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Factor Models (FM)

yi = Ληi + εi εi ∼ fε, ηi ∼ fη,

yi: i-th p-variate random variable;
Λ: p × H factor loadings matrix;
ηi: i-th vector of H latent factors.



Example 1: economics and finance

(log) returns of p different
assets/stocks or exchange rates may
are observed through time
many of these observations follows
some latent “market trend”
there may be blocks of assets in terms
of market sectors/geographical areas

Exchange rates data. Source: data.oecd.org



Example 2: sc-RNA-Seq

Single-cell gene expression data are
often characterized by large matrices,
where the number of cells≪ than the
number of genes;
Matrix factorizations can reveal
low-dimensional structures;
these techniques can uncover new
biological knowledge from diverse
high-throughput omics data;
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Source: Canale et al. (2023), Structured factorization for single-cell gene expression
data, arXiv



Example 3: multi-study factor analysis

analysis of critical disease are often
carried out using systematic
collections of data generated over
time in different laboratories and/or
hospitals
multi-study factor analysis (De Vito et
al., 2018) postulates the existence of
common factors shared across
multiple studies, and study-specific
factors

Source: artificial image generated from Stable Diffusion



Interpretability and sparsity

Most of the interest revolves around the concept of interpretability;
Interpretation of factor models is assigning a meaning to the latent factors and
then to their impact on the observed data;
this is promoted by the concept of sparsity in many ways.. .



Sparsity for dimensionality reduction

Interpretation of loadings matrix and factors is strongly favoured by a limited number of factors



Sparsity for block structure

Interpretation of loadings matrix is strongly favored when each factor has an impact only on a small
group of components of observed variables



Sparsity for multi-study

Multi-study factor models are special cases of factor models with sparse latent factors



Bayesian (infinite) factor models

Infinite factor models are Bayesian
Nonparametric models for dimensionality
reduction
Batthacharia & Dunson (2011) first introduced
this idea with the multiplicative gamma
process (MGP)
Key idea: there are infinitely many factors,
with the impact of these factors decreasing
with the factor index
Similar in spirit is the cumulative shrinkage
process (CUSP) by Legramanti et al. (2020)
recently generalized by Frühwirth-Schnatter
(2024)



Bayesian (infinite) factor models

In the MGP

λjh ∼ N(0, φjhτh), φjh ∼ Ga(ν/2, ν/2), τh =
h

∏
l=1
δl, δl ∼ Gamma

In the (generalized) CUSP

λjh ∼ N(0, θjh), θjh ∼ spike-and-slab(πh), πh =
h

∑
l=1
ωl, ωh ∼ stick-breaking



Bayesian (sparse) factor models

Local sparsity is another key concept in Bayesia FM
Priors for eachλjh can be broadly divided into

Continuous shrinkage prior: Zhao et al. (2016), Rockova & George (2017), Kastner
(2019)
Discrete shrinkage priors (spike & slab): West (2003), Carvalho et al. (2008), Conti
et al. (2014), Kaufmann & Schumacher (2019) and Frühwirth-Schnatter et al. (2024)



Structured sparsity

In this talk we will present some recent contributions that deal with sparsity in an
informed way;
Postulating the existence of covariates and metacovariates we define suitable
continuous shrinkage priors;
Exploiting the information contained in such variables, we define regression
models on the prior scale parameters thus promoting sparsity in a structured way
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Generalized Infinite Factorizations

λjh ∣ θjh ∼ N(0, θjh)

θjh = τ0 γh φjh

τ0 ∼ fτ0 : global scale;
γh ∼ fγh : column scale;
φjh ∼ fφj : local scale. That depends on meta covariates: E(φjh) = g(x⊺j βh)

Schiavon, Canale, Dunson (2022)



Exogenous information about the sparsity structure

E(φjh ∣ βh) = g(x⊺j βh), βh = (β1h, . . . , βqh)
⊺, βmh ∼ fβ



Bird species occurrence example (1)

y: occurrence of p species in n different environments;
η: H latent factors;
Λ: impact of the latent factors on the species occurrence;
x: q species characteristics (taxonomy, size, migratory strategy...), providing
similarities between different species.

Considering x indicating the phylogenetic order of each species.
If the h-th factor does not impact the occurrence of the species j (λjh = 0), it could not
even impact the other species s belonging to the same order of j (λsh = 0).



Bird species occurrence example (2)



Theoretical prior properties

We define desirable properties for the GIF class including
Increasing shrinkage (var(λjh) < var(λj(h−1)) for any h)
Robustness to large signals (not overshrinking)
Asymptotic increasing sparsity (for p→∞ the sparsity rate increases)

We provide conditions for the properties to hold.



