2D market as a key venue for inventory management. See, for example,

Schultz (2017) Schürhoff and Li (2019), Collin-Dufresne et al. (2019), Hollifield et al. (2017),

and Anderson and Liu (2019). The most closely related to ours is the paper by Collin-

Dufresne et al. (2019), who study two-tired CDS markets and show that bid-ask spreads are

wider in the D2C market, and D2C transactions are largely institutional trades that have

a large permanent price impact. By contrast, the FX market is relatively less concentrated

and has a significant retail segment, which is captured in our data. We find that bid-ask
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spreads are narrower in the D2C market and have only a small, transitory price impact,

consistent with our inventory-driven model.

Our main predictions stem from dealers’ heterogeneity. Data strongly support the pres-

ence of such heterogeneity. For example, Evans (2002) found that most short-term volatility

in exchange rates is a result of dealers’ heterogeneous trading decisions. Similarly, Bjønnes

and Rime (2005) document significant differences in dealers’ trading styles, especially related

to how they control their inventories. Randall (2015) provides evidence of heterogeneous

and time-varying costs of holding inventory for dealers in the US corporate bond market.

Our data on dealer quotes in the D2C market also suggests the presence of significant

heterogeneity: Both the bid-ask spreads and the sensitivity of quotes to shocks are highly

heterogeneous across dealers.

Most of our key predictions depend crucially on the fact that the FX market is not

perfectly liquid, and dealers have a price impact. As a result, at short horizons, markets

cannot efficiently allocate risk, and the distribution of inventories across dealers impacts

price dynamics. Although the idea that price impact is linked to order flow is not new (see,

for example, Evans and Lyons (2005a)), to the best of our knowledge, our model is the first

to micro-found this price impact in a model that accounts for the two-tier structure of the

FX market. In particular, our model can be used to recover market liquidity from dealer

quotes, providing an explicit, micro-founded measure of liquidity risk and shedding new light

on the findings of Banti et al. (2012) and Mancini et al. (2013).

9 Conclusions

Foreign exchange markets are highly fragmented and are dominated by a handful of large

strategic dealers. Due to balance sheet shocks, different capitalizations, and various frictions,

these dealers differ in their willingness and ability to take on risk. This creates a risk-liquidity

mismatch: Large risk averse dealers would like to get rid of their inventory but cannot due
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to their price impact. This distorts their liquidity provision in the D2C market, ultimately

affecting customers’ ability to trade efficiently. We develop the first theoretical model that

can quantify these frictions. Our model generates several explicit predictions linking prices

and spreads in the D2C and D2D market segments. We test these predictions empirically

and find strong support for the mechanisms underlying our model.

Our model has two significant drawbacks. First, it is effectively static (there are only

two trading rounds: one D2C and one D2D round). Second, trading happens purely for

risk-sharing purposes; hence, we completely ignore frictions due to asymmetric information.

Incorporating dynamics and adverse selection into our model is an important direction for

future research.
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A Equilibrium in the Full Model

A.1 Customers’ Problem

In this section, we study customers’ optimization problem. Given the M different price

schedules offered by the dealers, a customer optimally decides how much to trade with

each dealer. Substituting dealers’ price schedules into customers’ utility (15), we get that

customers’ optimization problem takes the form of

max
{qc,l}Ml=1

−
M∑
l=1

qc,lpl(qc,l) +

(
M∑
l=1

qc,l + θc

)
d− 0.5γ

(
M∑
l=1

qc,l + θc

)2
 ,

taking dealers’ schedules

pl(qc,l) = αl + λ−1
l qc,l

as given. (Thus, we denote λl = b−1
l ). Define al = λl(d − αl) to be the bid-ask spread-

normalized deviation from the fundamental value d of the mid-price quoted by dealer l. It

plays the role of the risk premium in our model: the higher the premium, the lower is the

mid-price relative to the fundamental value d. In the sequel, we will therefore refer to to this

quantity as the “risk premium”. Let also a−l =
∑

ℓ ̸=l aℓ be the total risk premium of dealers

ℓ ̸= l, and let λ−l =
∑

ℓ̸=l λl be the measure of total liquidity provided by these dealers.

Writing down the first order conditions, we arrive at the following result.

Lemma 12 The optimal demand of customer j is given by ql = {qc,l}Ml=1 with

qc,l = δl(al, λl, λ−l, a−l) + ηl(al, λl, λ−l, a−l) θc (18)
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with

δl =
0.5al + 0.25γ(alλ−l − a−lλl)

1 + 0.5γ(λl + λ−l)

ηl = − 0.5γλl

1 + 0.5γ(λl + λ−l)
, l = 1, · · · ,M .

The intuition behind the optimal order-splitting strategy of Lemma 12 is as follows: Ideally,

the customer would like to buy from the dealer with the lowest mid-quote (equivalently,

the highest risk premium al) and the highest offered liquidity. Thus, his average demand

addressed to dealer l is increasing in al and is decreasing in a−l (the attractiveness of trading

with other dealers). The customer’s demand curve is naturally downward sloping in his

inventory (that is, ηl < 0 for all l), and the size of the slope is proportional to the liquidity

λl offered by dealer i, as well as to the customer’s cost of holding inventory, γ. The stylized

linear-quadratic setting of the customer problem makes the analysis tractable and explicit,

while capturing the key realistic features of real world demand functions in the D2C segment

of FX markets: Quoting higher (lower) mid-prices relative to other dealers attracts sell (buy)

volume, whereas dealers quoting wider spreads get less customer volume.

A.2 Dealers’ Optimal Price Schedules and Equilibrium in the D2C

Market

At time t = 1, dealer l selects the optimal price schedule pl(q) that he quotes to all customers,

taking as given other dealers’ price schedules (a−l, λ−l), as well as customers’ optimal response

(Lemma 12). Substituting (6) into (16), we get that dealers’ objective it to maximize

Ul(al, λl; a−l, λ−l) = E

[
Πl(Ql) + χld− 0.5Γlχ

2
l

+ (0.5Γl + βl)(Γl + βl)
−2

(
B−1

M∑
ℓ=1

(Γℓ + βℓ)
−1Γℓχℓ − Γlχl

)2 ] (19)
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over al, λl subject to (13) and (18). Thus, dealer’s objective function has three components:

• total revenues from trading with customers, as given by

Πl(Ql) =
n∑

c=1

pl
(
qc,l(al, λl; a−l, λ−l)

)
qc,l(al, λl; a−l, λ−l)

• the expected utility χld− 0.5Γlχ
2
l from holding the post-D2C trading round inventory

χl(al, λl; a−l, λ−l, xl) = xl −
n∑

c=1

qc,l(al, λl; a−l, λ−l) ,

where xl is dealer’s initial inventory.

• the utility surplus from trade in the inter-dealer market

(0.5Γl + βl)(Γl + βl)
−2

(
B−1

M∑
ℓ=1

(Γℓ + βℓ)
−1Γℓχℓ − Γlχl

)2

. (20)

The latter is determined by the deviation of dealer’s post-D2C inventory χℓ from the

liquidity-weighted47 average of post-D2C inventories of other dealers, as given by

B−1

M∑
ℓ=1

(Γℓ + βℓ)
−1Γℓχℓ . (21)

In particular, dealer l has incentives to select a quote policy in the D2C market that

pushes his inventory χl and the other dealers’ inventory (21) apart.

Importantly, dealers’ choice of the price schedule characteristics al, λl influence all three

components, including the gains from trades made in the D2D market. The latter effect

is particularly subtle and itself consists of two sub-components: the dealer’s impact on

equilibrium price and the impact of the dealer’s liquidity provision in the D2C market on

47The weights are inversely related to price impacts βℓ in the D2D market.
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the inventories of all other dealers. Indeed, the more liquidity the dealer provides in the

D2C market, the less clients will trade with other dealers, directly influencing other dealers’

inventories χℓ, ℓ ̸= l, and, hence, also influencing the surplus from trade in (20) through

(21).

Let

Ψ =

(
Γ1

B(Γ1 + β1)
, · · · , ΓM

B(ΓM + βM)

)T

be the vector of weights that define the “aggregate risk” in the D2D market, and let also

Ψl ≡ Ψ − Γl1ℓ=l . Denote also δ ≡ (δl)
M
l=1, η ≡ (ηl)

M
l=1 to be the vectors of coefficients of

customers’ demand (see (18)), and let x = (xℓ)
M
ℓ=1 be the vector of dealer initial inventories.

Recall that we use θ̄ and σ2
θ to denote expected customer endowment and the variance of

customer endowments, respectively. Evaluating the expectation in (19), we get the following

expression for dealers’ indirect utility.

Lemma 13 We have

Ul(αl, λl;α−l, λ−l) = xld− nλ−1
l al(δl + ηlθ̄) + nλ−1

l

[
(δl + ηlθ̄)

2 + η2l σ
2
θ

]
− 0.5Γl

[
(xl − nδl − nθ̄ηl)

2 + nσ2
θη

2
l

]
+ (0.5Γl + βl)(Γl + βl)

−2
[(

Ψl · (x − nδ − nθ̄η)
)2

+ nσ2
θ(Ψl · η)2

]
and a Nash equilibrium in linear price schedules is a collection of (αl, λl)

M
l=1 such that, for

all ℓ,

(αl, λl) = argmax
αl,λl

Ul(αl, λl;α−l, λ−l) . (22)

The first term, xld, is just the expected payoff from the initial inventory of the dealer. The

second term, nλ−1
l al(δl+ηlθ̄), is the amount the dealer is loosing (relative to the asset payoff
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d) from the trades in the D2C market: By quoting the price at a premium of al, he is

selling the asset “too cheap” and his losses are proportional to the number n of customers.

The third term, nλ−1
l

[
(δl + ηlθ̄)

2 + η2l σ
2
θ

]
represents the rents the dealer extracts from the

customer using the increasing price schedule. These rents are proportional to the slope λ−1
l :

The higher the slope, the more the dealer charges for liquidity provision. The fourth term

is just the expected quadratic inventory cost,

0.5Γl

[
(xl − nδl − nθ̄ηl)

2 + nσ2
θη

2
l

]
= 0.5Γlχ

2
l .

Finally, the last term is the expected utility gain from trading in the D2D market. Impor-

tantly, contrary to the quadratic inventory cost term, the other quadratic terms are convex.

This is a novel aspect of our model: Dealer market power in both segments introduces

incentives for risk taking whereby amplifying volatility of demand shocks also amplifies the

rents the dealer is able to extract in the D2C and the D2D market.

In the Appendix, we write down the system of first conditions for (22). In general, this

system cannot be solved explicitly. However, it is possible to derive analytical approximations

to its solution when dealer heterogeneity is small. Such an approximation allows us to capture

the first-order effects of heterogeneity on equilibrium quantities while preserving analytical

tractability.

A.3 The Joint D2C-D2D Equilibrium

Everywhere in the sequel we assume that dealers’ heterogeneity is small. This technical

assumption will allow us to derive approximate closed form expressions for equilibrium

objects. We start with the case when dealers do not hold any inventory and risk aversions

are homogeneous, Γl = Γ. Then, the following is true.

Proposition 14 If xl = 0 (zero initial dealer inventories) and Γl = Γ for all l = 1, · · · ,M,
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and θ̄ = 0 (zero expected customer endowment), then there exists a unique symmetric

equilibrium, and the inverse of the price function slope is given by

λ∗(Γ) =
(M − 2)γ − 2Γ +

√
((M − 2)γ − 2Γ)2 + 8γΓ(M − 1)

2γΓ(M − 1)
,

while al = 0 for all l. λ∗(Γ) is decreasing in both Γ and γ and is increasing in M .

The result of Proposition 14 is very intuitive: Liquidity in the D2C market, as captured by

the inverse slope λ∗, is determined by two forces: the willingness (and the ability) of dealers

to take on risk (that is, their cost of holding inventory, Γ) and the dealers’ market power,

determined by their number, M. When Γ increases, or when clients are more aggressively

trying to get rid of their inventory (that is, γ is large), dealers optimally widen the spread.

At the same time, an increase in M creates a competitive pressure on equilibrium spreads,

driving D2C market liquidity up. In particular, in the competitive limit, as M → ∞, we

have λ∗ → 1/Γ, consistent with the standard competitive CAPM, whereby price sensitivity

to inventory shocks equals the reciprocal of the risk aversion.

Having solved for the equilibrium in the limiting case xl = 0 and Γl = Γ, we can now use

Taylor approximation to compute the equilibrium for the case when initial (prior to D2C

trading) dealer inventories (xl), mean customer endowments θ̄, and heterogeneity in Γl are all

sufficiently small. Let ᾱ = M−1
∑

l αl be the average mid quote, and recall the definition of

the observable price-based liquidity mismatch, Amismatch, in the D2C market. The following

Proposition characterizes the equilibrium link between prices in the two market segments

Proposition 15 The price P = PD2D in the D2D market is linked to prices in the D2C
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market via

PD2D =

[
1 +

2γλ∗

(2 +Mγλ∗)[2 + (M − 1)γλ∗]

]
(ᾱ−Amismatch)

− (λ∗)2
[
Γ∗(MφA

0,λ + φa
1) +

Mφλ(φa
0 − 0.5n)

M2 − 2M + 2

]
Amismatch

− 2γλ∗

(2 +Mγλ∗)[2 + (M − 1)γλ∗]
d − Γ∗φθ

0θ̄ − γ
1

2 + γΛ
λ∗Γ∗Θ

+O(∥Γ− Γ∗∥2 + ∥x∥2 + θ̄2)

Proposition 15 provides an explicit expression linking the price in the D2D market to:

• mean and distribution of quotes in the D2C market, as captured by ᾱ and αmismatch;

• expected client endowment, θ̄, as well as the aggregate client endowment shock, Θ;48

• the fundamental, d.49

The most important consequence of Proposition 15 is that, in the presence of heterogene-

ity, the joint cross-sectional distribution of quotes and bid-ask spreads is directly linked to

the price level in the D2D market. Namely, in addition to the average mid-quote ᾱ, the price

also depends on Amismatch which is effectively a spread between low bid-ask spread (large λl)

mid-quotes, and high bid-ask spread (low λl) quotes. As we explain in Section 3.1, the term

originates from (i) strategic interactions between dealers in the D2D market; (ii) dealers’

bid shading in the D2C market; and (iii) non-exclusive competition and customers’ optimal

order splitting across dealers in the D2C market.

48Thus, E[Θ] = nθ̄.
49Note that, although the coefficient on the fundamental value, d, is negative, the price PD2D depends

positively on d (at it should) due to a positive link between αl and d.
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B Regression Tables

B.1 Main Results

Table 2: Forecasting FX rates: Ten Seconds Ahead.— The table reports estimates
for the regression

∆pD2D
t+ℓ, ℓ = a0 + a1∆ᾱt, ℓ + a2∆Amismatch,t, ℓ + controlst ,

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 10s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: 104 ×∆PD2D
t+ℓ,ℓ

(1) (2) (3) (4) (5) (6)

∆ᾱt,ℓ 0.39215320∗∗∗ 0.39272230∗∗∗ 0.39241120∗∗∗ 0.39278770∗∗∗ 0.39268750∗∗∗ 0.39265200∗∗∗

(0.00247951) (0.00276747) (0.00293718) (0.00303912) (0.00309929) (0.00302175)

∆Amismatch,t, ℓ −19.34687000∗∗∗ −19.40294000∗∗∗ −19.35697000∗∗∗ −19.40267000∗∗∗ −19.40140000∗∗∗ −19.39819000∗∗∗

(2.01114500) (2.04942700) (2.07074800) (2.08287900) (2.08964900) (2.08014200)

ProxyLiqShockt −0.01146765∗∗∗ −0.01149864∗∗∗ −0.01147806∗∗∗ −0.01145615∗∗∗

(0.00209185) (0.00205862) (0.00205179) (0.00205795)

D2D V olt 0.00101904 0.00109480

(0.00075160) (0.00074938)

D2D V ol 1ht −0.00036481

(0.00109628)

D2D V ol 24ht 0.00106639

(0.00074399)

Constant −5.94916800∗∗∗ −5.94916200∗∗∗ −5.94917400∗∗∗ −5.94916800∗∗∗ −5.94917400∗∗∗ −5.94917700∗∗∗

(0.00082863) (0.00074211) (0.00072752) (0.00072555) (0.00072506) (0.00072604)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 3: Forecasting FX Spread: Ten Seconds Ahead.— The table report estimates
for the regression

Spread D2Dt+ℓ = a0 + a1STD Spread D2Ct + a2Spread D2Ct + controlst ,

where ℓ = 10s.