Structured Increasing Shrinkage prior

λjh ∣ θjh ∼ N(0, θjh) θjh = τ0 γh φjh

τ0 = 1, γh = ϑhρh, ϑ−1
h ∼ Ga(aθ, bθ),

ρh = Ber (1 − πh) , πh ∼ CUSP(α)

φjh ∣ βh ∼ Ber{logit(X⊺j βh)} βh ∼ Nq(0, σ2
βIq),

General GIF equations

Power law tail column scale

Incr. shrinkage

Meta covariates impacting the
sparsity pattern



Simulation scenarios

We compare the performance of our proposal with current approaches
(Bhattacharya & Dunson, 2011; Legramanti et al., 2020)
Scenarios:

1 increasing shrinkage FM (no local sparsity;
2 locally sparse FM (no increasing shrinkage);
3 + ;
4 + + metacovariate-dependence in sparsity

Performance measures: LPML, posterior mean of k (estimated number of
columns of Λ), MSE of Ω



Results (1)

Figure: LPML and estimated latent dimension (k) in Scenario —worst case for the proposed
method



Results (2)

Figure: MSE forΩ for different combination of (p, k, s)
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Multi study factor analysis

Multi-study factor analysis (MSFA) assumes the existence of both shared latent
factors and study-specific latent factors
This approach has been introduced by De Vito et al. (2019) and later extended by
De Vito et al. (2021) Grabski et al. (2023), and De Vito & Avalos-Pacheco (2023)
Specifically

yis = Ληis + Γsϕ̃is + εis. (1)

where Γs is a (study-specific) factor loading matrix of dimension p × ks, with
ks ≪ p possibly different in each study, and ϕ̃is its corresponding latent factor.
The resulting marginal distribution of yis is Gaussian with covariance

Ωs = ΛΛ⊺ + ΓsΓ
⊺
s +Σs.



MSFA graphically



Rethinking the MSFA

Rewrite the MSFA as
yis = Ληis + Γϕis + εis. (2)

Here Γ = (Γ1, . . . ,ΓS) binds all the study-specific factor loading matrices into a
p × k matrix with k = ∑S

s=1 ks

ϕis is a k-dimensional augmented vector containing the original ϕ̃is framed with
suitable pattern of zeroes.



Rethinking the MSFA graphically



Structured sparsity for the MSFA

MSFA permits precisely S study-specific loading matrices Γs

practical scenarios often present more complex situations:
two or more studies may present high homogeneity, potentially sharing identical or
nearly identical latent representations
some studies may involve a highly heterogeneous group of subjects, possibly
leading to two or more sub-populations displaying distinct latent representations

Structured sparsity helps in solving these issues

Bortolato and Canale (2024?)



Flexible MSFA
For the shared latent factors, we specify

ηih ∼ N(0, θihτ
η

h ),

For the study specific latent factors, similarly to what we did for Λ previously

ϕih ∼ N(0, ψih(xi)τ
ϕ

h ).

In particular, we assume the dependence between the scale parameters of the
group-specific latent factors and the group indicator xi, as follows:

ψih(xi) ∼ Ber{ψ̃ih}, with ψ̃ih = logit−1
(x⊺i β

ϕ
h ).

Both τ ηh and τϕh are related to (two) CUSP
For the shared and study-specific loadings

λjh ∼ N(0, ζλh ), ζ
λ
h ∼ I-Ga(aλ, bλ), γjh ∼ N(0, ζλh ), ζ

γ
h ∼ I-Ga(aγ, bγ).



Simulations: scenarios

We simulate data under the following scenarios

Scenario 1 — Correct specification: S = 3 groups with sample size n1 = n2 = n3, d = 2
active shared factors, and k = 3 ([1 + 1 + 1] for the groups) specific factors
Scenario 2 — Homogeneity between groups: While we provide S = 3 groups, the
structure of latent factors is homogeneous among all the studies, i.e. k = 0.
Scenario 3 — Latent Heterogeneity: we do not provide the group labels but the data
are generated as in Scenario 1.
Scenario 4 — Mixed situations: There exist groups but k ≠ S



Simulations: metrics & competitors
We evaluate the performance of the proposed flexible multi-study factor mode
(flexMSFA) with the approach proposed by De Vito et al. (2021) (MSFA) and that
of Gabski et al. (2023) (Tetris)
For our method only, we evaluate the ability in discovering the group structure.
To compare the relative performance of each competitor, we measure the
adequacy of the reconstructed the variances due to the shared loadings, and the
global variance for each group.
To this end we compute the RV coefficient (Abdi, 2007)defined for two symmetric
positive definite matrices S, T as

RVS,T =
Tr(S⊺T)

√
Tr(S⊺S)Tr(T⊺T)

∈ (0, 1),

with higher values associated to stronger similarity.