Spread D2Dt+ℓ

Spread D2Ct 1.720∗∗∗ 1.722∗∗∗ 1.720∗∗∗ 1.722∗∗∗ 1.720∗∗∗ 1.722∗∗∗

(0.054) (0.055) (0.054) (0.054) (0.054) (0.054)

STD Spread D2Ct −0.612∗∗∗ −0.613∗∗∗ −0.612∗∗∗ −0.613∗∗∗ −0.612∗∗∗ −0.613∗∗∗

(0.020) (0.021) (0.020) (0.021) (0.020) (0.021)

D2D V olt −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000)

D2D V ol 1ht −0.00000∗∗

(0.00000)

D2D V ol 24ht −0.000∗∗∗

(0.000)

ProxyLiqShockt 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)

Constant 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 4: Reversals in price competitiveness pc— The table reports estimates for the
regression

∆pct+ℓ, ℓ = a0 + a1∆pct, ℓ

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 10s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: ∆pct+ℓ, ℓ

∆pct, ℓ −0.51084480∗∗∗

(0.00545883)

Constant −0.07109310∗∗∗

(0.00631655)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 5: Reversals in Amismatch: 10 seconds— The table reports estimates for the
regression

∆Amismatch,t+ℓ, ℓ = a0 + a1∆Amismatch,t, ℓ

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 10s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: ∆Amismatch,t+ℓ, ℓ

∆Amismatch,t, ℓ −0.17538010∗∗∗

(0.00126546)

Constant −0.00000060∗∗∗

(0.00000013)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



B.2 Additional Lags: Prices

Table 6: Forecasting FX rates: One Second Ahead.— The table reports estimates
for the regression

∆pD2D
t+ℓ, ℓ = a0 + a1∆ᾱt, ℓ + a2∆Amismatch,t, ℓ + controlst ,

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 1s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: 104 ×∆PD2D
t+ℓ,ℓ

(1) (2) (3) (4) (5) (6)

∆ᾱt,ℓ 0.03873706∗∗∗ 0.03873713∗∗∗ 0.03873832∗∗∗ 0.03873685∗∗∗ 0.03873748∗∗∗ 0.03873737∗∗∗

(0.00150778) (0.00149743) (0.00149056) (0.00147956) (0.00147841) (0.00148198)

∆Amismatch,t, ℓ −0.56428000∗∗∗ −0.56422310∗∗∗ −0.56407690∗∗∗ −0.56404540∗∗∗ −0.56409150∗∗∗ −0.56406020∗∗∗

(0.09301252) (0.09263100) (0.09239439) (0.09204492) (0.09201776) (0.09212495)

ProxyLiqShockt −0.00009274∗∗∗ −0.00009318∗∗∗ −0.00009184∗∗∗ −0.00009253∗∗∗

(0.00001961) (0.00001959) (0.00001955) (0.00001959)

D2D V olt 0.00001781∗∗ 0.00001841∗∗

(0.00000786) (0.00000784)

D2D V ol 1ht 0.00002316∗∗

(0.00001073)

D2D V ol 24ht 0.00001853∗∗

(0.00000828)

Constant −1.71384700∗∗∗ −1.71384700∗∗∗ −1.71384700∗∗∗ −1.71384700∗∗∗ −1.71384600∗∗∗ −1.71384700∗∗∗

(0.00000773) (0.00000772) (0.00000772) (0.00000772) (0.00000771) (0.00000772)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 7: Forecasting FX rates: Three Seconds Ahead.— The table reports estimates
for the regression

∆pD2D
t+ℓ, ℓ = a0 + a1∆ᾱt, ℓ + a2∆Amismatch,t, ℓ + controlst ,

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 3s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: 104 ×∆PD2D
t+ℓ,ℓ

(1) (2) (3) (4) (5) (6)

∆ᾱt,ℓ 0.15443070∗∗∗ 0.15448450∗∗∗ 0.15442730∗∗∗ 0.15448870∗∗∗ 0.15448250∗∗∗ 0.15449370∗∗∗

(0.00275667) (0.00269613) (0.00266416) (0.00260009) (0.00258719) (0.00260993)

∆Amismatch,t, ℓ −6.78784800∗∗∗ −6.79415300∗∗∗ −6.78695500∗∗∗ −6.79361600∗∗∗ −6.79418600∗∗∗ −6.79402600∗∗∗

(0.35444290) (0.35270430) (0.35152090) (0.34968290) (0.34926670) (0.35003480)

ProxyLiqShockt −0.00151414∗∗∗ −0.00152120∗∗∗ −0.00151069∗∗∗ −0.00151283∗∗∗

(0.00019632) (0.00019598) (0.00019555) (0.00019598)

D2D V olt 0.00023801∗∗∗ 0.00024877∗∗∗

(0.00006697) (0.00006786)

D2D V ol 1ht 0.00008968

(0.00009398)

D2D V ol 24ht 0.00019939∗∗∗

(0.00006881)

Constant −3.00424400∗∗∗ −3.00424300∗∗∗ −3.00424400∗∗∗ −3.00424400∗∗∗ −3.00424000∗∗∗ −3.00424500∗∗∗

(0.00006610) (0.00006681) (0.00006609) (0.00006678) (0.00006677) (0.00006680)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 8: Forecasting FX rates: Five Seconds Ahead.— The table reports estimates
for the regression

∆pD2D
t+ℓ, ℓ = a0 + a1∆ᾱt, ℓ + a2∆Amismatch,t, ℓ + controlst ,

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 5s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: 104 ×∆PD2D
t+ℓ,ℓ

(1) (2) (3) (4) (5) (6)

∆ᾱt,ℓ 0.07769800∗∗∗ 0.07774450∗∗∗ 0.07770872∗∗∗ 0.07775902∗∗∗ 0.07774352∗∗∗ 0.07775173∗∗∗

(0.00083556) (0.00078643) (0.00075440) (0.00070019) (0.00068278) (0.00071012)

∆Amismatch,t, ℓ −2.70442700∗∗∗ −2.70748000∗∗∗ −2.70419400∗∗∗ −2.70734300∗∗∗ −2.70741500∗∗∗ −2.70739900∗∗∗

(0.23356760) (0.23231550) (0.23101990) (0.22951550) (0.22896130) (0.22978560)

ProxyLiqShockt −0.00120330∗∗∗ −0.00120895∗∗∗ −0.00120421∗∗∗ −0.00120235∗∗∗

(0.00018013) (0.00017970) (0.00017920) (0.00017971)

D2D V olt 0.00019518∗∗∗ 0.00020319∗∗∗

(0.00006373) (0.00006463)

D2D V ol 1ht −0.00002541

(0.00009007)

D2D V ol 24ht 0.00013867∗∗

(0.00006451)

Constant −4.00277800∗∗∗ −4.00277700∗∗∗ −4.00277800∗∗∗ −4.00277800∗∗∗ −4.00277800∗∗∗ −4.00277900∗∗∗

(0.00006123) (0.00006205) (0.00006166) (0.00006243) (0.00006262) (0.00006239)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 9: Forecasting FX rates: Fifteen Seconds Ahead.—The table reports estimates
for the regression

∆pD2D
t+ℓ, ℓ = a0 + a1∆ᾱt, ℓ + a2∆Amismatch,t, ℓ + controlst ,

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 15s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: 104 ×∆PD2D
t+ℓ,ℓ

(1) (2) (3) (4) (5) (6)

∆ᾱt,ℓ 1.16306400∗∗∗ 1.16934900∗∗∗ 1.16308500∗∗∗ 1.16871400∗∗∗ 1.16901000∗∗∗ 1.16898700∗∗∗

(0.01064314) (0.01107594) (0.01125033) (0.01144837) (0.01153718) (0.01143152)

∆Amismatch,t, ℓ −61.66987000∗∗∗ −62.19161000∗∗∗ −61.66666000∗∗∗ −62.15246000∗∗∗ −62.17151000∗∗∗ −62.17090000∗∗∗

(8.27103100) (8.39204400) (8.38484100) (8.45649900) (8.47251200) (8.45500600)

ProxyLiqShockt −0.04617202∗∗∗ −0.04621309∗∗∗ −0.04612746∗∗∗ −0.04611698∗∗∗

(0.00915775) (0.00906875) (0.00905460) (0.00907106)

D2D V olt 0.00220351 0.00250521

(0.00316746) (0.00318910)

D2D V ol 1ht 0.00108077

(0.00490193)

D2D V ol 24ht 0.00467389

(0.00316280)

Constant −7.24852800∗∗∗ −7.24852900∗∗∗ −7.24853700∗∗∗ −7.24853600∗∗∗ −7.24848800∗∗∗ −7.24859000∗∗∗

(0.00317889) (0.00314778) (0.00308585) (0.00310774) (0.00311596) (0.00311092)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 10: Forecasting FX rates: Twenty Seconds Ahead.— The table reports
estimates for the regression

∆pD2D
t+ℓ, ℓ = a0 + a1∆ᾱt, ℓ + a2∆Amismatch,t, ℓ + controlst ,

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 20s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: 104 ×∆PD2D
t+ℓ,ℓ

(1) (2) (3) (4) (5) (6)

∆ᾱt,ℓ 55.27935000∗∗∗ 55.95169000∗∗∗ 55.35582000∗∗∗ 55.95703000∗∗∗ 55.96041000∗∗∗ 56.07694000∗∗∗

(0.64341760) (0.66535810) (0.67244350) (0.68518880) (0.68683830) (0.68614430)

∆Amismatch,t, ℓ −2,568.69100000∗∗∗ −2,616.21800000∗∗∗ −2,571.99300000∗∗∗ −2,616.19000000∗∗∗ −2,616.50000000∗∗∗ −2,622.50100000∗∗∗

(511.42220000) (523.08240000) (521.02910000) (528.29340000) (528.65020000) (529.35510000)

ProxyLiqShockt −2.83902100∗∗∗ −2.84338600∗∗∗ −2.83783900∗∗∗ −2.84296900∗∗∗

(0.58742300) (0.58306350) (0.58271080) (0.58427560)

D2D V olt 0.13538540 0.15440600

(0.19575270) (0.19862270)

D2D V ol 1ht 0.06463395

(0.32186150)

D2D V ol 24ht 0.28245960

(0.19635790)

Constant −8.49130500∗∗∗ −8.49206700∗∗∗ −8.49198900∗∗∗ −8.49244100∗∗∗ −8.48947800∗∗∗ −8.49601700∗∗∗

(0.19717880) (0.19740960) (0.19191970) (0.19469150) (0.19596210) (0.19523400)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 11: Forecasting FX rates: Thirty Seconds Ahead.— The table reports
estimates for the regression

∆pD2D
t+ℓ, ℓ = a0 + a1∆ᾱt, ℓ + a2∆Amismatch,t, ℓ + controlst ,

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 30s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: 104 ×∆PD2D
t+ℓ,ℓ

(1) (2) (3) (4) (5) (6)

∆ᾱt,ℓ 1,566.57000000∗∗∗ 1,565.37900000∗∗∗ 1,566.51100000∗∗∗ 1,565.33200000∗∗∗ 1,565.35200000∗∗∗ 1,565.34700000∗∗∗

(17.69701000) (17.78775000) (17.91811000) (17.95429000) (17.96782000) (17.95716000)

∆Amismatch,t, ℓ −64,260.21000000∗∗∗ −65,350.25000000∗∗∗ −64,261.95000000∗∗∗ −65,354.01000000∗∗∗ −65,349.77000000∗∗∗ −65,341.64000000∗∗∗

(20,827.76000000) (20,947.31000000) (21,091.92000000) (21,104.00000000) (21,112.65000000) (21,106.79000000)

ProxyLiqShockt −118.77080000∗∗∗ −118.93810000∗∗∗ −118.73120000∗∗∗ −118.68820000∗∗∗

(22.55573000) (22.56407000) (22.55518000) (22.55972000)

D2D V olt 6.09856300 6.84660500

(8.30987900) (8.38996000)

D2D V ol 1ht 0.97244140

(12.74730000)

D2D V ol 24ht 7.60809900

(8.26973200)

Constant −13.33470000 −13.09005000 −13.37672000 −13.13668000 −13.06131000 −13.20670000

(8.60622500) (8.53245700) (8.30059400) (8.36590300) (8.39622200) (8.36528100)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 12: Forecasting FX rates: Forty Seconds Ahead.— The table reports estimates
for the regression

∆pD2D
t+ℓ, ℓ = a0 + a1∆ᾱt, ℓ + a2∆Amismatch,t, ℓ + controlst ,

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 40s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: 104 ×∆PD2D
t+ℓ,ℓ

(1) (2) (3) (4) (5) (6)

∆ᾱt,ℓ 1,589.64100000∗∗∗ 1,589.24200000∗∗∗ 1,589.62400000∗∗∗ 1,589.20100000∗∗∗ 1,589.36500000∗∗∗ 1,589.20200000∗∗∗

(24.23399000) (24.11451000) (24.10898000) (24.09673000) (24.09822000) (24.09093000)

∆Amismatch,t, ℓ −46,788.79000000 −48,816.19000000∗ −46,821.91000000 −48,858.07000000∗ −48,847.99000000∗ −48,808.76000000∗

(28,980.55000000) (28,953.86000000) (28,955.54000000) (28,890.47000000) (28,911.21000000) (28,913.72000000)

ProxyLiqShockt −170.78310000∗∗∗ −171.02140000∗∗∗ −170.96800000∗∗∗ −170.72770000∗∗∗

(30.38525000) (30.99576000) (30.87123000) (30.85773000)

D2D V olt 9.01325500 10.08355000

(12.39544000) (12.70833000)

D2D V ol 1ht −4.35846800

(17.88818000)

D2D V ol 24ht 4.52796600

(12.62489000)

Constant −9.39330200 −9.07833600 −9.45775800 −9.15001100 −9.19266600 −9.14831800

(11.86934000) (12.18556000) (12.31642000) (12.60861000) (12.55940000) (12.52307000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 13: Forecasting FX rates: Forty Five Seconds Ahead.— The table reports
estimates for the regression

∆pD2D
t+ℓ, ℓ = a0 + a1∆ᾱt, ℓ + a2∆Amismatch,t, ℓ + controlst ,

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 45s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: 104 ×∆PD2D
t+ℓ,ℓ

(1) (2) (3) (4) (5) (6)

∆ᾱt,ℓ 1,564.86300000∗∗∗ 1,564.43900000∗∗∗ 1,564.85300000∗∗∗ 1,564.40800000∗∗∗ 1,564.51400000∗∗∗ 1,564.42000000∗∗∗

(25.94795000) (25.97072000) (25.97618000) (26.29842000) (26.14544000) (26.12031000)

∆Amismatch,t, ℓ −29,096.55000000 −31,747.72000000 −29,115.59000000 −31,772.62000000 −31,854.48000000 −31,737.83000000

(33,040.74000000) (33,008.52000000) (32,937.88000000) (32,349.44000000) (32,594.45000000) (32,621.40000000)

ProxyLiqShockt −190.63380000∗∗∗ −190.92880000∗∗∗ −191.12930000∗∗∗ −190.59840000∗∗∗

(34.74468000) (37.19062000) (36.34754000) (36.25084000)

D2D V olt 10.49881000 11.79139000

(14.84299000) (16.06530000)

D2D V ol 1ht −7.95174300

(21.38842000)

D2D V ol 24ht 3.38251000

(15.55294000)

Constant −6.84904300 −6.56124700 −6.92537100 −6.64890000 −6.75173800 −6.61365700

(13.83944000) (14.42244000) (14.78349000) (15.99845000) (15.50183000) (15.41197000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 14: Forecasting FX rates: Fifty Seconds Ahead.— The table reports estimates
for the regression

∆pD2D
t+ℓ, ℓ = a0 + a1∆ᾱt, ℓ + a2∆Amismatch,t, ℓ + controlst ,

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 50s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: 104 ×∆PD2D
t+ℓ,ℓ

(1) (2) (3) (4) (5) (6)

∆ᾱt,ℓ 1,492.57600000∗∗∗ 1,492.79700000∗∗∗ 1,492.56500000∗∗∗ 1,492.77800000∗∗∗ 1,493.28100000∗∗∗ 1,492.79000000∗∗∗

(27.65986000) (27.92664000) (28.19467000) (28.77858000) (29.85946000) (29.63336000)

∆Amismatch,t, ℓ −19,421.15000000 −22,605.30000000 −19,417.72000000 −22,607.35000000 −22,934.81000000 −22,599.22000000

(36,216.16000000) (35,710.05000000) (35,344.00000000) (34,692.74000000) (33,526.69000000) (33,732.68000000)

ProxyLiqShockt −200.95030000∗∗∗ −201.31230000∗∗∗ −201.90000000∗∗∗ −200.93340000∗∗∗

(39.17355000) (42.66249000) (46.73086000) (46.00511000)

D2D V olt 11.58196000 13.09564000

(17.99090000) (19.39545000)

D2D V ol 1ht −12.62028000

(29.69561000)

D2D V ol 24ht 1.43107800

(21.94732000)

Constant −4.75412200 −4.49671600 −4.83464300 −4.58935800 −4.77335500 −4.51637500

(15.73834000) (17.04564000) (17.94762000) (19.38305000) (22.36620000) (21.79624000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 15: Forecasting FX rates: Sixty Seconds Ahead.— The table reports estimates
for the regression

∆pD2D
t+ℓ, ℓ = a0 + a1∆ᾱt, ℓ + a2∆Amismatch,t, ℓ + controlst ,

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 60s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: 104 ×∆PD2D
t+ℓ,ℓ

(1) (2) (3) (4) (5) (6)

∆ᾱt,ℓ 1,312.67100000∗∗∗ 1,314.95000000∗∗∗ 1,312.68500000∗∗∗ 1,314.96800000∗∗∗ 1,315.48800000∗∗∗ 1,314.95100000∗∗∗

(32.41165000) (31.22029000) (31.05948000) (30.95963000) (31.05480000) (30.97912000)

∆Amismatch,t, ℓ 15,553.21000000 11,127.53000000 15,586.30000000 11,153.72000000 10,948.05000000 11,125.51000000

(38,385.91000000) (39,984.52000000) (40,174.35000000) (40,446.33000000) (40,290.41000000) (40,407.15000000)

ProxyLiqShockt −220.35690000∗∗∗ −220.78200000∗∗∗ −221.07010000∗∗∗ −220.35710000∗∗∗

(43.49203000) (42.04641000) (42.47202000) (42.14161000)

D2D V olt 14.28575000 15.88489000

(19.13201000) (18.48285000)

D2D V ol 1ht −15.49562000

(25.57480000)

D2D V ol 24ht −0.16187510

(18.74520000)

Constant −4.10795700 −3.80036300 −4.20619900 −3.91228900 −4.14984500 −3.79718700

(23.08267000) (19.47854000) (19.10517000) (18.48088000) (18.84784000) (18.57503000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



B.3 Additional Lags: Spread

Table 16: Forecasting FX Spread: One Second Ahead.— The table report estimates
for the regression

Spread D2Dt+ℓ = a0 + a1STD Spread D2Ct + a2Spread D2Ct + controlst ,

where ℓ = 1s.

Spread D2Dt+ℓ

Spread D2Ct 1.791∗∗∗ 1.793∗∗∗ 1.791∗∗∗ 1.793∗∗∗ 1.791∗∗∗ 1.793∗∗∗

(0.049) (0.049) (0.049) (0.049) (0.049) (0.049)

STD Spread D2Ct −0.637∗∗∗ −0.638∗∗∗ −0.637∗∗∗ −0.638∗∗∗ −0.637∗∗∗ −0.638∗∗∗

(0.018) (0.018) (0.018) (0.018) (0.018) (0.018)

D2D V olt −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000)

D2D V ol 1ht −0.00000∗

(0.00000)

D2D V ol 24ht −0.000∗∗∗

(0.000)

ProxyLiqShockt 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)

Constant 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 17: Forecasting FX Spread: Three Seconds Ahead.— The table report
estimates for the regression

Spread D2Dt+ℓ = a0 + a1STD Spread D2Ct + a2Spread D2Ct + controlst ,

where ℓ = 3s.

Spread D2Dt+ℓ

Spread D2Ct 1.769∗∗∗ 1.770∗∗∗ 1.769∗∗∗ 1.770∗∗∗ 1.769∗∗∗ 1.770∗∗∗

(0.052) (0.052) (0.052) (0.052) (0.052) (0.052)

STD Spread D2Ct −0.629∗∗∗ −0.630∗∗∗ −0.629∗∗∗ −0.630∗∗∗ −0.629∗∗∗ −0.630∗∗∗

(0.019) (0.020) (0.019) (0.020) (0.019) (0.020)

D2D V olt −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000)

D2D V ol 1ht −0.00000∗∗

(0.00000)

D2D V ol 24ht −0.000∗∗∗

(0.000)

ProxyLiqShockt 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)

Constant 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 18: Forecasting FX Spread: Five Seconds Ahead.—The table report estimates
for the regression

Spread D2Dt+ℓ = a0 + a1STD Spread D2Ct + a2Spread D2Ct + controlst ,

where ℓ = 5s.

Spread D2Dt+ℓ

Spread D2Ct 1.753∗∗∗ 1.754∗∗∗ 1.753∗∗∗ 1.754∗∗∗ 1.753∗∗∗ 1.755∗∗∗

(0.051) (0.054) (0.054) (0.054) (0.054) (0.054)

STD Spread D2Ct −0.624∗∗∗ −0.624∗∗∗ −0.624∗∗∗ −0.624∗∗∗ −0.624∗∗∗ −0.625∗∗∗

(0.019) (0.020) (0.020) (0.020) (0.020) (0.020)

D2D V olt −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000)

D2D V ol 1ht −0.00000∗

(0.00000)

D2D V ol 24ht −0.000∗∗∗

(0.000)

ProxyLiqShockt 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)

Constant 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 19: Forecasting FX Spread: Fifteen Seconds Ahead.— The table report
estimates for the regression

Spread D2Dt+ℓ = a0 + a1STD Spread D2Ct + a2Spread D2Ct + controlst ,

where ℓ = 15s.

Spread D2Dt+ℓ

Spread D2Ct 1.699∗∗∗ 1.701∗∗∗ 1.699∗∗∗ 1.701∗∗∗ 1.699∗∗∗ 1.701∗∗∗

(0.054) (0.055) (0.054) (0.054) (0.054) (0.054)

STD Spread D2Ct −0.605∗∗∗ −0.605∗∗∗ −0.605∗∗∗ −0.605∗∗∗ −0.605∗∗∗ −0.605∗∗∗

(0.019) (0.020) (0.019) (0.020) (0.019) (0.020)

D2D V olt −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000)

D2D V ol 1ht −0.00000∗∗

(0.00000)

D2D V ol 24ht −0.000∗∗∗

(0.000)

ProxyLiqShockt 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)

Constant 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 20: Forecasting FX Spread: Twenty Seconds Ahead.— The table report
estimates for the regression

Spread D2Dt+ℓ = a0 + a1STD Spread D2Ct + a2Spread D2Ct + controlst ,

where ℓ = 20s.

Spread D2Dt+ℓ

Spread D2Ct 1.683∗∗∗ 1.685∗∗∗ 1.683∗∗∗ 1.685∗∗∗ 1.683∗∗∗ 1.686∗∗∗

(0.056) (0.056) (0.055) (0.056) (0.055) (0.055)

STD Spread D2Ct −0.601∗∗∗ −0.602∗∗∗ −0.601∗∗∗ −0.602∗∗∗ −0.601∗∗∗ −0.602∗∗∗

(0.027) (0.027) (0.026) (0.027) (0.026) (0.027)

D2D V olt −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000)

D2D V ol 1ht −0.00000∗∗

(0.00000)

D2D V ol 24ht −0.000∗∗∗

(0.000)

ProxyLiqShockt 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)

Constant 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗ 0.00004∗∗∗

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 21: Forecasting FX Spread: Fifteen Seconds Ahead.— The table report
estimates for the regression

Spread D2Dt+ℓ = a0 + a1STD Spread D2Ct + a2Spread D2Ct + controlst ,

where ℓ = 30s.

Spread D2Dt+ℓ

Spread D2Ct 1.644∗∗∗ 1.646∗∗∗ 1.644∗∗∗ 1.646∗∗∗ 1.644∗∗∗ 1.646∗∗∗

(0.053) (0.053) (0.053) (0.053) (0.053) (0.052)

STD Spread D2Ct −0.585∗∗∗ −0.586∗∗∗ −0.585∗∗∗ −0.586∗∗∗ −0.585∗∗∗ −0.586∗∗∗

(0.020) (0.020) (0.020) (0.020) (0.020) (0.020)

D2D V olt −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000)

D2D V ol 1ht −0.000

(0.00000)

D2D V ol 24ht −0.000∗∗∗

(0.000)

ProxyLiqShockt 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)

Constant 0.00004∗∗∗ 0.00005∗∗∗ 0.00004∗∗∗ 0.00005∗∗∗ 0.00004∗∗∗ 0.00005∗∗∗

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 22: Forecasting FX Spread: Forty Seconds Ahead.— The table report
estimates for the regression

Spread D2Dt+ℓ = a0 + a1STD Spread D2Ct + a2Spread D2Ct + controlst ,

where ℓ = 40s.

Spread D2Dt+ℓ

Spread D2Ct 1.632∗∗∗ 1.634∗∗∗ 1.632∗∗∗ 1.634∗∗∗ 1.632∗∗∗ 1.634∗∗∗

(0.052) (0.053) (0.052) (0.053) (0.052) (0.052)

STD Spread D2Ct −0.581∗∗∗ −0.582∗∗∗ −0.581∗∗∗ −0.582∗∗∗ −0.581∗∗∗ −0.582∗∗∗

(0.020) (0.020) (0.020) (0.020) (0.020) (0.020)

D2D V olt −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000)

D2D V ol 1ht −0.00000

(0.00000)

D2D V ol 24ht −0.000∗∗∗

(0.000)

ProxyLiqShockt 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)

Constant 0.00004∗∗∗ 0.00005∗∗∗ 0.00004∗∗∗ 0.00005∗∗∗ 0.00004∗∗∗ 0.00005∗∗∗

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 23: Forecasting FX Spread: Forty Five Seconds Ahead.— The table report
estimates for the regression

Spread D2Dt+ℓ = a0 + a1STD Spread D2Ct + a2Spread D2Ct + controlst ,

where ℓ = 45s.

Spread D2Dt+ℓ

Spread D2Ct 1.618∗∗∗ 1.621∗∗∗ 1.618∗∗∗ 1.621∗∗∗ 1.618∗∗∗ 1.621∗∗∗

(0.054) (0.057) (0.054) (0.056) (0.054) (0.357)

STD Spread D2Ct −0.576∗∗∗ −0.578∗∗∗ −0.576∗∗∗ −0.578∗∗∗ −0.576∗∗∗ −0.578

(0.021) (0.034) (0.021) (0.033) (0.021) (0.613)

D2D V olt −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000)

D2D V ol 1ht −0.00000

(0.00000)

D2D V ol 24ht −0.000∗∗∗

(0.000)

ProxyLiqShockt 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)

Constant 0.00005∗∗∗ 0.00005∗∗∗ 0.00005∗∗∗ 0.00005∗∗∗ 0.00005∗∗∗ 0.00005∗∗∗

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 24: Forecasting FX Spread: Fifty Seconds Ahead.—The table report estimates
for the regression

Spread D2Dt+ℓ = a0 + a1STD Spread D2Ct + a2Spread D2Ct + controlst ,

where ℓ = 50s.

Spread D2Dt+ℓ

Spread D2Ct 1.621∗∗∗ 1.623∗∗∗ 1.621∗∗∗ 1.623∗∗∗ 1.621∗∗∗ 1.623∗∗∗

(0.052) (0.054) (0.053) (0.053) (0.053) (0.052)

STD Spread D2Ct −0.578∗∗∗ −0.578∗∗∗ −0.578∗∗∗ −0.578∗∗∗ −0.578∗∗∗ −0.579∗∗∗

(0.019) (0.020) (0.019) (0.019) (0.019) (0.019)

D2D V olt −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000)

D2D V ol 1ht 0.000

(0.00000)

D2D V ol 24ht −0.000∗∗∗

(0.000)

ProxyLiqShockt 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)

Constant 0.00005∗∗∗ 0.00005∗∗∗ 0.00005∗∗∗ 0.00005∗∗∗ 0.00005∗∗∗ 0.00005∗∗∗

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 25: Forecasting FX Spread: Sixty Seconds Ahead.— The table report
estimates for the regression

Spread D2Dt+ℓ = a0 + a1STD Spread D2Ct + a2Spread D2Ct + controlst ,

where ℓ = 60s.

Spread D2Dt+ℓ

Spread D2Ct 1.605∗∗∗ 1.607∗∗∗ 1.605∗∗∗ 1.607∗∗∗ 1.605∗∗∗ 1.607∗∗∗

(0.053) (0.054) (0.053) (0.054) (0.053) (0.053)

STD Spread D2Ct −0.571∗∗∗ −0.572∗∗∗ −0.571∗∗∗ −0.572∗∗∗ −0.571∗∗∗ −0.572∗∗∗

(0.019) (0.019) (0.019) (0.019) (0.019) (0.019)

D2D V olt −0.000∗∗∗ −0.000∗∗∗

(0.000) (0.000)

D2D V ol 1ht 0.00000

(0.00000)

D2D V ol 24ht −0.000∗∗∗

(0.000)

ProxyLiqShockt 0.000 0.000 0.000 0.000

(0.000) (0.000) (0.000) (0.000)

Constant 0.00005∗∗∗ 0.00005∗∗∗ 0.00005∗∗∗ 0.00005∗∗∗ 0.00005∗∗∗ 0.00005∗∗∗

(0.00000) (0.00000) (0.00000) (0.00000) (0.00000) (0.00000)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



B.4 Additional lags: Amismatch

Table 26: Reversals in Amismatch: 1 second— The table reports estimates for the
regression

∆Amismatch,t+ℓ, ℓ = a0 + a1∆Amismatch,t, ℓ

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 1s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: ∆Amismatch,t+ℓ, ℓ

∆Amismatch,t, ℓ −0.11960410∗∗∗

(0.00145343)

Constant −0.00000010∗∗

(0.00000004)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 27: Reversals in Amismatch: 3 seconds— The table reports estimates for the
regression

∆Amismatch,t+ℓ, ℓ = a0 + a1∆Amismatch,t, ℓ

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 3s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: ∆Amismatch,t+ℓ, ℓ

∆Amismatch,t, ℓ −0.16057820∗∗∗

(0.00138495)

Constant −0.00000044∗∗∗

(0.00000007)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 28: Reversals in Amismatch: 5 seconds— The table reports estimates for the
regression

∆Amismatch,t+ℓ, ℓ = a0 + a1∆Amismatch,t, ℓ

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 5s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: ∆Amismatch,t+ℓ, ℓ

∆Amismatch,t, ℓ −0.17032590∗∗∗

(0.00130624)

Constant −0.00000051∗∗∗

(0.00000009)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 29: Reversals in Amismatch: 15 seconds— The table reports estimates for the
regression

∆Amismatch,t+ℓ, ℓ = a0 + a1∆Amismatch,t, ℓ

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 15s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: ∆Amismatch,t+ℓ, ℓ

∆Amismatch,t, ℓ −0.18127190∗∗∗

(0.00122993)

Constant −0.00000075∗∗∗

(0.00000023)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 30: Reversals in Amismatch: 20 seconds— The table reports estimates for the
regression

∆Amismatch,t+ℓ, ℓ = a0 + a1∆Amismatch,t, ℓ

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 20s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: ∆Amismatch,t+ℓ, ℓ

∆Amismatch,t, ℓ −0.19437510∗∗∗

(0.00161862)

Constant −0.00000080∗∗∗

(0.00000018)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 31: Reversals in Amismatch: 30 seconds— The table reports estimates for the
regression

∆Amismatch,t+ℓ, ℓ = a0 + a1∆Amismatch,t, ℓ

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 30s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: ∆Amismatch,t+ℓ, ℓ

∆Amismatch,t, ℓ −0.22155150∗∗∗

(0.00185767)

Constant −0.00000086∗∗∗

(0.00000030)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 32: Reversals in Amismatch: 40 seconds— The table reports estimates for the
regression