Results: group discovering
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Figure: ROC curve for correct identification of the non-zero patterns in the study specific latent
factors (left) and boxplot of the related AUC



Results: variance matrices reconstruction
Scenario Method d k Ω1 Ω2 Ω3 ΛΛ⊺

1 flexMSFA 2 3 0.90 0.91 0.91 0.95
25% 2 3 0.82 0.86 0.80 0.93
75% 2 3 0.96 0.95 0.93 0.98

1 MSFA 2 - 0.43 0.29 0.29 0.17
25% 2 - 0.27 0.25 0.21 0.06
75% 2 - 0.48 0.33 0.40 0.35

1 TETRIS 2 0 0.92 0.88 0.90 0.79
25% 2 0 0.84 0.82 0.70 0.72
75% 2 0.75 0.95 0.95 0.92 0.90

2 flexMSFA 2 2 0.82 0.82 0.86 0.92
25% 2 2 0.74 0.70 0.77 0.90
75% 2 2 0.92 0.93 0.93 0.95

3 flexMSFA 5 0 0.86 0.86 0.86 0.84
25% 5 0 0.79 0.79 0.79 0.77
75% 5 0 0.88 0.88 0.88 0.85

4 (a) flexMSFA 2 3 0.92 0.85 0.90 0.96
25% 2 3 0.84 0.80 0.78 0.91
75% 2 3 0.95 0.93 0.95 0.98

4 (b) flexMSFA 2 3 0.81 0.83 0.83 0.89
25% 2 3 0.76 0.71 0.76 0.88
75% 2 3 0.90 0.92 0.93 0.94

Table: Configuration n > p, performance of flexMSFA, MSFA, TETRIS based on RV metric on
several simulation scenarios.
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Finnish bird co-occurrence data
Data on the co-occurrences of 50 birds species (columns) in Finland in 200 locations
(rows) in 5 different sampling campaigns



Illustration 1

We first focus on a single sampling campaign
y: n × p binary matrix of occurrence of p species in n different environments.
w: n × c covariate matrix including habitat type and the ’spring temperature’.
x: p× q meta covariate matrix including species traits: the species log body mass,
the species migratory strategy and species superfamily.

yij = 1(zij > 0), zij = wT
i µj + εij, εi = (εi1, . . . , εip)

T ∼ Np(0,ΛΛT + Ip),

z: n × p underlying continuous matrix.
Λ: loadings matrix with structured increasing shrinkage prior such that the
species traits x can impact the covariance structure across species.



Posterior mode of Loadings
Λ
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Graph representation of covariance structure

Structured Increasing Shrinkage prior Multiplicative Gamma Process



Illustration 2

We now analyze the whole dataset considering the different sampling campaigns.
The locations are considered as groups in a multi-study framework
y: n × p binary matrix of occurrence of p species in n different years.
S = 200: number of sites
we do not use neither the covariates or the metacovariates (only the sampling
campaign indicator) but . . .
The 200 locations can be clustered into 5 different types of location: Urban,
Broadleleaved forests, Coniferous forests, Open, and Wetlands.



Posterior of the group specific factors
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Figure: Estimates of the specific factorϕ1 and type of habitat in the sites.



Wrapping up & essential references

Sparsity is useful as dimensionality reduction and to promote interpretability
Bayesian shrinkage prixors can be equipped with regression-like dependence
from covariates and metacovariates
We called this approach structured shrinkage and exploit it in several
contexts/directions:

Schiavon, L., Canale, A., & Dunson, D. B. (2022). Generalized infinite factorization
models. Biometrika
Schiavon, L., Nipoti, B., & Canale, A. (2024). Accelerated structured matrix
factorization. JCGS
Canale, A., Galtarossa, L., Risso, D., Schiavon, L, & Toto, G. (2023), Structured
factorization for single-cell gene expression data, arXiv preprint arXiv:2305.11669
Bortolato, E. Canale, A., (2024?), Flexible multi-study factor analysis, (in preparation)



Joint work with

Lorenzo Schiavon
(University Ca’ Foscari)

Elena Bortolato
(University of Padova)

David Dunson
(Duke University)



Thank you for your attention!

University of Padova . . .

. . .since 1222
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