∆Amismatch,t+ℓ, ℓ = a0 + a1∆Amismatch,t, ℓ

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 40s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: ∆Amismatch,t+ℓ, ℓ

∆Amismatch,t, ℓ −0.23728540∗∗∗

(0.00228447)

Constant −0.00000099∗∗∗

(0.00000026)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 33: Reversals in Amismatch: 45 seconds— The table reports estimates for the
regression

∆Amismatch,t+ℓ, ℓ = a0 + a1∆Amismatch,t, ℓ

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 45s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: ∆Amismatch,t+ℓ, ℓ

∆Amismatch,t, ℓ −0.24642560∗∗∗

(0.00246791)

Constant −0.00000112∗∗∗

(0.00000027)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 34: Reversals in Amismatch: 50 seconds— The table reports estimates for the
regression

∆Amismatch,t+ℓ, ℓ = a0 + a1∆Amismatch,t, ℓ

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 50s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: ∆Amismatch,t+ℓ, ℓ

∆Amismatch,t, ℓ −0.25461630∗∗∗

(0.00262684)

Constant −0.00000119∗∗∗

(0.00000028)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 35: Reversals in Amismatch: 60 seconds— The table reports estimates for the
regression

∆Amismatch,t+ℓ, ℓ = a0 + a1∆Amismatch,t, ℓ

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 60s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: ∆Amismatch,t+ℓ, ℓ

∆Amismatch,t, ℓ −0.27091950∗∗∗

(0.00293203)

Constant −0.00000135∗∗∗

(0.00000030)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



B.5 Additional lags: price competitiveness

Table 36: Reversals in price competitiveness pc— The table reports estimates for the
regression

∆pct+ℓ, ℓ = a0 + a1∆pct, ℓ

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 1s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: ∆pct+ℓ, ℓ

∆pct, ℓ −0.54754750∗∗∗

(0.00512132)

Constant −0.04765977∗∗∗

(0.00626592)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 37: Reversals in price competitiveness pc— The table reports estimates for the
regression

∆pct+ℓ, ℓ = a0 + a1∆pct, ℓ

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 3s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: ∆pct+ℓ, ℓ

∆pct, ℓ −0.50713180∗∗∗

(0.00549015)

Constant −0.07107528∗∗∗

(0.00631872)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 38: Reversals in price competitiveness pc— The table reports estimates for the
regression

∆pct+ℓ, ℓ = a0 + a1∆pct, ℓ

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 5s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: ∆pct+ℓ, ℓ

∆pct, ℓ −0.50531160∗∗∗

(0.00517648)

Constant −0.06504597∗∗∗

(0.00636469)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 39: Reversals in price competitiveness pc— The table reports estimates for the
regression

∆pct+ℓ, ℓ = a0 + a1∆pct, ℓ

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 15s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: ∆pct+ℓ, ℓ

∆pct, ℓ −0.55226020∗∗∗

(0.00506787)

Constant −0.04755946∗∗∗

(0.00626638)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 40: Reversals in price competitiveness pc— The table reports estimates for the
regression

∆pct+ℓ, ℓ = a0 + a1∆pct, ℓ

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 20s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: ∆pct+ℓ, ℓ

∆pct, ℓ −0.50487600∗∗∗

(0.00493113)

Constant −0.06732368∗∗∗

(0.00627096)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 41: Reversals in price competitiveness pc— The table reports estimates for the
regression

∆pct+ℓ, ℓ = a0 + a1∆pct, ℓ

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 30s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: ∆pct+ℓ, ℓ

∆pct, ℓ −0.45087080∗∗∗

(0.00493493)

Constant −0.05297284∗∗∗

(0.00630028)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 42: Reversals in price competitiveness pc— The table reports estimates for the
regression

∆pct+ℓ, ℓ = a0 + a1∆pct, ℓ

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 40s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: ∆pct+ℓ, ℓ

∆pct, ℓ −0.50649200∗∗∗

(0.00503544)

Constant −0.06503918∗∗∗

(0.00636303)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 43: Reversals in price competitiveness pc— The table reports estimates for the
regression

∆pct+ℓ, ℓ = a0 + a1∆pct, ℓ

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 45s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: ∆pct+ℓ, ℓ

∆pct, ℓ −0.51483110∗∗∗

(0.00534165)

Constant −0.07110893∗∗∗

(0.00631328)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 44: Reversals in price competitiveness pc— The table reports estimates for the
regression

∆pct+ℓ, ℓ = a0 + a1∆pct, ℓ

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 50s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: ∆pct+ℓ, ℓ

∆pct, ℓ −0.55169720∗∗∗

(0.00498781)

Constant −0.04757562∗∗∗

(0.00627074)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



Table 45: Reversals in price competitiveness pc— The table reports estimates for the
regression

∆pct+ℓ, ℓ = a0 + a1∆pct, ℓ

where ∆Xt,ℓ = Xt − Xt−ℓ and ℓ = 60s. Heteroscedasticity and autocorrelation robust
standard errors are shown in parenthesis.

Dependent variable: ∆pct+ℓ, ℓ

∆pct, ℓ −0.52398920∗∗∗

(0.00506093)

Constant −0.06499731∗∗∗

(0.00654184)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01



C Deriving predictions 4 and 5 in the simple model

In this section we derive predictions 4 and 5 in our simple model. The formal result is

provided in the Proposition below.

Proposition 16 Suppose that ∥Γ− Γ∗∥2 is sufficiently small and that the realisation of |q̃|

is sufficiently large. Define mid-prices α′
l, b

′
l as mid-prices and spreads associated with the

pre-D2C inventories equal to post-D2D inventories xl = χ̃l, holding {Γl}l fixed. Then, the

dealer posting highest (lowest) αl will be posting lowest (highest) α′
l. Define A′

mismatch =

Cov(α′
l, bl). Under the stated conditions positive (negative) Amismatch will be followed by

negative (positive) A′
mismatch.

Proof of Proposition 16. Suppose that q̃ > 0, i.e., the customers are selling. Consider a

dealer l∗ posting the highest αl. This dealer will will increase his inventories by q̃, and, since

q̃ is assumed to be large, will hold largest inventory χl∗ post-D2C. It follows from (5) that

post-D2D inventory can be written as χ̃l∗ = (Γ∗ + β∗)Q∗ + (Γ∗ + β∗)−1β∗χl∗ +O(∥Γ−Γ∗∥) ,

where β∗ = Γ∗/(M − 2) is the price impact in the D2D market with homogeneous investors.

It follows that the dealer with highest χl∗ will also end up with highest χ̃l∗ . Then, by (8),

this dealer will post lowest price α′
l∗ .

We now consider the statement about Amismatch. For large q̃ we have Amismatch
s
=

1/M(αl∗ − E[αl])(Γl∗ − E[Γl]) and A′
mismatch

s
= 1/M(α′

l∗ − E[α′
l])(Γl∗ − E[Γl]). Since the

signs of (αl∗ − E[αl]) and (α′
l∗ − E[α′

l]) are the opposites, the statement follows. Q.E.D.

D Proofs

D.1 Proof of Proposition 1

Proof of Proposition 1. The results regarding the dealers’ price impact (βℓ) and B, except

(ii), are given in Malamud and Rostek (2017). We now prove (ii) : βl is monotone increasing
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Γℓ for any ℓ ̸= l. Fix l. It follows from differentiation that

βl(B) =
2Γl

ΓlB − 2 +
√

(ΓlB)2 + 4

is increasing in B. Let Γ = {Γℓ}Mℓ=1 be a set of dealers’ risk-aversion and suppose that

Γ̃ =
{
Γ̃ℓ

}M

ℓ=1
is such that

Γ̃l > Γl and Γ̃ℓ = Γℓ ∀ ℓ ̸= l .

Since βl(B) is increasing, it is enough to show that the corresponding B and B̃ satisfy

B̃ < B

to prove the statement. By definition,

1

2
=
∑
ℓ

1

ΓℓB + 2 +
√

(ΓℓB)2 + 4
+

1

ΓlB + 2 +
√

(ΓlB)2 + 4

>
∑
ℓ

1

Γ̃ℓB̃ + 2 +
√

(Γ̃ℓB̃)2 + 4
.

It follows that B̃ < B since

∑
ℓ

1

Γ̃ℓB̃ + 2 +
√

(Γ̃ℓB̃)2 + 4
=

1

2
.

We finish by proving the remaining parts of the proposition. First, we prove that B is

the aggregate liquidity, that is

B =
∑
ℓ

1

Γℓ + βℓ
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We have

(βℓ + Γℓ)
−1 =

1

Γℓ

[
1− 2

ΓℓB +
√

(ΓℓB)2

]
=

1

2Γℓ

[
2 + ΓℓB −

√
(ΓℓB)

]
= 2

[
B

2 + ΓℓB −
√

(ΓℓB)

]
.

Summing over ℓ then yields the result.

Next, we multiply Equation 3 by (Γl + βl)
−1 and rearrange the terms to obtain

(Γl + βl)
−1(PD2D − d) = −(Γl + βl)

−1Γlχl −Ql,

We can then sum over ℓ and use Equation D.1 (which shows that B is equal to aggregate

liquidity) to obtain

PD2D = d̄−Q∗ −
M∑
l=1

Qℓ .

Equation 4 then follows from market clearing. We finish the proof by plugging

Qℓ = (Γℓ + βℓ)
−1(d− PD2D − Γℓχℓ) = (Γℓ + βℓ)

−1Q∗ − (Γℓ + βℓ)
−1Γℓχℓ

into χ̃ℓχℓ +Qℓ and Equation (17) to obtain Equations 5 and 6. Q.E.D.

D.2 Proof of Proposition 2

Proof of Proposition 2. Starting with Equation 7, we have

PD2D = d− B−1ME[(Γl + βl)
−1Γl]E[χl] − B−1M Cov((Γl + βl)

−1Γl, χl) .
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The first two terms in the R.H.S. of the equation below remain the same if the three cases

(a), (b), and (c). Focusing on the last term, we have

−B−1M Cov((Γl + βl)
−1Γl, χl)

s
= Cov(χl,Γl) .

The result then follows. Q.E.D.

D.3 Proof of Proposition 3

We will need the following technical lemmas.

Lemma 17 The function (xy + 2 +
√

(xy)2 + 4)−1 is jointly convex R+.

Proof. Consider the function

f(x) =
(
x+ 2 +

√
x2 + 4

)−1

=⇒ f ′′(x) =

(√
x2 + 4− 3

)
x2 + 4

(√
x2 + 4− 2

)
x3 (x2 + 4)3/2

.

We show that f ′′ is positive for x > 0. Clearly, it’s denominator is positive for x > 0.

Consider it’s numerator

h(x) ≡
(√

x2 + 4− 3
)
x2+4

(√
x2 + 4− 2

)
=⇒ h′(x) = 3x

(√
x2 + 4− 2

)
.

Thus, h is increasing for x ≥ 0. Moreover, h(0) = 0. Thus f is convex for x > 0. It follows

that the function

G(x, y) ≡
(
xy + 2 +

√
(xy)2 + 4

)−1

is jointly convex in (x, y).

Q.E.D.

Lemma 18 The function B(Γ) is jointly convex in the vector Γ = (Γl)
M
l=1.
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Proof. Let

f(Γl, B) =

(
ΓlB + 2 +

√
((ΓlB)2 + 4)−1

)−1

Let B1(Γ
1) and B2(Γ

2) be defined implicitly by

∑
l

f(Γ1
l , B1) = 1/2,

∑
l

f(Γ2
l , B2) = 1/2.

We need to show that B(λΓ1
l + (1− λ)Γ2

l ) > λB1 + (1− λ)B2. We have

∑
l

f(λΓ1
l +(1−λ)Γ2

l , λB1 +(1−λ)B2) > λ
∑
l

f(Γ1
l , B1)+ (1−λ)

∑
l

f(Γ2
l , B2) = 1/2.

Since f(Γl, B) decreases in B, the B that solves

∑
l

f(λΓ1
l + (1− λ)Γ2

l , λB1 + (1− λ)B2) = 1/2

is greater than λB1 + (1− λ)B2.

Q.E.D.

Proof of Proposition 3. Liquidity in the D2D market is defined as the price elasticity of

aggregate dealer demand, that is the slope of aggregate demand. Thus, aggregate liquidity

is given by

∑
l

1

Γl + βl

= B ,

where the equality was established in the proof of Proposition 1. By definition, a mean
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preserving spread is such that we move from (Γl) to (Γ̃l = Γl + εl) where (εl) has E[εl] = 0

and is mean-independent of (Γl). We know from Lemma 18 that B(Γl) is convex in (Γl).

Hence,

B(Γl) < B(Γ̃l) .

Furthermore, the function

β−1
l = ΓlB − 2 +

√
(ΓlB)2 + 4

is clearly increasing and convex in B. Thus, β−1
l is convex in Γ−l, and Jensen’s inequality

implies

β−1
l (Γ−l) ≤ E[β−1

l (Γ̃−l)]

that is

βl ≥ E[β−1
l (Γ̃−l)]

−1 .

Q.E.D.

D.4 Proof of Proposition 4

Proof of Proposition 4. This result is a special case of Proposition 11 that we prove later.

Q.E.D.

D.5 Proof of Proposition 5

Proof of Proposition 5. This result is a special case of Proposition 10 that we prove later.

106



Q.E.D.

D.6 Proof of Proposition 6

Proof of Proposition 6. It is a standard result bidding the reservation value in second

price auction is an equilibrium strategy, see, e.g. Krishna (2009), Chapter 2.

We also state the standard results for the first price auction. Krishna (2009), Chapter 2

is a good reference.

Lemma 19 Consider M sellers with i.i.d. reservation values ra with continuous CDF F a(·)

with support [ra, r̄a] participating in the first price auction. The equilibrium bidding strategy

is given by

pa(r) = r +

∫ r̄a

r

(
1− F a(t)

1− F a(r)

)M−1

dt.

When F a(·) is a CDF of uniform distribution, we have

pa(r) =

(
1− 1

M

)
r +

1

M
r̄a.

The equilibrium strategy for buyers with i.i.d. reservation values rb with continuous CDF

F b(·) with support [rb, r̄b] is given by

pb(r) = r +

∫ r

rb

(
F b(t)

F b(r)

)M−1

dt,

which for the case of uniform distribution becomes

pb(r) =

(
1− 1

M

)
r +

1

M
rb.

The first two statements follow from the results above.
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Consider an equilibrium strategy of a seller when r̄a − ra is small. One can write that

(
F b(t)

F b(r)

)M−1

=

(
t− rb

r − rb

)M−1

+O
((

r̄b − rb
)M)

,

and so

pb(r) =

(
1− 1

M

)
r +

1

M
rb +O

((
r̄b − rb

)M)
.

Thus, (1) holds approximately. Note also that in our case terms O
((

r̄b − rb
)M)

are also of

order O((Γ∗)2) (r̄b − rb is O(Γ∗) and M > 2), and the statements follow.

Q.E.D.

D.7 Proof of Proposition 10

Proof of Proposition 10. Suppose that Amismatch
s
= Ymismatch .

Starting with Equation 7, we have

PD2D = d− B−1ME[(Γl + βl)
−1Γl]E[χl] − B−1M Cov((Γl + βl)

−1Γl, χl) .

The first two terms in the R.H.S. of the equation below remain the same if the three cases

(a), (b), and (c). Focusing on the last term, we have

−B−1M Cov((Γl + βl)
−1Γl, χl)

s
= −Cov(χl,Γl) = −Ymismatch .

Thus,

−B−1M Cov((Γl + βl)
−1Γl, χl) = −Amismatch .

Thus, the PD2D price has the reverse ordering of the Amismatch under the conditions of the
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proposition. To complete the proof, we need to show that

Amismatch
s
= Ymismatch .

We prove this result in the next three lemmas. Q.E.D.

Lemma 20 Suppose that

λl = aλ + bλΓl + O(∥Γ− Γ∗∥2 + ∥x∥2 + θ̄2)

and

χl = aχ + bχαl + O(∥Γ− Γ∗∥2 + ∥x∥2 + θ̄2)

with bλ < 0 < bχ . Then,

Amismatch
s
= Ymismatch .

Proof.

Ymismatch = E [(Γl − Γ∗)(χl − χ∗)]

s
= −E [(λl − λ∗)(αl − α∗)]

s
= E

[
(λ−1

l − (λ−1)∗)(αl − α∗)
]

= E [(bl − b∗)(αl − α∗)]

= Amismatch .

Q.E.D.

Lemma 21 Suppose that xl are sufficiently small and Γl are sufficiently close to Γ∗ and that
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θ̄ is sufficiently small. Then, there exists a unique equilibrium with50

λl = λ∗(Γ∗) + ΦΓ(Γ∗)(Γl − Γ∗) + O(∥Γ− Γ∗∥2 + ∥x∥2 + θ̄2) ,

where ΦΓ(x) is negative and increasing in M for x > 0 and M > 1. Furthermore,

al = Φx
0 xl + ΦX

0 X̄ + ΦΓ
0 Xmismatch + Φθ

0 θ̄ + (Γl − Γ∗)[Φx
1 xl + ΦX

1 X̄ + Φθ
1 θ̄]

+ O((∥Γ− Γ∗∥2 + ∥x∥2 + θ̄2)3/2) ,

where for some coefficients Φx
0 ,Φ

X
0 ,Φ

Γ
0 ,Φ

θ
0,Φ

x
1 ,Φ

X
1 ,Φ

Γ
1 ,Φ

θ
1 with Φx

0 > 0 .

Proof of Lemma 21. Recall that

δ =
[2 + γΛ]a − γAλ

4 + 2γΛ
; η = − γλ

2 + γΛ
;

∂alδj =
1l(j)[2 + γΛ] − γλl

4 + 2γΛ
; ∂alδ =

1

4 + 2γΛ

[
(2 + γΛ)el − γλ

]
,

where el is the ith coordinate vector. Consider the first FOC:

0 = n(∂alδl)
[
Γlxl − λ−1

l al

]
+ nλ−1

l

[
(2− nΓlλl)(∂alδl)− 1

]
(δl + ηlθ̄)

− n(Γl + 2βl)(Γl + βl)
−2
(
Ψl · ∂alδ

)(
Ψl · (x − nδ − nθ̄η)

)
.

50As usual, we use ∥x∥ =
(∑

l x
2
l

)1/2
to denote the Euclidean norm.
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We cancel n and multiply by λl and get

0 = (∂alδl)
[
λlΓlxl − al

]
+
[
(2− nΓlλl)(∂alδl)− 1

]
(δl + ηlθ̄)

− λl
Γl + 2βl

(Γl + βl)2

(
Ψl · ∂alδ

)(
Ψl · (x − nδ − nθ̄η)

)
= (∂alδl)

[
λlΓlxl − al

]
+
[
(2− nΓlλl)(∂alδl)− 1

] [2 + γΛ]al − γ(A+ 2θ̄)λl

4 + 2γΛ

− λl
Γl + 2βl

(Γl + βl)2

(
Ψl · ∂alδ

)(
Ψl · x − nΨl ·

[2 + γΛ]a − γ(A+ 2θ̄)λ

4 + 2γΛ

)
= (∂alδl)

[
λlΓlxl − al

]
+
[
(2− nΓlλl)(∂alδl)− 1

] [2 + γΛ]al − γ(A+ 2θ̄)λl

4 + 2γΛ

− λl
Γl + 2βl

(Γl + βl)2

(
Ψl · ∂alδ

)(
χ̃ − n

2
Ã + n

γ(A+ 2θ̄)

4 + 2γΛ
Λ̃ − Γlxl +

nΓl

2
al − γ(A+ 2θ̄)nΓl

4 + 2γΛ
λl

)
= −1

2

[
nΓlλl(∂alδl) + 1 + nλlΓl

Γl + 2βl

(Γl + βl)2

(
Ψl · ∂alδ

)]
al

+ λlΓl

[
(∂alδl) +

Γl + 2βl

(Γl + βl)2

(
Ψl · ∂alδ

)]
xl − λl

Γl + 2βl

(Γl + βl)2

(
Ψl · ∂alδ

)
χ̃

+
n

2
λl

Γl + 2βl

(Γl + βl)2

(
Ψl · ∂alδ

)
Ã

− λl

[
n

Γl + 2βl

(Γl + βl)2

(
Ψl · ∂alδ

)(
Λ̃ − Γlλl

)
+ (2− nΓlλl)(∂alδl) − 1

]
γ(A+ 2θ̄)

4 + 2γΛ

= −1

2
[1 + nc0xl

] al + c0xl
xl − λl

Γl + 2βl

(Γl + βl)2

(
Ψl · ∂alδ

)(
χ̃ − n

2
Ã
)

− γλl

4 + 2γΛ

[
n

Γl + 2βl

(Γl + βl)2

(
Ψl · ∂alδ

)
Λ̃ − nc0xl

+ 2(∂alδl) − 1

]
(A+ 2θ̄) ,

where

c0xl
= λlΓl

[
(∂alδl) +

Γl + 2βl

(Γl + βl)2

(
Ψl · ∂alδ

)]
= λlΓl

[
[2 + γΛ] − γλl

4 + 2γΛ
+

Γl + 2βl

(Γl + βl)2

(
Γl

2

(
1

B(Γl + βl)
− 1

)
− γ(Λ̃− Γlλl)

4 + 2γΛ

)]
.
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It follows that

al =
2c0xl

1 + nc0xl

xl − 2λl

1 + nc0xl

Γl + 2βl

(Γl + βl)2

(
Ψl · ∂alδ

)(
χ̃ − n

2
Ã
)

− 2

1 + nc0xl

γλl

4 + 2γΛ

[
n

Γl + 2βl

(Γl + βl)2

(
Ψl · ∂alδ

)
Λ̃ − nc0xl

+ 2(∂alδl) − 1

]
(A+ 2θ̄) ,

We now write the Taylor series expansion of this FOC. We shall use the following lemma:

Lemma 22 When the dispersion of Γi,t is sufficiently small, we have

Γi,t

Bt(Γi,t + βi,t)
≈ Γ∗

t

M
+

1

M2 − 2M + 2
(Γi,t − Γ∗

t )

1

Γi,t + βi,t

≈ M − 2

Γ∗
t (M − 1)

− (M − 2)2

(M2 − 2M + 2)(Γ∗
t )

2
(Γi,t − Γ∗

t )

βi,t

Γi,t + βi,t

≈ 1

M − 1
− M(M − 2)

(M2 − 2M + 2)(M − 1)Γ∗
t

(Γi,t − Γ∗
t ) .

It thus follows that

Γi,t

Γi,t + βi,t
≈ M − 2

M − 1
+

M(M − 2)

(M2 − 2M + 2)(M − 1)Γ∗
t

(Γi,t − Γ∗
t )

Γi,t + 2βi,t
(Γi,t + βi,t)2

=
Γi,t

(Γi,t + βi,t)2
+

2βi,t
(Γi,t + βi,t)2

≈ M − 2

M − 1

[
1 +

M

(M2 − 2M + 2)Γ∗
t

(Γi,t − Γ∗
t )

]
M − 2

Γ∗
t (M − 1)

[
1 − (M − 1)(M − 2)

(M2 − 2M + 2)Γ∗ (Γi,t − Γ∗
t )

]
+

2

M − 1

[
1 − M(M − 2)

(M2 − 2M + 2)Γ∗
t

(Γi,t − Γ∗
t )

]
M − 2

Γ∗
t (M − 1)

[
1 − (M − 1)(M − 2)

(M2 − 2M + 2)Γ∗
t

(Γi,t − Γ∗
t )

]
=

(M − 2)2

Γ∗
t (M − 1)2

[
1 +

M

(M2 − 2M + 2)Γ∗
t

(Γi,t − Γ∗
t ) − (M − 1)(M − 2)

(M2 − 2M + 2)Γ∗ (Γi,t − Γ∗
t )

]
+

2(M − 2)

Γ∗
t (M − 1)2

[
1 − M(M − 2)

(M2 − 2M + 2)Γ∗
t

(Γi,t − Γ∗
t ) − (M − 1)(M − 2)

(M2 − 2M + 2)Γ∗
t

(Γi,t − Γ∗
t )

]
=

M(M − 2)

Γ∗
t (M − 1)2

[
1 − M(M − 2)

(M2 − 2M + 2)Γ∗
t

(Γi,t − Γ∗
t )

]
.

Moreover,

λlΓl ≈ λ∗Γ∗ + [ΦΓ(Γ∗)Γ∗ + λ∗](Γl − Γ∗) and Λ̃ ≈ λ∗Γ∗
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and

Ã =
M∑
l=1

Γl

B(Γl + βl)
aj ≈ Γ∗

M
A +

1

M2 − 2M + 2
AΓ

χ̃ =
M∑
l=1

Γl

B(Γl + βl)
xl ≈ Γ∗

M
X +

1

M2 − 2M + 2
Xmismatch ,

where

AΓ =
M∑
l=1

(Γl − Γ∗)aj and Xmismatch =
M∑
l=1

(Γl − Γ∗)xl

Using the lemma above, to first order approximation, we have

al = [k0x + k1x(Γl − Γ∗)]xl − [k0x + k1x(Γl − Γ∗)]
(
χ̃ − n

2
Ã
)

− [k0x + k1x(Γl − Γ∗)](A+ 2θ̄)

= [k0x + k1x(Γl − Γ∗)]xl − [k0θ + k1θ(Γl − Γ∗)](A+ 2θ̄) − [k0X + k1X(Γl − Γ∗)]
Γ∗

M

(
X − n

2
A
)

− [k0X + k1X(Γl − Γ∗)]
1

M2 − 2M + 2

(
Xmismatch − n

2
AΓ
)

= [k0x + k1x(Γl − Γ∗)]xl − [k0θ + k1θ(Γl − Γ∗)](A+ 2θ̄) − [k0X + k1X(Γl − Γ∗)]
Γ∗

M

(
X − n

2
A
)

− k0X
M2 − 2M + 2

(
Xmismatch − n

2
AΓ
)

= [k0x + k1x(Γl − Γ∗)]xl − [k0X + k1X(Γl − Γ∗)]
Γ∗

M
X − k0X

M2 − 2M + 2
Xmismatch

−
[
2Mk0θ − nk0XΓ

∗

2M
+

2Mk1θ − nk1XΓ
∗

2M
(Γl − Γ∗)

]
A +

n

2

k0X
M2 − 2M + 2

AΓ

− [k0θ + k1θ(Γl − Γ∗)]2θ̄ ,

Summing over i we get

AΓ = k0xXmismatch

A = k0xX + k1xXmismatch − k0XΓ
∗X − Mk0X

M2 − 2M + 2
Xmismatch

− 2Mk0θ − nk0XΓ
∗

2
A +

n

2

Mk0X
M2 − 2M + 2

AΓ − 2Mk0θθ̄ .
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Thus,

A =

[
1 +

2Mk0θ − nk0XΓ
∗

2

]−1(
[k0x − k0XΓ

∗]X +

[
k1x −

(2− nk0x)Mk0X
2(M2 − 2M + 2)

]
Xmismatch − 2Mk0θθ̄

)
.

Substituting into the equation for al we obtain

al = [k0x + k1x(Γl − Γ∗)]xl − [k0X + k1X(Γl − Γ∗)]
Γ∗

M
X

−
[
2Mk0θ − nk0XΓ

∗

M
+

2Mk1θ − nk1XΓ
∗

M
(Γl − Γ∗)

]
k0x − k0XΓ

∗

2 + 2Mk0θ − nk0XΓ∗X

−
(
1 − n

2
k0x

) k0X
M2 − 2M + 2

Xmismatch

−
[
2Mk0θ − nk0XΓ

∗

M
+

2Mk1θ − nk1XΓ
∗

M
(Γl − Γ∗)

]
k1x − (2−nk0x)Mk0X

2(M2−2M+2)

2 + 2Mk0θ − nk0XΓ∗Xmismatch

+

[
2Mk0θ − nk0XΓ

∗

M
+

2Mk1θ − nk1XΓ
∗

M
(Γl − Γ∗)

]
2Mk0θ

2 + 2Mk0θ − nk0XΓ∗ θ̄

− 2[k0θ + k1θ(Γl − Γ∗)]θ̄ .

It follows that

al = Φx
0 xl + ΦX

0 X + ΦΓ
0 Xmismatch + Φθ

0 θ̄ + (Γl − Γ∗)[Φx
1 xl + ΦX

1 X + Φθ
1 θ̄]

+ O((∥Γ− Γ∗∥2 + ∥x∥2 + θ̄2)3/2) ,
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with

Φx
0 = k0x; Φx

1 = k1x

ΦX
0 = −

[
2k0XΓ

∗ + k0x (2Mk0θ − nk0XΓ
∗)

2 + 2Mk0θ − nk0XΓ∗

]
1

M
;

ΦX
1 = −

[
k1XΓ

∗(2 + 2Mk0θ) + 2Mk1θ(k0x − k0XΓ
∗) − nk1Xk0xΓ

∗

2 + 2Mk0θ − nk0XΓ∗

]
1

M

ΦΓ
0 = −

[
k0X(2− nk0x)

M2 − 2M + 2
+

k1x(2Mk0θ − nk0XΓ
∗)

M

]
1

2 + 2Mk0θ − nk0XΓ∗

Φθ
0 =

−4k0θ
2 + 2Mk0θ − nk0XΓ∗

Φθ
1 = − 2 [2k1θ − n (k0Xk1θ − k0θk1X) Γ

∗]

2 + 2Mk0θ − nk0XΓ∗ .

Q.E.D.

Lemma 23 After the D2C trading round, dealer inventories become

χl ≈ −(φa
0 − 0.5n)λ∗αl − (φA

0 − 0.5nγη∗0λ
∗)Mλ∗ᾱ − Mλ∗[(φA

0 − 0.5nγη∗0λ
∗) + φA

0,λλ
∗]α̂

+ λ∗[φa
0 +MφA

0 + nη∗0]d + φθ
0θ̄ − γη∗0λ

∗Θ

+ (λl − λ∗)
[
−(φa

0 + φa
1λ

∗ − 0.5n)αl +Mλ∗(0.5nγη∗0 − φA
1 )ᾱ

]
+ (λl − λ∗)[(φa

0 + nη∗0 + λ∗φa
1 +Mλ∗φA

1 )d− γη∗0Θ+ φθ
1θ̄] ,

where

ᾱ =
1

M

∑
l

αi; αmismatch =
1

Λ

∑
l

(λi − λ∗)αi; and η∗0 = − 1

2 + γΛ
.
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Proof of Lemma 23.

χl = xl −
∑
j

(δl + ηlθj,t−) = xl − 0.5nal − ηl(Θt + 0.5nA)

= φa
0al + φA

0 A + φA
0,λA

λ + φθ
0θ̄ + (λl − λ∗)[φa

1al + φA
1 A+ φA

1,λA
λ + φθ

1θ̄]

− 0.5nai − ηi(Θ + 0.5nA)

= (φa
0 − 0.5n)al + (φA

0 − 0.5nηi)A + φA
0,λA

λ + φθ
0θ̄ − ηiΘ + (λl − λ∗)[φa

1al + φA
1 A+ φθ

1θ̄] .

For simplicity, we assume that the total customer inventory shocks Θt =
∑

l θj,t are i.i.d.

over time. We rerwite both al and A in terms of mid-prices:

al = λl(d− αl)

A =
∑
l

aj = d
∑
l

λl −
∑
l

λlαj = dΛ −
∑
l

λlαj

= Mλ∗ [d − (αmismatch + ᾱ)]

Aλ =
∑
l

(λl − λ∗)aj = d
∑
l

(λl − λ∗)λl −
∑
l

(λl − λ∗)λlαj ≈ − λ∗
∑
l

(λl − λ∗)αj

= − M(λ∗)2α̂ .
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Thus,

χ̃l = (φa
0 − 0.5n)λl(d− αl) + (φA

0 − 0.5nηi)Mλ∗ [d − (αmismatch + ᾱ)] − φA
0,λM(λ∗)2α̂

+ φθ
0θ̄ − ηiΘ + (λl − λ∗)[φa

1λl(d− αl) + φA
1 Mλ∗ [d − (αmismatch + ᾱ)] + φθ

1θ̄]

= −(φa
0 − 0.5n)λlαl − (φA

0 − 0.5nγλlη
∗
0)Mλ∗ᾱ − Mλ∗[(φA

0 − 0.5nγλlη
∗
0) + φA

0,λλ
∗]α̂

+ [(φa
0 − 0.5n)λl + (φA

0 − 0.5nγλlη
∗
0)Mλ∗]d + φθ

0θ̄ − γλlη
∗
0Θ

+ (λl − λ∗)[−φa
1λlαl − φA

1 Mλ∗(αmismatch + ᾱ) + (φa
1λl + φA

1 Mλ∗)d+ φθ
1θ̄]

≈ −(φa
0 − 0.5n)λ∗αl − (φA

0 − 0.5nγη∗0λ
∗)Mλ∗ᾱ − Mλ∗[(φA

0 − 0.5nγη∗0λ
∗) + φA

0,λλ
∗]α̂

+ [(φa
0 − 0.5n)λ∗ + (φA

0 − 0.5nγη∗0λ
∗)Mλ∗]d + φθ

0θ̄ − γη∗0λ
∗Θ

− (φa
0 − 0.5n)(λl − λ∗)αl + 0.5nγη∗0(λl − λ∗)Mλ∗ᾱ

+ [(φa
0 − 0.5n)(λl − λ∗) − 0.5nγη∗0(λl − λ∗)Mλ∗]d − γη∗0(λl − λ∗)Θ

+ (λl − λ∗)[−φa
1λ

∗αl − φA
1 Mλ∗ᾱ+ λ∗(φa

1 +MφA
1 )d+ φθ

1θ̄]

≈ −(φa
0 − 0.5n)λ∗αl − (φA

0 − 0.5nγη∗0λ
∗)Mλ∗ᾱ − Mλ∗[(φA

0 − 0.5nγη∗0λ
∗) + φA

0,λλ
∗]α̂

+ [(φa
0 − 0.5n)λ∗ + (φA

0 − 0.5nγη∗0λ
∗)Mλ∗]d + φθ

0θ̄ − γη∗0λ
∗Θ

+ (λl − λ∗) [−(φa
0 − 0.5n)αl + 0.5nMγη∗0λ

∗ᾱ]

+ (λl − λ∗)[(φa
0 − 0.5n) − 0.5nMγη∗0λ

∗]d − (λl − λ∗)γη∗0Θ

+ (λl − λ∗)[−φa
1λ

∗αl − φA
1 Mλ∗ᾱ+ λ∗(φa

1 +MφA
1 )d+ φθ

1θ̄] ,

where we used the definition

ηi = − γλl

2 + γΛ
= γη∗0λl =⇒ 1 + Mγη∗0λ

∗ = − 2η∗0 .
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Thus,

χ̃l ≈ −(φa
0 − 0.5n)λ∗αl − (φA

0 − 0.5nγη∗0λ
∗)Mλ∗ᾱ − Mλ∗[(φA

0 − 0.5nγη∗0λ
∗) + φA

0,λλ
∗]α̂

+ λ∗[φa
0 +MφA

0 + nη∗0]d + φθ
0θ̄ − γη∗0λ

∗Θ

+ (λl − λ∗) [−(φa
0 − 0.5n)αl + 0.5nMγη∗0λ

∗ᾱ]

+ (λl − λ∗)[(φa
0 + nη∗0)d− γη∗0Θ]

+ (λl − λ∗)[−φa
1λ

∗αl − φA
1 Mλ∗ᾱ+ λ∗(φa

1 +MφA
1 )d+ φθ

1θ̄] ,

Q.E.D.

D.8 Proof of Proposition 11

Proof of Proposition 11. The proof follows along the same lines of that of Proposition 3

so we skip some details.

By Proposition 1, our goal is to show that aggregate liquidity B is monotone increasing in

spread dispersion. Proposition 24 shows that, for small heterogeneity in risk aversion, there

is a one-to-one mapping between between λl and Γl. Therefore, for small heterogeneity in

risk aversion, proving Proposition 11 is equivalent to proving that B is monotone increasing

in the dispersion in risk aversions . This follows directly because B is a convex function of

risk aversions (see Lemma 18).

Q.E.D.
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D.9 Proof of Lemma 12

Proof of Lemma 12. The first order condition is

−αl − 2λ−1
l ql + d− γ(

∑
l

ql + θ) = 0

where q = (ql) and this gives

q = (2B + γ1)−1((d− γθ)1− α)

where B = diag(λ−1
l ), α = (αl).

Q.E.D.

D.10 Proof of Lemma 13

Proof of Lemma 13. We have

E[Πl(Ql)] = E[
∑
l

((d−λ−1
l al)+λ−1

l (δl+ηlθc))(δl+ηlθc)] = (d−λ−1
l al)n(δl+ηlθ̄)+λ−1

l (n(δl+ηlθ̄)
2+nη2l σ

2
θ) .

Thus, the utility becomes

E[Ul(χl; (χl)j ̸=i)] = (d− λ−1
l al)n(δl + ηlθ̄) + λ−1

l (n(δl + ηlθ̄)
2 + nη2l σ

2
θ)

+ (xl − nδl − ηlnθ̄)d− 0.5Γl[(xl − nδl − ηlnθ̄)
2 + η2l nσ

2
θ ]

+ (0.5Γl + βl)(Γl + βl)
−2
[(

Ψl · (x − nδ − nθ̄η)
)2

+ nσ2
θ(Ψl · η)2

]
= xld− nλ−1

l al(δl + ηlθ̄) + nλ−1
l

[
(δl + ηlθ̄)

2 + η2l σ
2
θ

]
− 0.5Γl

[
(xl − nδl − nθ̄ηl)

2 + nσ2
θη

2
l

]
+ (0.5Γl + βl)(Γl + βl)

−2
[(

Ψl · (x − nδ − nθ̄η)
)2

+ nσ2
θ(Ψl · η)2

]
.
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where we have defined

Ψ =

(
Γ1

B(Γ1 + β1)
, · · · , ΓM

B(ΓM + βM)

)T

and Ψl ≡ Ψ− Γl1l=i .

Now, we have

δ =
[2 + γΛ]a − γAλ

4 + 2γΛ

η = − γλ

2 + γΛ
.

Q.E.D.

D.11 Proof of Proposition 14

Proof of Proposition 14. It follows from Lemma 12 that

∂alδj =
1l(j)[2 + γΛ] − γλl

4 + 2γΛ

∂alηj = 0

∂λl
δj = −

2γ
(
2aj + γ[aj(Λ− λl)− (A− aj)λl]

)
(4 + 2γΛ)2

+ γ
aj − A1l(j)

4 + 2γΛ

∂λl
ηj =

γ2λl

(2 + γΛ)2
− 1l(j)

γ

2 + γΛ
,

where 1l(·) is the indicator function. We make the following definition:

∂alδ ≡ (∂alδ1, · · · , ∂alδn)T =
1

4 + 2γΛ

[
(2 + γΛ)el − γλ

]
∂alη = 0

∂λl
δ ≡ (∂λl

δ1, · · · , ∂λl
δn)

T = − 2γ

(4 + 2γΛ)2

(
(2 + γΛ)a− γAλ

)
+

γ

4 + 2γΛ

(
a− Ael

)
∂λl

η ≡ (∂λl
η1, · · · , ∂λl

ηn)
T =

γ2

(2 + γΛ)2
λ − γ

2 + γΛ
el ,
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where el is the ith coordinate vector. Then, the FOCs are

0 = n(∂alδl)
[
Γlxl − λ−1

l al

]
+ nλ−1

l

[
(2− nΓlλl)(∂alδl)− 1

]
(δl + ηlθ̄)

− n(Γl + 2βl)(Γl + βl)
−2
(
Ψl · ∂alδ

)(
Ψl · (x − nδ − nθ̄η)

)
0 = nλ−2

l al(δl + ηlθ̄)− nλ−2
l

[
(δl + ηlθ̄)

2 + η2l σ
2
θ

]
+ nλ−1

l σ2
θ

[
2− Γlλl

]
(∂λl

ηl)ηl

+ λ−1
l n
[
2(δl + ηlθ̄) + λlΓl(xl − nδl − nθ̄ηl)− al

]
(∂λl

δl + θ̄∂λl
ηl)

− n(Γl + 2βl)(Γl + βl)
−2
[(

Ψl · (∂λl
δ + θ̄∂λl

η)
)(

Ψl · (x − nδ − nθ̄η)
)
− σ2

θ(Ψl · ∂λl
η)(Ψl · η)

]
.

Suppose that

xl = 0, Γl = Γ ∀l; and θ̄ = 0 .

It follows that

βi =
Γ

M − 2
∀ i; B(Γi + βi) = M ∀ i; B =

M(M − 2)

Γ(M − 1)
; Ψ =

Γ

M
1;

Ã =
Γ

M
A; Λ̃ =

Γ

M
Λ;

Γi + 2βi

(Γi + βi)2
=

M(M − 2)

Γ(M − 1)2
;

δl =
2a

4 + 2γΛ
; ηl = − γλ

2 + γΛ
; Ψl · δ = 0; Ψl · η = 0;

Then, the FOCs become

0 = n(∂alδl)
[
Γlxl − λ−1

l al

]
+ nλ−1

l

[
(2− nΓlλl)(∂alδl)− 1

]
(δl + ηlθ̄)

0 = nλ−2
l al(δl + ηlθ̄)− nλ−2

l

[
(δl + ηlθ̄)

2 + η2l σ
2
θ

]
+ nλ−1

l σ2
θ

[
2− Γlλl

]
(∂λl

ηl)ηl

+ λ−1
l n
[
2(δl + ηlθ̄) + λlΓl(xl − nδl − nθ̄ηl)− al

]
(∂λl

δl + θ̄∂λl
ηl) .
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We simplify the first of the FOCs and obtain

0 = 2
[
γ(M − 1)(γM + Γn)λ2 + 2(2γM + Γn)λ+ 4

] a

(4 + 2γΛ)2
.

The only solution is

a = 0 ,

since the quadratic equation in λ admits only negative solutions (if any). Substituting a = 0

into the second of the FOCs and simplifying yields

0 = 1 + (2− Γλ)

[
γλ

2 +Mγλ
− 1

]
.

This equation has a unique positive solution, which is

λ =
γ(M − 2)− 2Γ +

√
γ2(M − 2)2 + 4Γ(Γ + 4γ)M

2γ(M − 1)Γ
.

We now present the proof of the monotonicity results.

∂λ∗

∂γ
=

√
4Γ2 + γ2(M − 2)2 + 4γΓM − (γM + 2Γ)

γ2(M − 1)
√

4Γ2 + γ2(M − 2)2 + 4γΓM

=
4Γ2 + γ2(M − 2)2 + 4γΓM − (γM + 2Γ)2

γ2(M − 1)
√
4Γ2 + γ2(M − 2)2 + 4γΓM [

√
4Γ2 + γ2(M − 2)2 + 4γΓM + (γM + 2Γ)]

=
−4γ2(M − 1)

γ2(M − 1)
√
4Γ2 + γ2(M − 2)2 + 4γΓM [

√
4Γ2 + γ2(M − 2)2 + 4γΓM + (γM + 2Γ)]

< 0
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since M ≥ 2.

∂λ∗

∂Γ
=

−(M − 2)
√

4Γ2 + γ2(M − 2)2 + 4γΓM − γ(M − 2)2 − 2MΓ

2Γ2(M − 1)
√

4Γ2 + γ2(M − 2)2 + 4γΓM
< 0 .

∂λ∗

∂M
=

γ2(M − 2) + (γ + 2Γ)
√

4Γ2 + γ2(M − 2)2 + 4γΓM − 2Γ(γ + 2Γ + γM)

2γΓ(M − 1)2
√

4Γ2 + γ2(M − 2)2 + 4γΓM
.

To show that this derivative is always positive for M ≥ 2 it is enough to show that its

numerator is positive for M ≥ 2. We do so by showing that the numerator is increasing and

positive for M ≥ 2. Consider the numerator. Its derivative with respect to M is

γ

(
γ − 2Γ + (γ + 2Γ)

2Γ + γ(M − 2)√
4Γ2 + γ2(M − 2)2 + 4γΓM

)
.

We now show that the term in brackets is positive. First,

1 ≥ γ(M − 2) + 2Γ√
γ2(M − 2)2 + 4γΓM + 4Γ2

≥ 1− 2γ

γM + 2Γ
.

Then,

γ + 2Γ ≥ (γ + 2Γ)[γ(M − 2) + 2Γ]√
γ2(M − 2)2 + 4γΓM + 4Γ2

≥ (γ + 2Γ)− 2γ(γ + 2Γ)

γM + 2Γ

2γ ≥ γ − 2Γ +
(γ + 2Γ)[γ(M − 2) + 2Γ]√
γ2(M − 2)2 + 4γΓM + 4Γ2

≥ 2γ

[
1− γ + 2Γ

γM + 2Γ

]
> 0

for M > 1. Thus, to show that λ∗ is increasing, it remains to

γ2(M − 2) + (γ + 2Γ)
√
4Γ2 + γ2(M − 2)2 + 4γΓM − 2Γ(γ + 2Γ + γM)
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evaluated at M = 2 is non-negative. When M = 2, the expression above is

2
[
(γ + 2Γ)

√
Γ2 + 2γΓ − Γ(2Γ + 3γ)

]
> 0

for γ,Γ > 0.

Q.E.D.

D.12 Proof of Proposition 15

Proposition 24 Suppose that al, the dispersion in bid-ask spreads λ−1
l , and θ̄ are sufficiently

small, then,

Γl = Γ∗(λ∗) + φλ(λ∗)(λl − λ∗) + O(∥λ− λ∗∥2 + ∥a∥2 + θ̄2)

where

λ∗ =
1

M

M∑
l=1

λl and φλ(·) =
1

ΦΓ(·)
< 0 .

Furthermore,

xl = φa
0al + φA

0 A + φA
0,λAmismatch + φθ

0θ̄ + (λl − λ∗)[φa
1al + φA

1 A+ φA
1,λA

λ + φθ
1θ̄]

+ O((∥Γ− Γ∗∥2 + ∥x∥2 + θ̄2)3/2) ,

where

A =
M∑
l=1

al; Amismatch =
M∑
l=1

(λl − λ∗)al,

and φa
0, φ

A
0 , φ

A
0,λ, φ

θ
0, φ

a
1, φ

A
1 , φ

A
1,λ, and φθ

1 are rational functions of n,M, γ and λ∗. Moreover,

φa
0(·) = 1/Φx

0(·) > 0 .
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Proof of Proposition 24. The proof is similar to that of Proposition 21. The FOC is

0 = −1

2
[1 + nc0xl

] al + c0xl
xl − λl

Γl + 2βl

(Γl + βl)2

(
Ψl · ∂alδ

)(
χ̃ − n

2
Ã
)

− γλl

4 + 2γΛ

[
n

Γl + 2βl

(Γl + βl)2

(
Ψl · ∂alδ

)
Λ̃ − nc0xl

+ 2(∂alδl) − 1

]
(A+ 2θ̄) .

It follows that

xl =
1 + nc0xl

2c0xl

al +
λl

c0xl

Γl + 2βl

(Γl + βl)2

(
Ψl · ∂alδ

)(
χ̃ − n

2
Ã
)

+
1

c0xl

γλl

4 + 2γΛ

[
n

Γl + 2βl

(Γl + βl)2

(
Ψl · ∂alδ

)
Λ̃ − nc0xl

+ 2(∂alδl) − 1

]
(A+ 2θ̄)

≈ [h0a + h1a(λl − λ∗)]al + [h0X + h1X(λl − λ∗)]
(
χ̃ − n

2
Ã
)

+ [h0θ + h1θ(λl − λ∗)](A+ 2θ̄)

= [h0a + h1a(λl − λ∗)]al +
Γ∗[h0X + h1X(λl − λ∗)]

M

(
X − n

2
A
)

+ [h0θ + h1θ(λl − λ∗)](A+ 2θ̄)

+
φλ[h0X + h1X(λl − λ∗)]

M2 − 2M + 2

(
Xλ − n

2
Aλ
)
,

where

Aλ =
M∑
l=1

(λl − λ∗)aj and Xλ =
M∑
l=1

(λl − λ∗)xl ,

and we used

Ã =
M∑
l=1

Γl

B(Γl + βl)
aj ≈ Γ∗

M
A +

φλ

M2 − 2M + 2
AΓ

χ̃ =
M∑
l=1

Γl

B(Γl + βl)
xl ≈ Γ∗

M
X +

φλ

M2 − 2M + 2
Xmismatch .
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Summing over i yield

Xλ = h0aA
λ

X = h0aA+ h1aA
λ + Γ∗h0X

(
X − n

2
A
)

+ Mh0θ(A+ 2θ̄) +
Mh0Xφ

λ

M2 − 2M + 2

(
Xλ − n

2
Aλ
)
,

implying that

X =
h0a − n

2
Γ∗h0X +Mh0θ

1− Γ∗h0X

A +
2Mh0θ

1− Γ∗h0X

θ̄ +
h1a + Mh0Xφλ

M2−2M+2

(
h0a − n

2

)
1− Γ∗h0X

Aλ .

Substituting into the equation for xl we obtain

xl = [h0a + h1a(λl − λ∗)]al +
Γ∗[h0X + h1X(λl − λ∗)]

M

h0a − n
2
Γ∗h0X +Mh0θ

1− Γ∗h0X

A

− n

2

Γ∗[h0X + h1X(λl − λ∗)]

M
A + [h0θ + h1θ(λl − λ∗)]A +

(
h0a −

n

2

) φλ[h0X + h1X(λl − λ∗)]

M2 − 2M + 2
Aλ

+
Γ∗[h0X + h1X(λl − λ∗)]

M

h1a + Mh0Xφλ

M2−2M+2

(
h0a − n

2

)
1− Γ∗h0X

Aλ

+ 2[h0θ + h1θ(λl − λ∗)]θ̄ +
2h0θΓ

∗[h0X + h1X(λl − λ∗)]

1− Γ∗h0X

θ̄ .
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Therefore,

φa
0 = h0a

φA
0 = h0θ +

Γ∗h0X

M

h0a − n
2
Γ∗h0X +Mh0θ

1− Γ∗h0X

− n

2

Γ∗h0X

M

= h0θ +
Γ∗h0X

M

1

1− Γ∗h0X

[
h0a + Mh0θ − n

2

]
φA
0,λ =

(
h0a −

n

2

) φλh0X

M2 − 2M + 2
+

Γ∗h0X

M

h1a +
Mh0Xφλ

M2−2M+2

(
h0a − n

2

)
1− Γ∗h0X

φθ
0 = 2h0θ

[
1 +

Γ∗h0X

1− Γ∗h0X

]
=

2h0θ

1− Γ∗h0X

φa
1 = h1a

φA
1 = h1θ +

Γ∗h1X

M

h0a − n
2
Γ∗h0X +Mh0θ

1− Γ∗h0X

− n

2

Γ∗h1X

M

= h1θ +
Γ∗h1X

M

1

1− Γ∗h0X

[
h0a + Mh0θ − n

2

]
φA
1,λ =

(
h0a −

n

2

) φλh1X

M2 − 2M + 2
+

Γ∗h1X

M

h1a +
Mh0Xφλ

M2−2M+2

(
h0a − n

2

)
1− Γ∗h0X

=
1

1− Γ∗h0X

[(
h0a −

n

2

) φλh1X

M2 − 2M + 2
+

Γ∗h1Xh1a

M

]
φθ
1 = 2h1θ +

2h0θΓ
∗h1X

1− Γ∗h0X

.

Q.E.D.

Proof of Proposition 15. We have

PD2D = d − X̂ and X̂ = Ψ · χ̃ .
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To first order,

Γl

B(Γl + βl)
≈ Γ∗

M
+

φλ

M2 − 2M + 2
(λl − λ∗)

M∑
l=1

Γl

B(Γl + βl)
≈ Γ∗

M∑
l=1

Γl

B(Γl + βl)
αl ≈ Γ∗ᾱ +

Mφλλ∗

M2 − 2M + 2
αmismatch

M∑
l=1

Γl

B(Γl + βl)
(λl − λ∗) ≈ 0

M∑
l=1

Γl

B(Γl + βl)
αl(λl − λ∗) ≈ λ∗Γ∗αmismatch .

Thus,

Ψ · χ̃ = −(φa
0 − 0.5n)λ∗

[
Γ∗ᾱ +

Mφλλ∗

M2 − 2M + 2
αmismatch

]
− (φA

0 − 0.5nγη∗0λ
∗)Mλ∗Γ∗ᾱ − Mλ∗Γ∗[(φA

0 − 0.5nγη∗0λ
∗) + φA

0,λλ
∗]α̂

+ λ∗Γ∗[φa
0 +MφA

0 + nη∗0]d + Γ∗φθ
0θ̄ − γη∗0λ

∗Γ∗Θ

− (φa
0 + φa

1λ
∗ − 0.5n)λ∗Γ∗αmismatch

= −λ∗Γ∗ [φa
0 +MφA

0 + nη∗0
]
(ᾱ+ αmismatch) − (λ∗)2

[
Γ∗(MφA

0,λ + φa
1) +

Mφλ(φa
0 − 0.5n)

M2 − 2M + 2

]
αmismatch

+ λ∗Γ∗[φa
0 +MφA

0 + nη∗0]d + Γ∗φθ
0θ̄ − γη∗0λ

∗Γ∗Θ .

Q.E.D.
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E Fragmented Double Auction Model/Double Auction

Benchmark

There are a few existing theoretical papers on two-tiered OTC markets, with different

assumptions than our model. Our model track real world FX markets and its predictions

are supported by empirical evidence. However, it remains a question whether or not existing

models would make the same predictions as ours. We examine this question in this Appendix

and show that our model is essential in understanding the dynamics of exchanges rates. In

particular, we show that a leading two-tiered OTC model, developed by Babus and Parlatore

(2018), yields predictions that are not supported by the data from the FX market. This result

points to the importance of specific the market structure used in each market, as the model

in Babus and Parlatore (2018) was not developed for the specific markets we consider here.

We will not reproduce the model of Babus and Parlatore (2018) here. The key difference

between their model and ours is the request for quote mechanism in our model (and the

heterogeneity in Dealer’s holding cost/risk aversion). In their model, customers exogenously

trade with only one dealer, thus there is no competition in liquidity provision between dealers

in the D2C market.

We now re-derive the predictions about price dynamics in a two-tiered OTC market

where, instead of request for quote mechanism, customers can only trade with one dealer.

In this appendix, we modify the model our paper along the lines of Babus and Parlatore

(2018) and assume that customers are split into K groups of equal size of L so that n = KL.

Each group only trades with a single dealer. This drastically simplifies the problem because

it eliminates strategic competition in liquidity provision between dealers in the D2C market.

The derivation of the equilibrium follows that of the main model and we will provide less

details.

Lemma 25 Dealer number l trades with n customers with risk aversions γ. Hence, his
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post-D2C trade inventory is given by

χl = (ΓD2C
l + βD2C

l )−1QD2C
l + (ΓD2C

l + βD2C
l )−1βD2C

l x̃l .

The inter-dealer market does not change, and we can write down the dealer utility as

Ul = −(χl − xl)PD2C
l + χld− 0.5Γlχ

2
l +

1

2
E
[ Γl + 2βl

(Γl + βl)2

(
B−1

M∑
ℓ=1

(Γℓ + βℓ)
−1Γℓχℓ − Γlχl

)2 ]

and we can rewrite this utility as

Ul = −(χl − xl)PD2C
l + (d+ Z−l)χl − 0.5ΓD2C

l χ2
l + const,

where

ΓD2C
l = Γl − Γl + 2βl

(Γl + βl)2

[(
1

B(Γl + βl)
− 1

)
Γl

]2
≈ 2Γ∗

M
+

2

M2 − 2M + 2
(Γl − Γ∗) ,

and

Z−l = ∆l

∑
ℓ ̸=l

Γℓ

B(Γℓ + βℓ)
E[χℓ]

where we have defined

∆l =
Γl + 2βl

(Γl + βl)2

(
1

B(Γl + βl)
− 1

)
Γl ≈ −M − 2

M − 1
− M(M − 2)

Γ(M − 1)(M2 − 2M + 2)
(Γl − Γ∗) ,

Given this quadratic objective, the optimal demand schedule for the dealer in the D2C
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market is given by

Ql(PD2C
l ) = (ΓD2C

l + βD2C
l )−1(d+ Z−l − PD2C

l − ΓD2C
l xl)

Lemma 26 We have

BD2C
l =

4nMγΓD2C
l (n2 − 3n+ 1) + 4n3(n− 2)(ΓD2C

l )2 − (2n− 1)M2γ2

4n(n− 1)(γM + 2nΓD2C
l )γΓD2C

l

+
(Mγ + 2n2ΓD2C

l )
√

γ2M2(1− 2n)2 + 4Mn(2n2 − 3n+ 2)γΓD2C
l + 4(n− 2)2n2(ΓD2C

l )2

4n(n− 1)(γM + 2nΓD2C
l )γΓD2C

l

βD2C
l =

2ΓD2C
l

ΓD2C
l BD2C

l − 2 +
√

(ΓD2C
l BD2C

l )2 + 4

βD2C
c,l =

2γ

γBD2C
l − 2 +

√
(γBD2C

l )2 + 4
.

Now, we obtain the post-D2C round inventory

χl = xl + (ΓD2C
l + βD2C

l )−1(d+ Z−l − PD2C
l − ΓD2C

l xl)

and the price

PD2C
l = d+ (BD2C

l )−1(ΓD2C
l + βD2C

l )−1Z−l −QD2C
l

where

QD2C
l = (BD2C

l )−1

(
(ΓD2C

l + βD2C
l )−1ΓD2C

l xl + (γ + βD2C
c,l )−1γ

n∑
i=1

θi

)
.

Note that

Z−l = ∆l(Z̄ − B−1(Γl + βl)
−1ΓlE[χl]) (23)
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where we have defined

Z̄ =
∑
ℓ

B−1(Γℓ + βℓ)
−1ΓℓE[χℓ] (24)

Taking expectations and substituting, we get

E[χl] = xl + (ΓD2C
l + βD2C

l )−1(d+ Z−l − E[PD2C
l ]− ΓD2C

l xl) (25)

First, we compute the expected price:

E[PD2C
l ] = d+ (BD2C

l )−1(ΓD2C
l + βD2C

l )−1E[Z−l]− E[QD2C
l ]

= d+ (BD2C
l )−1(ΓD2C

l + βD2C
l )−1E[Z−l]

− E

[
(BD2C

l )−1

(
(ΓD2C

l + βD2C
l )−1ΓD2C

l xl + (γ + βD2C
c,l )−1γ

n∑
i=1

θi

)]

= d+ (BD2C
l )−1(ΓD2C

l + βD2C
l )−1Z−l

− (BD2C
l )−1

(
(ΓD2C

l + βD2C
l )−1ΓD2C

l xl + (γ + βD2C
c,l )−1γnE[θ]

)
(26)

Substituting (26) into (25), we get

E[χl] = xl + (ΓD2C
l + βD2C

l )−1

(
d+ Z−l −

(
d+ (BD2C

l )−1(ΓD2C
l + βD2C

l )−1Z−l

− (BD2C
l )−1

(
(ΓD2C

l + βD2C
l )−1ΓD2C

l xl + (γ + βD2C
c,l )−1γnE[θ]

))
− ΓD2C

l xl

)
= CZ

l Z−l + Cx
l xl + Cθ

l E[θ]
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where

CZ
l =

1

ΓD2C
l + βD2C

l

[
1− 1

BD2C
l (ΓD2C

l + βD2C
l )

]
Cx

l = 1 +
ΓD2C
l

ΓD2C
l + βD2C

l

[
−1 +

1

BD2C
l (ΓD2C

l + βD2C
l )

]
Cθ

l =
nγ

BD2C
l (ΓD2C

l + βD2C
l )(γ + βD2C

c,l )
.

Now, we are ready to solve for E[χl]. We have from (23) that

E[χl] = CZ
l ∆l(Z̄ − B−1(Γl + βl)

−1ΓlE[χl]) + Cx
l xl + Cθ

l E[θ]

which gives

E[χl] = (1 + CZ
l ∆lB−1(Γl + βl)

−1Γl)
−1
(
CZ

l ∆lZ̄ + Cx
l xl + Cθ

l E[θ]
)

Using (24), we get

Z̄ =
∑
ℓ

B−1(Γℓ + βℓ)
−1Γℓ(1 + CZ

ℓ ∆ℓB−1(Γℓ + βℓ)
−1Γℓ)

−1
(
CZ

ℓ ∆ℓZ̄ + Cx
ℓ xℓ + Cθ

ℓE[θ]
)
,
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which is equivalent to

Z̄ =

(
1−

∑
ℓ

B−1(Γℓ + βℓ)
−1Γℓ(1 + CZ

ℓ ∆ℓB−1(Γℓ + βℓ)
−1Γℓ)

−1CZ
ℓ ∆ℓ

)−1

(∑
ℓ

B−1(Γℓ + βℓ)
−1Γℓ(1 + CZ

ℓ ∆ℓB−1(Γℓ + βℓ)
−1Γℓ)

−1
(
Cx

ℓ xℓ + Cθ
ℓE[θ]

))

=

(
1−

∑
ℓ

[
1 + (CZ

ℓ ∆ℓB−1(Γℓ + βℓ)
−1Γℓ)

−1
]−1

)−1

(∑
ℓ

((B−1(Γℓ + βℓ)
−1Γℓ)

−1 + CZ
ℓ ∆ℓ)

−1
(
Cx

ℓ xℓ + Cθ
ℓE[θ]

))

= C̄x
Z̄ · x + C̄Z̄

θ̄ E[θ]

where we have defined

DemZ̄ = 1 −
∑
ℓ

1

1 + 1

CZ
ℓ ∆ℓ

Γℓ
B(Γℓ+βℓ)

C̄x
Z̄,l =

1

DemZ̄

((
Γl

B(Γl + βl)

)−1

+ CZ
l ∆l

)−1

Cx
l

C̄ θ̄
Z̄,l =

1

DemZ̄

((
Γl

B(Γl + βl)

)−1

+ CZ
l ∆l

)−1

Cθ
l

C̄x
Z̄ = (C̄x

Z̄,1, C̄
x
Z̄,2, · · · , C̄

x
Z̄,M)T

C̄ θ̄
Z̄ =

∑
ℓ

C̄ θ̄
Z̄,ℓ .

We proceed with linking the prices in D2D and D2C markets. We have

χl = xl + (ΓD2C
l + βD2C

l )−1(d+ Z−l − PD2C
l − ΓD2C

l xl)

= (ΓD2C
l + βD2C

l )−1(d+ Z−l − PD2C
l ) + (ΓD2C

l + βD2C
l )−1ΓD2C

l xl
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We need to invert (xl) from the vector of PD2C
l . We have

Z−l = ∆l

(
Z̄ − B−1(Γl + βl)

−1Γl(1 + CZ
l ∆lB−1(Γl + βl)

−1Γl)
−1
(
CZ

l ∆lZ̄ + Cx
l xl + Cθ

l E[θ]
))

= ∆l

(
Z̄ −

(
1

B−1(Γl + βl)−1Γl

+ CZ
l ∆l

)−1 (
CZ

l ∆lZ̄ + Cx
l xl + Cθ

l E[θ]
))

=
B(Γl + βl)

B(Γl + βl) + Γl∆lCZ
l

∆lZ̄ − Γl∆l

B(Γl + βl) + Γl∆lCZ
l

Cx
l xl − Γl∆l

B(Γl + βl) + Γl∆lCZ
l

Cθ
l θ̄

=
B(Γl + βl)

B(Γl + βl) + Γl∆lCZ
l

∆l(C̄
x
Z̄ · x + C̄Z̄

θ̄ θ̄)

− Γl∆l

B(Γl + βl) + Γl∆lCZ
l

Cx
l xl − Γl∆l

B(Γl + βl) + Γl∆lCZ
l

Cθ
l θ̄

=
B(Γl + βl)

B(Γl + βl) + Γl∆lCZ
l

∆l(C̄
x
Z̄ · x) − Γl∆l

B(Γl + βl) + Γl∆lCZ
l

Cx
l xl

+

[
B(Γl + βl)

B(Γl + βl) + Γl∆lCZ
l

∆lC̄
Z̄
θ̄ − Γl∆l

B(Γl + βl) + Γl∆lCZ
l

Cθ
l

]
θ̄

= CZ−l
x · x + CZ−l,l

xl
xl + C

Z−l,l

θ̄
θ̄ ,

where we have defined

CZ−l,l
x =

B(Γl + βl)

B(Γl + βl) + Γl∆lCZ
l

∆lC̄
x
Z̄,l; CZ−l

x =
B(Γl + βl)

B(Γl + βl) + Γl∆lCZ
l

∆lC̄
x
Z̄ ;

CZ−l,l
xl

= − Γl∆l

B(Γl + βl) + Γl∆lCZ
l

Cx
l ; C

Z−l,l

θ̄
=

∆l

B(Γl + βl) + Γl∆lCZ
l

[
B(Γl + βl)C̄

Z̄
θ̄ − ΓlC

θ
l

]
.

Returning to the D2C price for Dealer l, we have
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PD2C
l = d+ (BD2C

l )−1(ΓD2C
l + βD2C

l )−1Z−l −QD2C
l

= d+ (BD2C
l )−1(ΓD2C

l + βD2C
l )−1Z−l − (BD2C

l )−1

(
(ΓD2C

l + βD2C
l )−1ΓD2C

l xl + (γ + βD2C
c,l )−1γ

n∑
i=1

θi

)

= d+
1

BD2C
l (ΓD2C

l + βD2C
l )

(CZ−l
x · x + CZ−l,l

xl
xl + C

Z−l

θ̄
θ̄)

−

(
ΓD2C
l

BD2C
l (ΓD2C

l + βD2C
l )

xl +
γ

BD2C
l (γ + βD2C

c,l )

n∑
i=1

θi

)

= d +
1

BD2C
l (ΓD2C

l + βD2C
l )

(CZ−l
x · x) +

1

BD2C
l (ΓD2C

l + βD2C
l )

(CZ−l
xl

xl) − ΓD2C
l

BD2C
l (ΓD2C

l + βD2C
l )

xl

+
1

BD2C
l (ΓD2C

l + βD2C
l )

(C
Z−l

θ̄
θ̄) − γ

BD2C
l (γ + βD2C

c,l )

n∑
i=1

θi

= d +
1

BD2C
l (ΓD2C

l + βD2C
l )

(CZ−l
x · x) +

1

BD2C
l (ΓD2C

l + βD2C
l )

[
CZ−l,l

xl
− ΓD2C

l

]
xl

+
1

BD2C
l (ΓD2C

l + βD2C
l )

(C
Z−l,l

θ̄
θ̄) − γ

BD2C
l (γ + βD2C

c,l )

n∑
i=1

θi

= d + CP,l
x · x + CP,l

xl
xl + CP,l

Θ Θ + CP,l

θ̄
θ̄ ,

where

CP,l
x,l =

1

BD2C
l (ΓD2C

l + βD2C
l )

CZ−l,l
x ; CP,l

x =
1

BD2C
l (ΓD2C

l + βD2C
l )

CZ−l
x ;

CP,l
xl

=
1

BD2C
l (ΓD2C

l + βD2C
l )

[
CZ−l,l

xl
− ΓD2C

l

]
;

CP,l
Θ = − γ

BD2C
l (γ + βD2C

c,l )
; CP,l

θ̄
=

1

BD2C
l (ΓD2C

l + βD2C
l )

C
Z−l,l

θ̄
.

It follows that

PD2C = d1 + Axx + VΘΘ + V θ̄θ̄ ,

with

Ax = Ax
0 + diag(CP,l

xl
); Ax

0 =
M∑
ℓ=1

eℓ⊗CP,ℓ
x ; VΘ =

(
CP,ℓ

Θ

)M
ℓ=1

; V θ̄ =
(
CP,ℓ

θ̄

)M
ℓ=1

.
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Inverting, we get

Lemma 27 We have

x = (Ax)−1
[
PD2C − d1 − VΘΘ − V θ̄θ̄

]
.

Now we can write the link between D2D and D2C prices:

PD2D = d− B−1

M∑
l=1

(Γl + βl)
−1Γlχl

= d− B−1

M∑
l=1

(Γl + βl)
−1Γl

(
(ΓD2C

l + βD2C
l )−1(d+ Z−l − PD2C

l ) + (ΓD2C
l + βD2C

l )−1ΓD2C
l xl

)

=

[
1 − B−1

M∑
l=1

Γl

Γl + βl

1

ΓD2C
l + βD2C

l

]
d + B−1

M∑
l=1

Γl

Γl + βl

1

ΓD2C
l + βD2C

l

PD2C
l

− B−1

M∑
l=1

(Γl + βl)
−1Γl

1

ΓD2C
l + βD2C

l

[
Z−l + ΓD2C

l xl

]
=

[
1 − B−1

M∑
l=1

Γl

Γl + βl

1

ΓD2C
l + βD2C

l

]
d + B−1

M∑
l=1

Γl

Γl + βl

1

ΓD2C
l + βD2C

l

PD2C
l

− B−1

M∑
l=1

Γl

Γl + βl

1

ΓD2C
l + βD2C

l

[
CZ−l

x · x + CZ−l,l
xl

xl + C
Z−l,l

θ̄
θ̄ + ΓD2C

l xl

]
=

[
1 − B−1

M∑
l=1

Γl

Γl + βl

1

ΓD2C
l + βD2C

l

]
d + B−1

M∑
l=1

Γl

Γl + βl

1

ΓD2C
l + βD2C

l

PD2C
l

− B−1

M∑
l=1

Γl

Γl + βl

1

ΓD2C
l + βD2C

l

CZ−l
x · x − B−1

M∑
l=1

Γl

Γl + βl

1

ΓD2C
l + βD2C

l

(CZ−l,l
xl

+ ΓD2C
l )xl

− B−1

M∑
l=1

Γl

Γl + βl

1

ΓD2C
l + βD2C

l

C
Z−l,l

θ̄
θ̄

= ĈP,D2D
d d + ĈP,D2D

P PD2C + ĈP,D2D
x x + ĈP,D2D

θ̄
θ̄ ,

137



where we defined

C̃P,D2D
x = −

(
Γ1

B(Γ1 + β1)

CZ−1,1
x1

+ ΓD2C
1

ΓD2C
1 + βD2C

1

, · · · , ΓM

B(ΓM + βM)

C
Z−M ,M
xM + ΓD2C

M

ΓD2C
M + βD2C

M

)T

ĈP,D2D
d = 1 − B−1

M∑
l=1

Γl

Γl + βl

1

ΓD2C
l + βD2C

l

ĈP,D2D
P =

(
Γ1

B(Γ1 + β1)

1

ΓD2C
1 + βD2C

1

, · · · , ΓM

B(ΓM + βM)

1

ΓD2C
M + βD2C

M

)T

ĈP,D2D
x = C̃P,D2D

x − B−1

M∑
l=1

Γl

Γl + βl

1

ΓD2C
l + βD2C

l

CZ−l
x

ĈP,D2D

θ̄
= −B−1

M∑
l=1

Γl

Γl + βl

1

ΓD2C
l + βD2C

l

C
Z−l,l

θ̄
.

Substituting

x = (Ax)−1
[
PD2C − d1 − VΘΘ − V θ̄θ̄

]
,

we will get a linear relationship between PD2D and the vector of (PD2C
l )l :

PD2D = ĈP,D2D
d d + ĈP,D2D

P PD2C + ĈP,D2D
x x + ĈP,D2D

θ̄
θ̄

= ĈP,D2D
d d + ĈP,D2D

P PD2C + ĈP,D2D
x (Ax)−1

[
PD2C − d1 − VΘΘ − V θ̄θ̄

]
+ ĈP,D2D

θ̄
θ̄

=
[
ĈP,D2D

d − (ĈP,D2D
x )T (Ax)−11

]
d +

[
ĈP,D2D

P + ((Ax)−1)T ĈP,D2D
x

]
PD2C

+
[
ĈP,D2D

θ̄
− (ĈP,D2D

x )T (Ax)−1V θ̄
]
θ̄ − (ĈP,D2D

x )T (Ax)−1VΘΘ

= CP,D2D
d d + CP,D2D

P · PD2C + CP,D2D
Θ Θ + CP,D2D

θ̄
θ̄ ,
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where we have defined

CP,D2D
d = ĈP,D2D

d − (ĈP,D2D
x )T (Ax)−11

CP,D2D
P = ((Ax)−1)⊤ĈP,D2D

x + ĈP,D2D
P

CP,D2D

θ̄
= ĈP,D2D

θ̄
− (ĈP,D2D

x )T (Ax)−1V θ̄

CP,D2D
Θ = − (ĈP,D2D

x )T (Ax)−1VΘ .

Lemma 28 For small heterogeneity in risk aversion, we have

CP,D2D
P = π̄∗1 + π(1)(Γ− Γ∗) + O(∥Γ− Γ∗∥2) ,

where 1 = (1, 1, · · · , 1)T , Γ = (Γℓ)
M
ℓ=1, and both π̄∗ and π(1) are constant.

Proof. It is straightforward to show that, for small heterogeneity in risk aversion, we have

CP,D2D
P = Π̄∗ + Π(1)(Γ− Γ∗) + O(∥Γ− Γ∗∥2) ,

where Π̄∗ is a vector and Π(1) is a matrix, and both are constant. Equilibrium considerations

imply that

Π̄∗ = π̄∗ 1

Π(1) = a1⊗ 1 + π(1) Id .

for scalars a, π̄∗, and π(1). Moreover,

1⊗ 1(Γ− Γ∗) = 0 .

The result then follows. Q.E.D.

139



The natural proxy for the (half) bid-ask spread in the D2C market is the price impact that

customers have when trading with a particular dealer, given by βD2C
c,l . By direct calculation,

βD2C
c,l = βD2C

c,∗ + β(1)
c (Γl − Γ∗) + O(∥Γ− Γ∗∥2) .

The sign of β
(1)
c will play an important role later on. The proposition below follows directly

the results in Malamud and Rostek (2017):

Proposition 29 We always have β
(1)
c > 0.

Thus, we can write

Γl − Γ∗ ≈ (βD2C
c,l − βD2C

c,∗ )/β(1)
c .

This formula allows us to express the latent risk aversion through the observable bid-ask

spreads. Thus, we rewrite

PD2D = CP,D2D
d d + CP,D2D

P · PD2C + CP,D2D
Θ Θ + CP,D2D

θ̄
θ̄

≈ CP,D2D
d d + (π̄∗1 + π(1)(Γ− Γ∗)) · PD2C + CP,D2D

Θ Θ + CP,D2D

θ̄
θ̄

≈ CP,D2D
d d +

(
π̄∗1 +

1

β
(1)
c

π(1)((βD2C
c,l )Ml=1 − βD2C

c,∗ )

)
· PD2C + CP,D2D

Θ Θ + CP,D2D

θ̄
θ̄ .

We have

βD2C
c,l = λ−1

l
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and hence, up to second order terms in the size of heterogeneity,

((βD2C
c,l )Ml=1 − βD2C

c,∗ ) · PD2C = ((βD2C
c,l )Ml=1 − βD2C

c,∗ ) · α M Cov(λ−1
l , α)

≈ −Mλ−2
∗ Cov(λ, α) = −Mλ−1

∗ αmismatch .

Hence,

PD2D ≈ CP,D2D
d d + π̄∗ᾱ − Mλ−1

∗ (π(1)/β(1)
c )αmismatch + CP,D2D

Θ Θ + CP,D2D

θ̄
θ̄ .

We know that β
(1)
c is positive, and hence we just need to figure out the sign of π(1). While

we cannot solve for the sign of π(1) analytically, we use extensive numerical analysis to show

that:

Numerical Claim:

π(1) > 0

when n is sufficiently large.

We now determine π(1). Recall from Lemma 28 that π(1) is defined via the Taylor series

expansion of CP,D2D
P and that

CP,D2D
P = ((Ax)−1)⊤ĈP,D2D

x + ĈP,D2D
P ,

with

Ax = Ax
0 + diag(CP,l

xl
); Ax

0 =
M∑
ℓ=1

eℓ ⊗ CP,ℓ
x .
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We examine the components of matrix Ax, starting with the terms CP,l
x .

CP,l
x =

1

BD2C
l (ΓD2C

l + βD2C
l )

CZ−l
x =

1

BD2C
l (ΓD2C

l + βD2C
l )

B(Γl + βl)

B(Γl + βl) + Γl∆lCZ
l

∆lC̄
x
Z̄ .

It follows that

Ax
0 =

M∑
ℓ=1

eℓ ⊗ CP,ℓ
x = v ⊗ C̄x

Z̄

where

v =

(
1

BD2C
ℓ (ΓD2C

ℓ + βD2C
ℓ )

B(Γℓ + βℓ)

B(Γℓ + βℓ) + Γℓ∆ℓCZ
ℓ

∆ℓ

)M

ℓ=1

and recall that

DemZ̄ = 1 −
∑
ℓ

1

1 + 1

CZ
ℓ ∆ℓ

Γℓ
B(Γℓ+βℓ)

C̄x
Z̄,l =

1

DemZ̄

((
Γl

B(Γl + βl)

)−1

+ CZ
l ∆l

)−1

Cx
l

C̄x
Z̄ = (C̄x

Z̄,1, C̄
x
Z̄,2, · · · , C̄

x
Z̄,M)T

Cx
l = 1 +

ΓD2C
l

ΓD2C
l + βD2C

l

[
−1 +

1

BD2C
l (ΓD2C

l + βD2C
l )

]

In addition,

∆l =
Γl + 2βl

(Γl + βl)2

(
1

B(Γl + βl)
− 1

)
Γl

CZ
l =

1

ΓD2C
l + βD2C

l

[
1− 1

BD2C
l (ΓD2C

l + βD2C
l )

]
.

We use all these expressions in the numerical work regarding Ax
0 . Now, we turn our attention
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to the term diag(CP,l
xl

):

CP,l
xl

=
1

BD2C
l (ΓD2C

l + βD2C
l )

[
CZ−l,l

xl
− ΓD2C

l

]
= − 1

BD2C
l (ΓD2C

l + βD2C
l )

[
Γl∆l

B(Γl + βl) + Γl∆lCZ
l

Cx
l + ΓD2C

l

]
.

We use these expressions to evaluate Ax and thus

CP,D2D
P = ((Ax)−1)⊤ĈP,D2D

x + ĈP,D2D
P ,

where,

ĈP,D2D
P =

(
Γℓ

B(Γℓ + βℓ)

1

ΓD2C
ℓ + βD2C

ℓ

)M

ℓ=1

ĈP,D2D
x = C̃P,D2D

x − B−1

M∑
l=1

Γl

Γl + βl

1

ΓD2C
l + βD2C

l

CZ−l
x

C̃P,D2D
x = −

(
Γℓ

B(Γℓ + βℓ)

C
Z−ℓ,ℓ
xℓ + ΓD2C

ℓ

ΓD2C
ℓ + βD2C

ℓ

)M

ℓ=1

CZ−l
x =

B(Γl + βl)

B(Γl + βl) + Γl∆lCZ
l

∆lC̄
x
Z̄

ĈP,D2D
x = C̃P,D2D

x −

[
M∑
l=1

Γl

B(Γl + βl)

1

ΓD2C
l + βD2C

l

1

1 + Γl

B(Γl+βl)
∆lCZ

l

∆l

]
C̄x

Z̄ .

We are now in the position the evaluate π(1) numerically. The exogenous parameters are

(i) the number of customers n, (ii) the number of dealers M , (iii) the customers’ coefficient

of risk-aversion γ, and (iv) the dealers’ average coefficient of risk-aversion Γ∗. Following

Vayanos and Woolley (2013), we choose

Γ∗ = 30 .
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We define

κ =
γ

Γ∗ ,

and use the values

κ ∈ {0.5, 0.75, 1, 1.25, 1.5} .

Figure 1 plots π(1) as a function of n, for M ∈ {5, 10, 20, 40}. The figure shows that π(1)

is negative for n sufficiently large. In our data, the number of dealers M fluctuates between

8 and 12.
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(a) M = 5 . (b) M = 10 .

(c) M = 20 . (d) M = 30 .

Figure 1: Liquidity Mismatch in a Fragmented Double Auction Model The
relation between the D2D price and αmismatch in a market such as the one in Babus and
Parlatore (2018) is given by

PD2D ≈ CP,D2D
d d+ π̄∗ᾱ− Mλ−1

∗

β
(1)
c

π(1))αmismatch + CP,D2D
Θ Θ+ CP,D2D

θ̄
θ̄ ,

where λ∗ and β
(1)
c are positive. We plot π(1) as a function of n. The other parameters are

Γ∗ = 30 and κ =
γ

Γ∗ .
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